Skip to main content

The Biomes of the Coldest Corners of the World

  • Chapter
  • First Online:
Biomes of the Southern Hemisphere

Part of the book series: Biome Ecology ((BE,volume 1))

  • 217 Accesses

Abstract

The regions around the polar caps and elevation high enough to produce very cold, sometimes snow and ice-rich conditions, are the coldest corners on our planet. They support relatively species-poor vegetation adapted to seasonal alternation of cold and less cold periods or diurnal alternation of cold nights and hot days. The biomes occurring under such conditions are called tundra (tree-less, moss- and lichen-rich dwarf shrublands and sedgelands) when found beyond the climatic tree line separating vegetation zones. In the case of high mountains, similar biomes occur above the timberline (tree line), separating the alpine belt from the rest of the vegetation on a mountain range. Walter’s zonobiome system recognised only one zonobiome, encompassing all these cold regions—the zonobiome IX (Tundra). The Global Hierarchical Biome System (GHBS) separates the Arctic (A1) and Antarctic (A4) zonobiomes (by splitting Walter’s zonobiome IX) and assigns the respective alpine temperate biomes to the respective zonobiomes A1 and A4. The global biome position of the subtropical and tropical alpine biomes has been confusing. The GHBS presents a novel solution by recognising these biomes at the zonobiome level (the zonobiome A2, Subtropical Alpine Zone and the zonobiome A3, Tropical Alpine Zone), characterised by macroclimatic dynamics of the climatic systems affecting the Tropics and Subtropics. Abandoning the orobiome concept of Walter’s system assisted in developing the new scheme of classification of the alpine biome. The tree line is the crucial climatic and ecological threshold separating the world of the alpine biomes from the rest of the planet’s vegetation. Its position is under the control of many climatic and disturbance factors, modified by the mass-elevation effect (MEE) in many instances. This chapter revisits the MEE phenomenon and suggests new interpretations and ideas to understand the physical nature of the MEE, the influence of exposure and wind shadowing by surrounding mountains on the MEE, the effect of the cloud-belt formation and its relation to the soil nutrient status, nutrient cycling, and carbon residence, and finally the effect of the distance from the sea on the MEE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aagesen L, Szumik CA, Zuloaga FO et al (2009) Quantitative biogeography in the south America highlands—recognising the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 25:295–310

    Article  PubMed  Google Scholar 

  • Aguiar LBP (2012) Effects of grazing and fire on herbaceous species in the Bolivian Altiplano. Thesis, Universität Basel, Basel

    Google Scholar 

  • Anthelme F, Jacobsen D, Macek P et al (2014) Biodiversity patterns and continental insularity in the tropical high Andes. Arct Antarct Alp Res 46:811–828

    Article  Google Scholar 

  • Armesto JJ, Casassa I, Dollenz O (1992) Age structure and dynamics of Patagonian beech forests in Torres del Paine National Park, Chile. Vegetatio 98:13–22

    Article  Google Scholar 

  • Arroyo MTK, Armesto JJ, Villagrán C (1981) Plant phenological patterns in the high Andean Cordillera of central Chile. J Ecol 69:205–223

    Google Scholar 

  • Arzamendia Y, Rojo V, González NM et al (2021) The puna pastoralist system: a coproduced landscape in the Central Andes. Mount Res Develop 41:R38–R49. https://doi.org/10.1659/MRD-JOURNAL-D-21-00023.1

    Article  Google Scholar 

  • Baied CA, Wheeler JC (1993) Evolution of high Andean puna ecosystems: environment, climate, and culture change over the last 12,000 years in the Central Andes. Mount Res Develop 13:145–156

    Article  Google Scholar 

  • Baldassini P, Volante JN, Califano LM et al (2012) Caracterización regional de la estructura y de la productividad de la vegetación de la Puna mediante el uso de imágenes MODIS. Ecol Austral 22:22–32

    Google Scholar 

  • Beck E, Rehder H, Pongratz P et al (1981) Ecological analysis of the boundary between the Afroalpine vegetation types ‘Dendrosenecio Woodlands’ and ’Senecio Brassica-Lobelia Keniensis Community’ on Mt. Kenya. J East Afr Natur Hist Soc Natl Mus 72:1–11

    Google Scholar 

  • Beck E, Senser M, Schiebe R et al (1982) Frost avoidance and freezing tolerance in Afroalpine ‘giant rosette’ plants. Plant Cell Environ 5:215–222

    Google Scholar 

  • Beck E, Scheibe R, Senser M (1983) The vegetation of the Shira Plateau and the western slopes of Kibo (Mt. Kilimanjaro, Tanzania). Phytocoenologia 11:1–30

    Article  Google Scholar 

  • Beck E, Rehder H, Schulze ED et al (1987) Alpine plant communities of Mt. Elgon—an altitudinal transect along the Koitoboss Route. J East Afr Natur Hist Soc Natl Mus 76:1–12

    Google Scholar 

  • Beck HE, Zimmermann NE, McVicar TR et al (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci Data 5:180214. https://doi.org/10.1038/sdata.2018.214

    Article  PubMed  PubMed Central  Google Scholar 

  • Bergstrom DM, Whinam J, Belbin L (2002) A classification of subantarctic Heard Island vegetation. Arct Antarct Alp Res 34:169–177

    Article  Google Scholar 

  • Boelcke O, Moore D, Roig F (eds) (1985) Transecta Botánica de la Patagonia Austral. CONICET, Instituto de la Patagonia & Royal Society, Buenos Aires

    Google Scholar 

  • Bowie R, Frank A (2022) Drakensberg alti-montane grasslands and woodlands. https://www.worldwildlife.org/ecoregions/at1003

