Skip to main content

Genomic Design for Biotic Stress Tolerance in Vegetable Brassicas

  • Chapter
  • First Online:
Genomic Designing for Biotic Stress Resistant Vegetable Crops

Abstract

Vegetable Brassica species comprise various agro-economically significant crops that offer nutrition and health-promoting elements to humans globally. In recent years, the major constraint of the Brassica crop production is constantly evolving fungi, virus, bacteria and insects causing variety of diseases, ultimately affecting quality and quantity of plant products. Among many of them, major threats to crop productions are clubroot, Fusarium wilt, stem rot, black leg, downy mildew, diamondback moth and TuMV disease. Traditional approaches of disease management are largely expensive, offer incomplete efficacy, and cause, in some cases, environmental harm; however, the best strategy is to identify resistant genetic resources, mining of genes/loci and deploy them in Brassica crop improvement programs. Combination of molecular breeding tools with advanced next generation sequencing (rapid and cost-effective) derived methods enables quick detection of resistant genes, and development of molecular markers that can be utilized in resistant breeding. Altogether in this chapter, we present a review on how vegetable Brassicas can be improved to address diverse biotic stresses, their plant genetic resources, genetic and genomics tools for their introduction into the cultivated Brassica crops and subsequently developing Brassica crops resistant to the adverse biotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnola B, Boury S, Monot C, Quillévéré A, Hervé Y et al (2003) Evidence that a leaf–disk test allows assessment of isolate–specific resistance in Brassica oleracea crops against downy mildew (Peronospora parasitica). Eur J Plant Pathol 109:471–478

    Article  CAS  Google Scholar 

  • Allen BW, Goodenough PW, Lee JSC, Rutherford PP (1986) Evolution of cauliflower types grown in Great Britain as indicated by the isoenzyme composition of the cauliflower curds. Euphytica 35:25

    Article  Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst Evol 259(2):89–120

    Article  Google Scholar 

  • Arus P, Orton TJ (1983) Inheritance and linkage relationships of isozyme loci in Brassica oleracea. J Hered 74:405–412

    Article  CAS  Google Scholar 

  • Arus P, Shields CR, Orton TJ (1985) Application of isozyme electrophoresis for purity testing and cultivar identification of F1 hybrids of Brassica oleracea. Euphytica 34:651–657

    Article  Google Scholar 

  • Atri C, Akhatar J, Gupta M, Gupta N, Goyal A et al (2019) Molecular and genetic analysis of defensive responses of Brassica junceaB. fruticulose introgression lines to Sclerotinia infection. Sci Rep 9(1):1–12

    Google Scholar 

  • Attia T, Robbelen G (1986) Cytogenetic relationship within cultivated Brassica analyzed in amphihaploids from three diploid ancestors. Can J Genet Cytol 28:323–329

    Article  Google Scholar 

  • Baggett JR, Wahlert WK (1975) Annual flowering and growth habit in cabbage-broccoli crosses. Hort Sci 10(2):170–172

    Google Scholar 

  • Balesdent MH, Barbetti MJ, Li H, Sivasithamparam K, Gout L et al (2005) Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology 95:1061

    Article  CAS  PubMed  Google Scholar 

  • Barbetti MJ, Banga SS, Salisbury PA (2012) Challenges for crop production and management from pathogen biodiversity and diseases under current and future climate scenarios–case study with oilseed Brassicas. Field Crop Res 127:225–240

    Article  Google Scholar 

  • Bolton MD, Thomma BP, Nelson BD (2006) Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol Plant Pathol 7:1–16

    Article  CAS  PubMed  Google Scholar 

  • Bosland PW, Williams PH (1988) Pathogenicity of geographic isolates of Fusarium oxysporum from crucifers on a differential set of crucifer seedlings. J Phytopathol 123(1):63–68

    Article  Google Scholar 

  • Brun H, Chèvre AM, Fitt BD, Powers S, Besnard AL et al (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299

    Article  PubMed  Google Scholar 

  • Camargo LEA, Williams PH, Osborn TC (1995) Mapping of quantitative trait loci controlling resistance of Brassica oleracea to Xanthomonas campestris pv. campetris in the field and greenhouse. Phytopathology 85:1296–1300

    Article  Google Scholar 

  • CCC. Canola Council of Canada (2021) Canola encyclopedia: about blackleg. Available online: https://www.canolacouncil.org/canola-encyclopedia/diseases/blackleg/about-blackleg/. Accessed on 10 April 2021