  • Box EO (2014) Uplands and global zonation. Contrib Bot Cluj 49:223–254

    Google Scholar 

  • Breckle S-W (2002) Walter’s vegetation of the Earth, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Breckle S-W, Rafiqpoor MD (2019) Vegetation und Klima. Springer Spektrum, Berlin

    Google Scholar 

  • Brochmann C, Gizaw A, Chala D et al (2022) History and evolution of the afroalpine flora: in the footsteps of Olov Hedberg. Alp Bot 132:65–87

    Article  Google Scholar 

  • Bruijnzeel LA, Waterloo MJ, Proctor J et al (1993) Hydrological observations in montane rainforests on Gunung Silam, Sabah, Malaysia, with special reference to the Massenerhebung effect. J Ecol 81:145–167

    Article  Google Scholar 

  • Bruijnzeel LA, Mulligan M, Scatena FN (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol Process 25:465–498

    Article  Google Scholar 

  • Bush M (1986) Some effects of physical processes on the redevelopment of the forests of Krakatau. Univ Hull Dept Geogr Miscell Ser 33:57–76

    Google Scholar 

  • Bussmann RW (2006) Vegetation zonation and nomenclature of African Mountains—an overview. Lyonia 11:41–66

    Google Scholar 

  • Campos PV, Villa PM, Nunes JA et al (2018) Plant diversity and community structure of Brazilian Páramos. J Mount Res 15:1186–1198

    Article  Google Scholar 

  • Carbutt C, Edwards TJ (2015) Reconciling ecological and phytogeographical spatial boundaries to clarify the limits of the montane and alpine regions of sub-Sahelian Africa. S Afr J Bot 98:64–75

    Article  Google Scholar 

  • Carbutt C, Thompson DI (2021) Mountain watch: how LT(S)ER is safeguarding southern Africa’s people and biodiversity for a sustainable mountain future. Land 10:1024. https://doi.org/10.3390/land10101024

  • Catorci A, Velasquez JL, Cesaretti S et al (2014) How environment and grazing influence floristic composition of dry Puna in the southern Peruvian Andes. Phytocoenologia 44:103–119

    Article  Google Scholar 

  • Cavieres LA, Peñaloza A, Arroyo MK (2000) Pisos altitudinales de vegetación en los Andes de Chile Central (33° S). Rev Chil Hist Natur 73:331–344

    Google Scholar 

  • Chapin FS III, Körner C (1995) Patterns, causes, changes, and consequences of biodiversity in arctic and alpine ecosystems. In: Chapin FS, Körner C (eds) Arctic and alpine biodiversity. Springer, Berlin, pp 3–20

    Google Scholar 

  • Chiou CR, Song GZM, Chien JH et al (2010) Altitudinal distribution patterns of plant species in Taiwan are mainly determined by the northeast monsoon rather than the heat retention mechanism of Massenerhebung. Bot Stud 51:89–97

    Google Scholar 

  • Christmann T, Oliveras I (2020) Nature of alpine ecosystems in tropical mountains of south America. In: Encyclopedia of the world’s biomes. Elsevier, Amsterdam, pp 282–291. https://doi.org/10.1016/B978-0-12-409548-9.12481-9

  • Cleef AM (1980) La vegetación del páramo neotropical y sus lazos Australo-Antárticos. Colomb Geogr 7:7–39

    Google Scholar 

  • Coetzee JA (1967) Pollen analytical studies in east and southern Africa. Palaeoecol Afr 3:1–146

    Google Scholar 

  • Cooper DJ, Wolf EC, Colson C et al (2010) Alpine peatlands of the Andes, Cajamarca, Peru. Arct Antarct Alp Res 42:19–33

    Article  Google Scholar 

  • Coronato A, Mazzoni E, Vázques M et al (eds) (2017). Universidad Nacional de la Patagonia Austral, Río Gallegos

    Google Scholar 

  • Cripps CL, Eddington LH (2005) Distribution of mycorrhizal types among alpine vascular plant families on the Beartooth Plateau, Rocky Mountains, U.S.A., in reference to large-scale patterns in arctic-alpine habitats. Arct Antarct Alp Res 37:177–188

    Article  Google Scholar 

  • Crowden RK (2005) Alpine vegetation. In: Reid JN, Hill RS, Brown MJ et al (eds) Vegetation of Tasmania. Australian Biological Resources Study, Canberra, pp 333–356

    Google Scholar 

  • Cuesta F, Muriel P, Llambí LD et al (2016) Latitudinal and altitudinal patterns of plant community diversity on mountain summits across the tropical Andes. Ecography 40:1381–1394

    Article  Google Scholar 

  • de Deus Vidal Jr. J, le Roux PC, Johnson SD et al (2021) Beyond the tree-line: the C3–C4 “Grass-Line” can track global change in the world’s grassy mountain systems. Front Ecol Evol 9:760118. https://doi.org/10.3389/fevo.2021.760118

  • de Vasconcelos MF (2011) O que são campos rupestres e campos de altitude nos topos de montanha do Leste do Brasil? Braz J Bot 34:241–246

    Article  Google Scholar 

  • Dinerstein E, Olson D, Joshi A et al (2017) An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67:534–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellenberg H (1958a) Wald Oder Steppe? Die naturliche Pflanzendecke der Anden Perus, I. Die Umsch Wissensch Techn 21:645–648

    Google Scholar 

  • Ellenberg H (1958b) Wald oder Steppe? Die naturliche Pflanzendecke der Anden Perus, II. Die Umsch Wissensch Techn 22:679–681