  • Carlier JD, Alabaça CA, Coelho PS, Monteiro AA, Leitão JM (2012) The downy mildew resistance locus Pp523 is located on chromosome C8 of Brassica oleracea L. Plant Breed 131(1):170–175

    Article  CAS  Google Scholar 

  • Carlier JD, Alabaça CS, Sousa NH, Coelho PS, Monteiro AA et al (2011) Physical mapping in a triplicated genome: mapping the downy mildew resistance locus Pp523 in Brassica oleracea L. G3 (Bethesda) 1(7):593–601

    Google Scholar 

  • Chamola R, Balyan HS, Bhat SR (2013) Transfer of cytoplasmic male sterility from alloplasmic Brassica juncea and B. napus to cauliflower (B. oleracea var. botrytis) through interspecific hybridization and embryo culture. Indian J Genet 73:203–210

    Article  Google Scholar 

  • Channon AG (1981) Downy mildew of Brassicas. In: DM Spencer (ed) The downy mildews, pp 321–339

    Google Scholar 

  • Chen J, Jing J, Zhan Z, Zhang T, Zhang C et al (2013) Identification of novel QTLs for isolate-specific partial resistance to Plasmodiophora brassicae in Brassica rapa. PLoS ONE 8:e85307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cheng Q, Jia W, Hu C, Shi G, Yang D et al (2020) Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium. Environ Pollut 265:114827

    Article  CAS  PubMed  Google Scholar 

  • Chu M, Song T, Falk KC, Zhang X, Liu X et al (2014) Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae. BMC Genomics 15:1166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung H, Jeong YM, Mun JH, Lee SS, Chung WH et al (2014) Construction of a genetic map based on high-throughput SNP genotyping and genetic mapping of a TuMV resistance locus in Brassica rapa. Mol Genet Genomics 289(2):149–160

    Article  CAS  PubMed  Google Scholar 

  • Coelho PS, Monteiro AA (2003) Expression of resistance to downy mildew at cotyledon and adult plant stages in Brassica oleracea L. Euphytica 133(3):279–284

    Article  Google Scholar 

  • Coelho P, Bahcevandziev K, Valerio L, Monteiro A, Leckie D et al (1997) The relationship between cotyledon and adult plant resistance to downy mildew (Peronospora parasitica) in Brassica oleracea. In International symposium Brassica 97, Xth Crucifer Genetics Workshop 459, pp 335–342

    Google Scholar 

  • Coelho PS, Vicente JG, Monteiro AA, Holub EB (2012) Pathotypic diversity of Hyaloperonospora brassicae collected from Brassica oleracea. Eur J Plant Pathol 134:763–771

    Article  Google Scholar 

  • Crisp P, Angell S (1985) Genetic control of green curd colour in cauliflower. Ann Appl Biol 107:601–603

    Article  Google Scholar 

  • Crisp P, Walkey DGA, Bellman E, Roberts E (1975) A mutation affecting curd colour in cauliflower (Brassica oleracea L. var. botrytis L.). Euphytica 24:173–176

    Article  Google Scholar 

  • da Silva ALBR, Candian JS, do Rego ER, Coolong T, Dutta B (2020) Screening cabbage cultivars for resistance to black rot under field conditions. Hort Technol 30(3):448–455

    Google Scholar 

  • Dakouri A, Lamara M, Karim MM, Wang J, Chen Q et al (2021) Identification of resistance loci against new pathotypes of Plasmodiophora brassicae in Brassica napus based on genome-wide association mapping. Sci Rep 11(1):1–11

    Article  CAS  Google Scholar 

  • Delourme R, Pilet-Nayel ML, Archipiano M, Horvais R, Tanguy X et al (2004) A cluster of major specific resistance genes to Leptosphaeria maculans in Brassica napus. Phytopathology 94:578–583

    Article  CAS  PubMed  Google Scholar 

  • Derbyshire MC, Denton-Giles M (2016) The control of sclerotinia stem rot on oilseed rape (Brassica napus): current practices and future opportunities. Plant Pathol 65:859–877

    Article  CAS  Google Scholar 

  • Detjen LR (1926) A preliminary report on cabbage breeding. Proc Am Soc Hort Sci 23:325–332

    Google Scholar 

  • Dickson MH (1968) Eight newly described genes in broccoli. Proc Am Soc Hort Sci 93:356

    Google Scholar 

  • Diederichsen E, Beckmann J, Schondelmeier J, Dreyer F (2006) Genetics of clubroot resistance in Brassica napus ‘Mendel.’ Acta Hort 706:307–311