    Google Scholar 

  • Ehrmann WU, Mackensen A (1992) Sedimentological evidence for the formation of an East Antarctic ice sheet in Eocene/Oligocene time. Palaeogeogr Palaeoclimatol Palaeoecol 93:285–112

    Article  Google Scholar 

  • Engelskjøn T (1986) Botany of two Antarctic mountain ranges: Gjelsvikfjella and Muhlig-Hofmannfjella, Dronning Maud Land. I. General ecology and development of the Antarctic cold desert cryptogam formation. Polar Res 4:205–224

    Google Scholar 

  • Engelskjøn T (1987) Botany of Bouvetøya, south Atlantic Ocean. II. The terrestrial vegetation of Bouvetøya. Polar Res 5:129–163

    Google Scholar 

  • Flenley JR (1993) Cloud forest, the Massenerhebung effect, and ultraviolet insolation. In: Hamilton LS, Juvik JO, Scatena FM (eds) Tropical montane cloud forests. Proceedings of an international symposium. EastWest Center, Honolulu, pp 94–96

    Google Scholar 

  • Flenley JR (1995) Cloud forest, the Massenerhebung effect, and ultraviolet insolation. In: Hamilton LS, Juvik JO, Scatena FM (eds) Tropical montane cloud forests. Springer, New York, pp 150–155

    Chapter  Google Scholar 

  • Flenley JR (2007) Ultraviolet insolation and the tropical rainforest: altitudinal variations quaternary and recent change, extinctions, and biodiversity. In: Bush MM, Flenley JR (eds) Tropical rainforest responses to climatic change. Springer, Berlin, pp 219–223

    Chapter  Google Scholar 

  • Forster RM (1982) A study of the spatial distribution of bryophytes on Rakata. Univ Hull Geogr Dept Miscel Ser 25:103–126

    Google Scholar 

  • Gajardo G, Redón S (2019) Andean hypersaline lakes in the Atacama Desert, northern Chile: between lithium exploitation and unique biodiversity conservation. Conserv Sci Pract 1:e94. https://doi.org/10.1111/csp2.94

    Article  Google Scholar 

  • González RC, Gutiérrez PA, Lucic MC et al (1997) El Alpiplano. Ciencia y conciencia en los Andes. Universidad de Chile, Santiago de Chile

    Google Scholar 

  • Gorchakovsky PL, Bolshakov VN (1978) Study of the high-mountain ecosystems of the Northern Urals, USSR (Abstract). Arct Alp Res 10:429–431

    Article  Google Scholar 

  • Gosling WD, Hanselman JA, Knox C et al (2009) Long term drivers of change in Polylepis woodland distribution in the central Andes. J Veg Sci 20:1041–1052

    Article  Google Scholar 

  • Grau HR, Babot MJ, Izquierdo AE et al (eds) (2018) La Puna argentina: naturaleza y cultura. Fundación Miguel Lillo, San Miguel de Tucumán

    Google Scholar 

  • Green TGA, Seppelt RD, Brabyn LR et al (2015) Flora and vegetation of Cape Hallett and vicinity, northern Victoria Land, Antarctica. Polar Biol 38:1825–1845

    Google Scholar 

  • Grubb PJ (1971) Interpretation of the ‘Massenerhebung’ effect on tropical mountains. Nature 229:44–45

    Article  CAS  PubMed  Google Scholar 

  • Grubb PJ (1977) Control of forest growth and distribution on wet tropical mountains: with special reference to mineral nutrition. Annu Rev Ecol Syst 8:83–107

    Article  CAS  Google Scholar 

  • Haffner W (1997) Hochasien: Der Effekt großer Massenerhebunge. Geogr Rundsch 49:307–314

    Google Scholar 

  • Halloy S (1991) Islands of life at 6000 m altitude—the environment of the highest autotrophic communities on Earth (Socompa Volcano, Andes). Arct Alp Res 23:247–262

    Article  Google Scholar 

  • Hämet-Ahti L (1979) The dangers of using the timberline as the “zero line” in comparative studies on altitudinal vegetation zones. Phytocoenologia 6:49–54

    Article  Google Scholar 

  • Hastenrath S (1968) Certain aspects of the three-dimensional distribution of climate and vegetation belts in the mountains of central America and southern Mexico. Coll Geogr 9:122–130

    Google Scholar 

  • Hättenschwiler S, Handa T, Egli L et al (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol 156:353–375

    Article  Google Scholar 

  • Hauman L (1933) Esquisse de la végétation des hautes altitudes sur le Ruwenzori. Bull Acad Roy Belg Cl Sci 5ème Sér 19:602–616

    Google Scholar 

  • Hauman L (1955) La “région afroalpine” en phytogeographie Centro-Africaine. Webbia 11:467–469

    Google Scholar 

  • He W, Zhang B, Zhao F et al (2016) The mass elevation effect of the central Andes and its implications for the southern Hemisphere’s highest treeline. Mount Res Develop 36:213–221

    Article  Google Scholar 

  • Hedberg O (1951) Vegetation belts of the East-African mountains. Svensk Bot Tidskr 45:141–196

    Google Scholar 

  • Hedberg O (1955) Altitudinal zonation of the vegetation on the east African Mountains. Proc Linn Soc London (Bot) 165:134–136

    Google Scholar 

  • Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeogr Suec 49:1–44

    Google Scholar 

  • Herbst SN, Roberts BR (1974) The alpine vegetation of the Lesotho Drakensberg: a study in quantitative floristics at oxbow. J S Afr Bot 40:257–267

    Google Scholar 

  • Hermes K (1955) Die Lage der oberen Waldgrenze in den Gebirgen der Erde und ihr Abstand zur Schneegrenze. Geographisches Institut, Universität Köln, Köln

    Google Scholar 

  • Hestmark G (2019) On the altitudes of von Humboldt. PNAS 116:12599–12600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951

    Article  Google Scholar 

  • Holtmeier F-K (2003) Mountain timberlines: ecology, patchiness, and dynamics. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Holtmeier F-K, Broll G (2017) Treelines—approaches at different scales. Sustainability 9:808. https://doi.org/10.3390/su9050808

    Article  Google Scholar 

  • Hope GS (1976) The vegetational history of Mt. Wilhelm, Papua New Guinea. J Ecol 64:627–664

    Article  Google Scholar 

  • Hope GS (1980) New Guinea mountain vegetation communities. In: van Royen P (ed) Alpine flora of New Guinea 1. Cramer Verlag, Vaduz, pp 111–222

    Google Scholar 

  • Irl SDH, Anthelme F, Harter DEV et al (2016) Patterns of island treeline elevation—a global perspective. Ecography 39:427–436

    Article  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropic. Am Natur 101:233–249

    Article  Google Scholar 

  • Jiménez-Rivillas C, García JJ, Quijano-Abril MA et al (2018) A new biogeographical regionalisation of the Páramo biogeographic province. Austr Syst Bot 31:296–310

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) Global controls of forest line elevation in the northern and southern hemispheres. Glob Ecol Biogeogr 9:253–268

    Article  Google Scholar 

  • Josse C, Cuesta F, Navarro G et al (2009a) Ecosistemas de los Andes del Norte y Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, Lima

    Google Scholar 

  • Josse C, Cuesta F, Navarro G et al (2009b) Mapa de Ecosistemas de los Andes del Norte y Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, Lima

    Google Scholar 

  • Kessler M (2002) The “Polylepis” problem: where do we stand? Ecotropica 8:97–110

    Google Scholar 

  • Kessler M (2006) Bosques de Polylepis. In: Moraes RM, Øllgaard B, Kvist LP et al (eds) Botánica económica de los Andes Centrales. Universidad Mayor de San Andrés, La Paz, pp 110–120

    Google Scholar 

  • Killick DJB (1963) An account of the plant ecology of the Cathedral Peak area of the Natal Drakensberg. Mem Bot Surv S Afr 34:1–178

    Google Scholar 

  • Killick DJB (1978a) The Afroalpine Region. In: Werger MJA, van Bruggen AC (eds) Biogeography and ecology of southern Africa. Dr. W. Junk Publishers, The Hague, pp 515–542

    Google Scholar 

  • Killick DJB (1978b) Further data on the climate of the Alpine Vegetation Belt of eastern Lesotho. Bothalia 12:567–572

    Article  Google Scholar 

  • Killick DJB (1978c) Notes on the vegetation of the Sani Pass area of the southern Drakensberg. Bothalia 12:537–542

    Article  Google Scholar 

  • Killick DJB (1994) Drakensberg Alpine Region—Lesotho and South Africa. In: Davis SD, Heywood VH (eds) Centres of plant diversity. Oxford University Press, Oxford, pp 257–260

    Google Scholar 

  • Killick DJB (1997) Alpine tundra of southern Africa. In: Wielgolaski FE (ed) Polar and alpine tundra. Elsevier Scientific, Amsterdam, pp 199–209

    Google Scholar 

  • Kim JH, Ahn I-Y, Lee KS et al (2007) Vegetation of Barton Peninsula in the neighbourhood of King Sejong Station (King George Island, maritime Antarctic). Polar Biol 30:903–916

    Google Scholar 

  • Kirkpatrick JB (1982) Phytogeographical analysis of Tasmanian alpine floras. J Biogeogr 9:255–271

    Article  Google Scholar 

  • Kirkpatrick JB (1983) Treeless plant communities of Tasmanian alpine floras. Proc Ecol Soc Austr 12:61–77

    Google Scholar 

  • Kirkpatrick JB (1984) The impact of fire on Tasmanian alpine vegetation and soils. Austr J Bot 32:613–629

    Article  Google Scholar 

  • Kirkpatrick JB (1986) Tasmanian alpine biogeography and ecology interpretation of the past. In: Barlow BA (ed) Flora and fauna of alpine Australasia: ages and origins. Australian Systematic Botany Society. CSIRO, Melbourne, pp 227–242

    Google Scholar 

  • Kirkpatrick JB (1997) Alpine Tasmania. An illustrated guide to flora and vegetation. Oxford University Press, Melbourne

    Google Scholar 

  • Kitayama K, Ando S, Repin R et al (2014) Vegetation and climate of the summit zone of Mount Kinabalu in relation to the Walker Circulation. Arct Antarct Alp Res 46:745–753

    Article  Google Scholar 

  • Kleier C, Rundel P (2009) Energy balance and temperature relations of Azorella compacta, a high-elevation cushion plant of the central Andes. Plant Biol 11:351–358

    Article  CAS  PubMed  Google Scholar 

  • Komárková V (1983) Plant communities of the Antarctic Peninsula near Palmer Station. Antarct J United States 18:216–218

    Google Scholar 

  • Komárková V (1984) Studies of plant communities of the Antarctic Peninsula near Palmer Station. Antarct J United States 19:180–182

    Google Scholar 

  • Köppen W (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet. Meteorol Zeitschr 1:215–226

    Google Scholar 

  • Köppen W (1936) Das geographische System der Klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie, Band 1, Teil C. Borntraeger, Berlin