    Article  CAS  Google Scholar 

  • Dion Y, Gugel RK, Rakow GF, Seguinswartz G, Landry BS (1995) RFLP mapping of resistance to the blackleg disease [causal agent, Leptosphaeria maculans (Eesm.) Ces. et De not.] in canola (Brassica napus L.). Theo App Genet 91:1190–1194

    Article  CAS  Google Scholar 

  • Donald EC, Cross SJ, Lawrence JM, Porter IJ (2006) Pathotypes of Plasmodiophora brassicae, the cause of clubroot, in Australia. An App Bio 148:239–244

    Article  Google Scholar 

  • Doullah MAU, Mohsin GM, Ishikawa K, Hori H, Okazaki K (2011) Construction of a linkage map and QTL analysis for black rot resistance in Brassica oleracea L. Intl J Nat Sci 1:1–6

    Article  Google Scholar 

  • Dua IS, Suman BC, Rao AV (1978) Resistance of cauliflower (Brassica oleracea var. botrytis) to Xanthomonas campestris influenced by endogenous growth substances and relative growth rate. Indian J Exp Biol 16:488–491

    CAS  Google Scholar 

  • Edwardson JR, Christie RG (1991) A monograph on the potyvirus group. Monograph/Agricultural Experiment Station

    Google Scholar 

  • El-Awady M, Reda EAM, Haggag W, Sawsan SY, Ahmed M (2008) Transgenic canola plants over-expressing bacterial catalase exhibit enhanced resistance to Peronospora parasitica and Erysiphe polygoni. Arab J Biotechnol 11:71–84

    Google Scholar 

  • Enya J, Togawa M, Takeuchi T, Yoshida S, Tsushima Set al (2008) Biological and phylogenetic characterization of Fusarium oxysporum complex, which causes yellows on Brassica spp., and proposal of F. oxysporum f. sp. rapae, a novel forma specialis pathogenic on B. rapa in Japan. Phytopathology 98(4):475–483

    Google Scholar 

  • Farinhó M, Coelho P, Monteiro A, Leitão J (2007) SCAR and CAPS markers flanking the Brassica oleracea L. Pp523 downy mildew resistance locus demarcate a genomic region syntenic to the top arm end of Arabidopsis thaliana L. chromosome 1. Euphytica 157(1):215–221

    Google Scholar 

  • Ferreira ME, Rimmer SR, Williams PH, Osborn TC (1995) Mapping loci controlling Brassica napus resistance to Leptosphaeria maculans under different screening conditions. Phytopathology 85(2):213–217

    Article  CAS  Google Scholar 

  • Fitt BDL, Brun H, Barbetti MJ, Rimmer SR (2006) World–wide importance of phoma stem canker (Leptosphaeria maculans, and L. biglobosa) on oilseed rape (Brassica napus). Eur J Plant Pathol 114:3–15

    Article  Google Scholar 

  • Fomeju BF, Falentin C, Lassalle G, Manzanares-Dauleux MJ, Delourme R (2014) Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker. BMC Genomics 15(1):1–13

    CAS  Google Scholar 

  • Fredua-Agyeman, R., & Rahman, H. (2016). Mapping of the clubroot disease resistance in spring Brassica napus canola introgressed from European winter canola cv.‘Mendel’. Euphytica, 211(2):201–213

    Google Scholar 

  • Fujiwara A, Inukai T, Kim BM, Masuta C (2011) Combinations of a host resistance gene and the CI gene of turnip mosaic virus differentially regulate symptom expression in Brassica rapa cultivars. Arch Virol 156(9):1575–1581

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad AP, Kakade DS, Nimbalkar CA, Desai UT (2004) Control of downy mildew (Peronospora parasitica) of cauliflower (Brassica oleracea L. var. botrytis) in nursery. Indian J Agric Sci 74:230–232

    Google Scholar 

  • Gao M, Li G, Yang B, Qiu D, Farnham M, Quiros C (2007) High-density Brassica oleracea linkage map: identification of useful new linkages. Theor Appl Genet 115(2):277–287

    Article  CAS  PubMed  Google Scholar 

  • Gill HS, Lakhanpal RD, Sharma SR, Bhagchandani PM (1983) K-1, a valuable addition to “Snowball” group of cauliflower. Indian Hort 27(4):23–24

    Google Scholar 

  • Giovannelli JL, Farnham MW, Wang M, Strand AE (2002) Development of sequence characterized amplified region markers linked to downy mildew resistance in broccoli. J Am Soc Hortic Sci 127(4):597–601