    Google Scholar 

  • Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Körner C (2012) Alpine treelines: functional ecology of the global high elevation tree limits. Springer, Basel

    Book  Google Scholar 

  • Körner C (2020) Climatic controls of the global high elevation treelines. In: Goldstein MI, DellaSala DA (eds) Encyclopedia of the world’s biomes, vol 1. Elsevier, Amsterdam, pp 275–281

    Chapter  Google Scholar 

  • Körner C (2021a) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Nature Switzerland, Cham

    Google Scholar 

  • Körner C (2021b) The cold range limit of trees. Trends Ecol Evol 36:979–989

    Article  PubMed  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31:713–732

    Article  Google Scholar 

  • Lambrinos JG, Kleier CC, Rundel PW (2006) Variación en la comunidad vegetal de un paisaje de puna en los Andes chilenos. Rev Chil Hist Nat 79:233–243

    Google Scholar 

  • Leuschner C (1996) Timberline and alpine vegetation on the tropical and warm-temperate oceanic islands of the world: elevation, structure and floristics. Vegetatio 123:193–206

    Google Scholar 

  • Lewis Smith RI (1972) Vegetation of the South Orkney Islands with particular reference to Signy Island. Brit Antarct Surv Sci Rep 68:1–124

    Google Scholar 

  • Lewis Smith RI (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws RM (ed) Antarctic ecology, vol 1. Academic Press, London, pp 61–162

    Google Scholar 

  • Lewis Smith RI, Gimingham CH (1976) Classification of cryptogamic communities in the maritime Antarctic. Brit Antarct Surv Bull 43:25–47

    Google Scholar 

  • Lindsay DC (1971) Vegetation of the South Shetland Islands. Brit Antarct Surv Bull 25:59–83

    Google Scholar 

  • Longton RE (1979) Vegetation ecology and classification in the Antarctic Zone. Can J Bot 57:2264–2278

    Article  Google Scholar 

  • Luebert F (2021) The two south American dry diagonals. Front Biogeogr 13:e51267. https://doi.org/10.21425/F5FBG51267

    Article  Google Scholar 

  • Luebert F, Gajardo R (2005) High Andean vegetation of Parinacota (northern Chile) and a synopsis of the southern Puna vegetation. Phytocoenologia 35:79–128

    Article  Google Scholar 

  • Luteyn JL (1999) Páramos: a checklist of plant diversity, geographical distribution, and botanical literature. Mem New York Bot Gard 84:1–278

    Google Scholar 

  • Macek P, Macková J, de Bello F (2009) Morphological and ecophysiological traits shaping altitudinal distribution of three Polylepis treeline species in the dry tropical Andes. Acta Oecol 35:778–785

    Article  Google Scholar 

  • Mark AF, Bliss LC (1970) The high-alpine vegetation of Central Otago, New Zealand. New Zeal J Bot 8:381–451

    Article  Google Scholar 

  • Mark AF, Adams NM (1995) New Zealand alpine plants, rev. edn. Godwit, Auckland

    Google Scholar 

  • Mark AF, Dickinson KJM (1997) New Zealand alpine ecosystems. In: Wielgolaski FE (ed) Ecosystems of the world 3. Polar and alpine tundra. Elsevier, Amsterdam, pp 311–345

    Google Scholar 

  • Mark AF, Dickinson KJM, Hodfstede RGM (2000) Alpine vegetation, plant distribution, life forms, and environments in a perhumid New Zealand region: oceanic and tropical high mountain affinities. Arct Antarct Alp Res 32:240–254

    Article  Google Scholar 

  • Mark AF, Dickinson KJM, Allen J et al (2001) Vegetation patterns, plant distribution and life forms across the alpine zone in southern Tierra del Fuego, Argentina. Austral Ecol 26:423–440

    Article  Google Scholar 

  • Martínez C, Jaramillo C, Correa-Metrío A et al (2020) Neogene precipitation, vegetation, and elevation history of the Central Andean Plateau. Sci Adv 6:eaaz4724. https://doi.org/10.1126/sciadv.aaz4724

  • Martínez Carretero E, Dalmasso A, Marquéz J et al (2010) Plant communities and phytogeographical units from NW San Juan Province (High Central Andes of Argentina). Candollea 65:69–93

    Article  Google Scholar 

  • Martínez-Parras JM, Peinado M, Alcaraz F (1987) Comunidades vegetales de Sierra Nevada (España). Servicio de Publicaciones de la Universidad de Alcalá de Henares, Alcalá de Henares

    Google Scholar 

  • McGlone MS, Newnham RM, Moar NT (2010) The vegetation cover of New Zealand during the Last Glacial Maximum: do pollen records under-represent woody vegetation? In: Haberle S, Stevenson J, Prebble M (eds) Altered fire ecologies: fire, climate and human influences on terrestrial landscapes. ANU E Press, Canberra, pp 49–68

    Google Scholar 

  • Mendelova M, Hein AS, McCulloch R et al (2017) The Last Glacial Maximum and deglaciation in Central Patagonia, 44° S–49° S. Cuader Invest Geogr 43:719–750

    Article  Google Scholar 

  • Montesinos-Tubée D (2016) The mountain vegetation of south Peru: syntaxonomy, ecology, phytosociology and conservation. Wageningen University, Wageningen

    Google Scholar 

  • Morrone JJ (2015) Biogeographical regionalisation of the Andean region. Zootaxa 3936:207–236. https://doi.org/10.11646/zootaxa.3936.2.3

  • Mucina L, Rutherford MC, Powrie LW (2006a) Logic of the map: approaches and procedures. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 12–29

    Google Scholar 

  • Mucina L, Hoare DB, Lötter MC et al (2006b) Grassland biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 348–437

    Google Scholar 

  • Mucina L, Bültmann H, Dierßen K et al (2016) Vegetation of Europe: Hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19(Suppl 1):3–264

    Article  Google Scholar 

  • Nagy L, Grabherr G (2009) The biology of alpine habitats. Oxford University Press, Oxford

    Google Scholar 

  • Navarro G, Molina JA (2019) A floristic-ecological classification of the shrublands of the dry Bolivian Altiplano. Phytocoenologia 49:199–208

    Article  Google Scholar 

  • Navarro G, Molina JA, De la Barra N (2005) Classification of the high-Andean Polylepis forests in Bolivia. Plant Ecol 176:113–130

    Article  Google Scholar 

  • Neri AV, Borges GRA, Meira-Neto JAA et al (2017) Soil and altitude drives diversity and functioning of Brazilian Páramos (campo de altitude). J Plant Ecol 10:731–743

    Google Scholar 

  • Noroozi J, Hülber K, Willner W (2017) Phytosociological and ecological description of the high alpine vegetation of NW Iran. Phytocoenologia 47:233–259

    Article  Google Scholar 

  • Ohsawa M (1993) Latitudinal patterns of mountain vegetation zonation in southern and eastern Asia. J Veg Sci 4:13–18

    Article  Google Scholar 

  • Ohsawa M, Nainggolan PHJ, Tanaka N (1985) Altitudinal zonation of forest vegetation on Mount Kerinci, Sumatra: with comparisons to zonation in the temperate region of east Asia. J Trop Ecol 1:193–216

    Article  Google Scholar 

  • Onipchenko V, Mark AF, Wells G (2005) Floristic richness of three perhumid New Zealand alpine plant communities in comparison with other regions. Austral Ecol 30:518–525

    Article  Google Scholar 

  • Oyague E, Cooper DJ (2020) Peatlands of the Central Andes Puna, South America. Wetl Sci Pract 2020:255–260

    Google Scholar 

  • Ozenda P (1975) Sur les étages de végétation dans les montagnes du Bassin Méditerranéen. Doc Cartogr Ecol 16:1–32

    Google Scholar 

  • Ozenda P (1997) Le concept geobiologique d’orosysteme. Rev Ecol Alp 4:65–106

    Google Scholar 

  • Parnikoza I, Convey P, Dykyyz I et al (2009) Current status of the Antarctic herb tundra formation in the Central Argentine Islands. Glob Change Biol 15:1685–1693

    Article  Google Scholar 

  • Parolly G (2004) The high mountain vegetation of Turkey—a state of the art report, including a first annotated conspectus of the major syntaxa. Turk J Bot 28:39–63

    Google Scholar 

  • Pfadenhauer JS, Klötzli FA (2014) Vegetation der Erde. Springer Spektrum, Berlin

    Google Scholar 

  • Pfadenhauer JS, Klötzli FA (translated by von Gadow C) (2020) Global vegetation: fundamentals, ecology and distribution. Springer Nature Switzerland, Cham. https://doi.org/10.1007/978-3-030-49860-3

  • Pignatti E, Pignatti S, Nimis P et al (1980) La vegetazione ad arbusti spinosi emisferici: Contributo alla interpretazione delle fasce di vegetazione delle alte montagne dell’Italia mediterranea. C.N.R., Roma

    Google Scholar 

  • Proctor J, Lee YF, Langley AM et al (1988) Ecological studies on Gunung Silam, a small ultrabasic mountain in Sabah, Malaysia, I. Environment, forest structure and floristics. J Ecol 76:320–340

    Article  Google Scholar 

  • Pouteau R, Giambelluca TW, Ah-Peng C et al (2018) Will climate change shift the lower ecotone of tropical montane cloud forests upwards on islands? J Biogeogr 45:1326–1333

    Article  Google Scholar 

  • Quézel P (1953) Contribution á l'étude phytosociologique et géobotanique de la Sierra Nevada. Mem Soc Broter 9:5–77

    Google Scholar 

  • Quézel P (1964) Végétation des hautes montagnes de la Grèce méridionale. Vegetatio 12:289–385

    Article  Google Scholar 

  • Quézel P (1979) La Région Méditerranéenne française et ses essences forestières. Signification écologique dans le contexte circum-méditerranéen. Forêt Méditerr 1:7–18

    Google Scholar 

  • Quintanilla V (1980) Observaciones fitogeognificas en la alta cordillera de Santiago. Rev Geogr Chile Terra Austr 24:3–14

    Google Scholar 

  • Quintanilla V (1996) Zonación altitudinal de la vegetación en una cuenca andina de Santiago de Chile. In: Actas I Taller Internacional de Geoecología de Montana y Desarrollo Sustentable de Los Andes del Sur. Universidad de Chile, Facultad de Arquitectura y Urbanismo, Santiago de Chile, pp 477–484

    Google Scholar 

  • Rauh W (1988) Tropische Hochgebirgspflanzen: Wuchs- und Lebensformen. Springer, Berlin

    Book  Google Scholar 

  • Rebelo AG, Boucher C, Helme N et al (2006) Fynbos biome. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 52–219

    Google Scholar 

  • Rehder H, Beck E, Kokwaro JO et al (1981) Vegetation analysis of the Upper Teleki Valley (Mt. Kenya) and adjacent areas. J East Afr Nat Hist Soc Natl Mus 171:1–8

    Google Scholar 

  • Richards PW (1952) The tropical rain forest: an ecological study. Cambridge University Press, Cambridge