    Article  CAS  Google Scholar 

  • Göker M, Voglmayr H, Riethmüller A, Wei M, Oberwinkler F (2003) Taxonomic aspects of Peronosporaceae inferred from Bayesian molecular phylogenetics. Can J Bot 81:672–683

    Article  Google Scholar 

  • Göker M, Voglmayr H, Oberwinkler F (2009) Species delimitation in downy mildews: the case of Hyaloperonospora in the light of nuclear ribosomal ITS and LSU sequences. Mycol Res 113:308–325

    Article  PubMed  CAS  Google Scholar 

  • Gyawali S, Harrington M, Durkin J, Horner K, Parkin IA et al (2016) Microsatellite markers used for genome-wide association mapping of partial resistance to Sclerotinia sclerotiorum in a world collection of Brassica napus. Mol Breed 36(6):1–13

    Article  CAS  Google Scholar 

  • Hall R (1992) Epidemiology of blackleg of oilseed rape. Can J Plant Pathol 14:46–55

    Article  Google Scholar 

  • Hasan MJ, Rahman H (2016) Genetics and molecular mapping of resistance to Plasmodiophora brassicae pathotypes 2, 3, 5, 6, and 8 in rutabaga (Brassica napus var. napobrassica). Genome 59(10):805–815

    Google Scholar 

  • Henderson MP (1918) The black–leg disease of cabbage caused by Phoma lingam (Tode) Desmaz. Phytopathology 8:379–431

    Google Scholar 

  • Hirai M, Harada T, Kubo N, Tsukada M, Suwabe K, Matsumoto S (2004) A novel locus for clubroot resistance in Brassica rapa and its linkage markers. Theor Appl Genet 108:639–643

    Article  CAS  PubMed  Google Scholar 

  • Hossain MR, Ferdous MJ, Park JI, Robin AHK, Natarajan S et al (2020) In-silico identification and differential expression of putative disease resistance-related genes within the collinear region of Brassica napus blackleg resistance locus LepR2’in Brassica oleracea. Hort Environ Biotechnol 61(5):879–890

    Article  CAS  Google Scholar 

  • Howlett BJ, Idnurm A, Pedras MS (2001) Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 33:1–14

    Article  CAS  PubMed  Google Scholar 

  • Huang YJ, Jestin C, Welham SJ, King GJ, Manzanares-Dauleux MJ et al (2016) Identification of environmentally stable QTL for resistance against Leptosphaeria maculans in oilseed rape (Brassica napus). Theor Appl Genet 129:169–180

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Peng G, Liu X, Deora A, Falk KC et al (2017) Fine mapping of a clubroot resistance gene in Chinese cabbage using SNP markers identified from bulked segregant RNA sequencing. Front Plant Sci 8:148

    Article  Google Scholar 

  • Hughes SL, Hunter PJ, Sharpe AG, Kearsey MJ, Lydiate DJ et al (2003) Genetic mapping of the novel Turnip mosaic virus resistance gene TuRB03 in Brassica napus. Theor Appl Genet 107(7):1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Hughes SL, Green SK, Lydiate DJ, Walsh JA (2002) Resistance to Turnip mosaic virus in Brassica rapa and B. napus and the analysis of genetic inheritance in selected lines. Plant Pathol 51(5):567–573

    Google Scholar 

  • Ignatov A, Kuginuki Y, Hidam K (2000b) Distribution and inheritance of race-specific resistance to Xanthomonascampestris pv. campestris in Brassica rapa and B. napus. J Russ Phytopathol Soc 1:89–94

    Google Scholar 

  • Ignatov AN, Kuginuki Y, Suprunova TP, Pozmogova GE, Seitova AM et al (2000a) RAPD markers linked to locus controlling resistance for race 4 of the black rot causative agent, Xanthomonas campestris pv. campestris (Pamm.) Dow. in Brassica rapa L. Genetika (Moskva) 36(3):357–360

    Google Scholar 

  • Jafari M, Shams-Bakhsh M (2018) Preliminary results of an attempt to produce resistance to Turnip Mosaic Virus in transgenic canola (Brassica napus). Iran J Virol 12:25–33

    Google Scholar 

  • Jenner CE, Tomimura K, Ohshima K, Hughes SL, Walsh JA (2002) Mutations in Turnip mosaic virus P3 and cylindrical inclusion proteins are separately required to overcome two Brassica napus resistance genes. Virology 300(1):50–59