    Google Scholar 

  • Riehl H (1979) Climate and weather in the Tropics. Academic Press, London

    Google Scholar 

  • Rivas-Martínez S (1981) Les étages bioclimatiques de la végétation de la péninsule Ibérique. Anal Jard Bot Madrid 37:251–268

    Google Scholar 

  • Rivas-Martínez S (1982) Etages bioclimatiques, secteurs chorologiques et séries de végétation de l’Espagne méditerranéenne. Ecol Mediter 8:275–288

    Google Scholar 

  • Rivas-Martínez S (1991) Bioclimatic belts of west Europe. (Relations between bioclimate and plant ecosystems). In: Duplessy JC, Pons A, Fantechi R (eds) Environment and quality of life: climate and global change: proceeding. Commission of the European Communities, Luxembourg, pp 225–246

    Google Scholar 

  • Roig F (1998) Vegetación de la Patagonia. In: Correa M (ed) Flora Patagónica. I. INTA, Buenos Aires, pp 48–166

    Google Scholar 

  • Roman L, Scatena FN, Bruijnzeel LA (2010) Global and local variations in tropical montane cloud forest soils. In: Bruijnzeel LA, Scatena FN, Hamilton LS (eds) Tropical montane cloud forests. Science for conservation and management. Cambridge University Press, Cambridge, pp 77–89

    Google Scholar 

  • Romano GM (2017) A high resolution shapefile of the Andean biogeographical region. Data Brief 13:230–232. https://doi.org/10.1016/j.dib.2017.05.039

    Article  PubMed  PubMed Central  Google Scholar 

  • Rundel PW, Smith AP, Meinzer FC (eds) (1994) Tropical alpine environments. Plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Rundel PW, Gibson AC, Midgley GS et al (2003) Ecological and ecophysiological patterns in a pre-altiplano shrubland of the Andean Cordillera in northern Chile. Plant Ecol 169:179–193

    Article  Google Scholar 

  • Ruthsatz B (1977) Pflanzengesellschaften und ihre Lebensbedingungen in den Andinean Halbwüsten Nordwest-Argentiniens. Dissertationes Botanicae 39. Cramer Verlag, Vaduz

    Google Scholar 

  • Ruthsatz B (1995) Vegetation und Ökologie tropischer Hochgebirgsmoore in den Anden Nord-Chiles. Phytocoenologia 25:185–234

    Article  Google Scholar 

  • Safford HD (1999a) Brazilian Páramos I: an introduction to the physical environment and vegetation of the campos de altitude. J Biogeogr 26:693–712

    Article  Google Scholar 

  • Safford HD (1999b) Brazilian Páramos II: macro- and mesoclimate of the campos de altitude and affinities with high mountain climates of the tropical Andes and Costa Rica. J Biogeogr 26:713–737

    Article  Google Scholar 

  • Safford HD (2001) Brazilian Páramos III. Patterns and rates of post fire regeneration in the campos de altitude. Biotropica 33:282–302

    Google Scholar 

  • Safford HD (2007) Brazilian Páramos IV: phytogeography of the campos de altitude. J Biogeogr 34:1701–1722

    Article  Google Scholar 

  • Sarmiento G (1986) Ecologically crucial features of climate in high tropical mountains. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, Oxford, pp 11–45

    Google Scholar 

  • Schröter C (1908) Das Pflanzenleben der Alpen: Eine Schilderung der Hochgebrigsflora. Verlag von Albert Raustein, Zürich

    Google Scholar 

  • Schröter C (1926) Das Pflanzenleben der Alpen. Verlag von Albert Raustein, Zürich

    Google Scholar 

  • Sharples C (2014) A thematic gap analysis of the tasmanian geoconservation database: glacial and periglacial landform listings in the Tasmanian wilderness world heritage area. Nature conservation series 14/4. Resource Management and Conservation Division, Department of Primary Industries Parks Water and Environment, Hobart

    Google Scholar 

  • Sklenář P, Balslev H (2005) Superpáramo plant species diversity and phytogeography in Ecuador. Flora 200:416–433

    Article  Google Scholar 

  • Sklenář P, Ramsay PM (2001) Diversity of zonal páramo plant communities in Ecuador. Divers Distrib 7:113–124

    Article  Google Scholar 

  • Sklenář P, Kučerová A, Macek P et al (2010) Does plant height determine the freezing resistance in the páramo plants? Austral Ecol 35:929–934

    Article  Google Scholar 

  • Sklenář P, Dušková E, Balslev H (2011) Tropical and temperate: evolutionary history of páramo flora. Bot Rev 77:71–108

    Article  Google Scholar 

  • Sklenář P, Hedberg I, Cleef AM (2014) Island biogeography of tropical alpine floras. J Biogeogr 41:287–297

    Article  Google Scholar 

  • Smith AP, Young TP (1987) Tropical alpine plant ecology. Annu Rev Ecol Syst 18:137–158

    Article  Google Scholar 

  • Smith JMB (1980) The vegetation of the summit zone of Mount Kinabalu. New Phytol 84:547–573

    Article  Google Scholar 

  • Smith VR, Mucina L (2006) Vegetation of subantarctic Marion and Prince Edward Islands. In: Mucina L, Rutherford MC (eds) The vegetation of South Africa, Lesotho and Swaziland. SANBI, Pretoria, pp 698–723

    Google Scholar 

  • Squeo FA, Warner BG, Aravena R et al (2006) Bofedales: high altitude peatlands of the central Andes. Rev Chil Hist Natur 79:245–255

    Google Scholar 

  • Tanner EVJ (1985) Jamaican montane forests: nutrient capital and cost of growth. J Ecol 73:553–568

    Article  Google Scholar 

  • Teillier S, Becerra P (2003) Flora y vegetación del Salar de Ascotán, Andes del norte de Chile. Gayana Bot 60:114–122

    Article  Google Scholar 

  • Teillier S, Hofmann AJ, Saavedra F et al (1994) Flora del Parque Nacional El Morado (Región Metropolitana, Chile). Gayana Bot 51:13–47

    Google Scholar 

  • Testolin R, Attorre F, Jiménez-Alfaro B (2020) Global distribution and bioclimatic characterisation of alpine biomes. Ecography 43:779–788

    Article  Google Scholar 

  • Testolin R, Carmona C, Attorre F et al (2021a) Global functional variation in alpine vegetation. J Veg Sci 32:e13000. https://doi.org/10.1111/jvs.13000

    Article  Google Scholar 

  • Testolin R, Attorre F, Borchardt P et al (2021b) Global patterns and drivers of alpine plant species richness. Glob Ecol Biogeogr 30:1218–1231

    Article  Google Scholar 

  • Troll C (1948) Der asymmetrische Aufbau der Vegetationszonen und Vegetationsstufen auf der Nord- und Südhalbkugel. Ber Geobot Forschungsinst Rübel 1947:46–83

    Google Scholar 

  • Troll C (1973) The upper timberlines in different climatic zones. Arct Alp Res 5(Suppl 3):A3–A18. https://doi.org/10.1080/00040851.1973.12003712

    Article  Google Scholar 

  • Tukhanen S (1984) A circumboreal system of climatic-phytogeographical regions. Acta Bot Fenn 127:1–50

    Google Scholar 

  • van Steenis CGGJ (1972) The mountain flora of Java. E.J. Brill Publishers, Leiden

    Google Scholar 

  • Van Zinderen Bakker EM, Werger MJA (1974) Environment, vegetation and phytogeography of the high-altitude bogs of Lesotho. Vegetatio 29:37–49

    Article  Google Scholar 

  • Villagrán C, Arroyo MTK, Armesto JJ (1982) La vegetación de un transecto altitudinal en los Andes del norte de Chile (18°–19° S). In: Veloso A, Bustos E (eds) El ambiente natural y las poblaciones humanas de los Andes del Norte Grande de Chile (Arica, Lat. 18°28’S). UNESCO, Santiago de Chile, pp 13–70

    Google Scholar 

  • von Humboldt A, Bonpland A (1805) Essai sur la Géographie des Plantes; Accompagné d’un Tableau Physique des Régions Equinoxiales, Fondé sur des Mesures Exécutées, Depuis le Dixième Degré de Latitude Boréale jusqu’au Dixième Degré de Latitude Australe, Pendant les Années 1799, 1800, 1801, 1802 et 1803. Levrault, Schoell et Compagnie, Paris

    Google Scholar 

  • Wahlenberg G (1813) De vegetatione et climate in Helvetia Septentrionali inter flumina Rhenum et Arolam observatis et cum summi septentrionis comparatis tentamen. Impensis Orell, Fuessli et Sociorum, Turici Helvetorum, Zürich

    Google Scholar 

  • Walker DA, Raynolds MK, Daniëls FJA et al (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282

    Article  Google Scholar 

  • Walter H (1964) Die Vegetation der Erde in öko-physiologischer Betrachtung. Band I: Die tropischen und subtropischen Zonen, 2. Auflage. VEB Gustav Fischer Verlag, Jena

    Google Scholar 

  • Walter H (1976) Die Ökologischen Systeme der Kontinente (Biogeosphäre). Gustav Fischer Verlag, Stuttgart

    Google Scholar 

  • Walter H, Box EO (1976) Global classification of natural terrestrial ecosystems. Vegetatio 32:72–81

    Article  Google Scholar 

  • Walter H, Breckle S-W (1985) Ecological systems of the geobiosphere. 1. Ecological principles and global perspectives. Springer, Berlin

    Google Scholar 

  • Walter H, Breckle S-W (1986) Ecological systems of the geobiosphere. 2. Tropical and subtropical zonobiomes. Springer, Berlin

    Google Scholar 

  • Walter H, Breckle S-W (1989) Ecological systems of the geobiosphere. 3. Temperate and polar zonobiomes of Northern Eurasia. Springer, Berlin

    Google Scholar 

  • Wardle P (1993) Causes of alpine timberline: a review of the hypotheses. In: Alden J, Mastrantonio JL, Odum S (eds) Forest development in cold climates. Plenum Press, New York, pp 89–103

    Chapter  Google Scholar 

  • Warren C, Sugden D (1993) The Patagonian Icefields: a glaciological review. Arct Alp Res 25:316–331

    Article  Google Scholar 

  • White F (1983) Vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation Map of Africa. UNESCO, Paris

    Google Scholar 

  • Winkworth RC, Wagstaff SJ, Glenny D et al (2005) Evolution of the New Zealand mountain flora: origins, diversification and dispersal. Organ Divers Evol 5:237–247

    Article  Google Scholar 

  • Zhang B, Yao Y (2016) Implications of mass elevation effect for the altitudinal patterns of global ecology. J Geogr Sci 26:871–877

    Article  Google Scholar 

  • Zhao F, Zhang B, Zhang S et al (2015) Contribution of mass elevation effect to the altitudinal distribution of global treelines. J Mount Sci 12:289–297

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Mucina .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mucina, L. (2023). The Biomes of the Coldest Corners of the World. In: Biomes of the Southern Hemisphere. Biome Ecology, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-26739-0_7

Download citation

Publish with us

Policies and ethics