    Article  CAS  PubMed  Google Scholar 

  • Jensen BD, Hockenhull J, Munk L (1999) Seedling and adult plant resistance to downy mildew (Peronospora parasitica) in cauliflower (Brassica oleracea var. botrytis). Plant Pathol 48:604–612

    Article  Google Scholar 

  • Jestin C, Lodé M, Vallée P, Domin C, Falentin C et al (2011) Association mapping of quantitative resistance for Leptosphaeria maculans in oilseed rape (Brassica napus L.). Mol Breed 27(3):271–287

    Google Scholar 

  • Jiang M, Miao LX, He C (2012) Overexpression of an oil radish superoxide dismutase gene in broccoli confers resistance to downy mildew. Plant Mol Biol Rep 30(4):966–972

    Article  CAS  Google Scholar 

  • Jiang M, Jiang JJ, He CM, Guan M (2016) Broccoli plants over-expressing a cytosolic ascorbate peroxidase gene increase resistance to downy mildew and heat stress. J Plant Pathol 1:413–420

    Google Scholar 

  • Jin M, Lee SS, Ke L, Kim JS, Seo MS et al (2014) Identification and mapping of a novel dominant resistance gene, TuRB07 to Turnip mosaic virus in Brassica rapa. Theor Appl Genet 127(2):509–519

    Article  CAS  PubMed  Google Scholar 

  • Kalia P, Singh S (2020) Accelerated improvement of cole vegetable crops. In: Gosal SS, Wani SH (eds) Accelerated plant breeding, vol 2. Vegetable Crops. Springer Nature, Switzerland AG, pp 101–135

    Chapter  Google Scholar 

  • Kalia P (2009) Genetic improvement of vegetable crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, p 34. https://doi.org/10.1201/9781420086096

  • Kameya T, Hinata K (1970) Test-tube fertilization of excised ovules in Brassica. Jpn J Breed 20:253–260

    Article  Google Scholar 

  • Karim M, Dakouri A, Zhang Y, Chen Q, Peng G et al (2020) Two Clubroot-resistance genes, Rcr3 and Rcr9wa, mapped in Brassica rapa using bulk segregant RNA sequencing. Int J Mol Sci 21:5033

    Article  CAS  PubMed Central  Google Scholar 

  • Kato T, Hatakeyama K, Fukino N, Matsumoto S (2013) Fine mapping of the clubroot resistance gene CRb and development of a useful selectable marker in Brassica rapa. Breed Sci 63:116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamura K, Kawanabe T, Shimizu M, Okazaki K, Kaji M et al (2016) Genetic characterization of inbred lines of Chinese cabbage by DNA markers; towards the application of DNA markers to breeding of F1 hybrid cultivars. Data Brief 6:229–237

    Article  PubMed  Google Scholar 

  • Kifuji Y, Hanzawa H, Terasawa Y, Nishio T (2013) QTL analysis of black rot resistance in cabbage using newly developed EST-SNP markers. Euphytica 190(2):289–295

    Article  CAS  Google Scholar 

  • Kim J, Kang WH, Yang HB, Park S, Jang CS et al (2013) Identification of a broad-spectrum recessive gene in Brassica rapa and molecular analysis of the eIF4E gene family to develop molecular markers. Mol Breed 32(2):385–398

    Article  CAS  Google Scholar 

  • Kim J, Kang WH, Hwang J, Yang HB, Dosun K et al (2014) Transgenic Brassica rapa plants over-expressing eIF (iso) 4E variants show broad-spectrum Turnip mosaic virus (TuMV) resistance. Mol Plant Pathol 15:615–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Song YH, Lee JY, Choi SR, Dhandapani V et al (2011) Identification of the BrRHP1 locus that confers resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis) and development of linked molecular markers. Theor Appl Genet 123(7):1183

    Google Scholar 

  • King SR, Dickson MH (1994) Identification of resistance to Alternaria brassicicola in Brassica oleracea. Cruciferae Newsl 16:126–127

    Google Scholar 

  • Kliebenstein D, Pedersen D, Barker B, Mitchell-Olds T (2002) Comparative analysis of quantitative trait loci controlling glucosinolates, myrosinase and insect resistance in Arabidopsis thaliana. Genetics 161(1):325–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristofferson KB (1924) Contributions to the genetics of Brassica oleracea. Hereditas 5:297–364

    Google Scholar 

  • Laila R, Park JI, Robin AHK, Natarajan S, Vijayakumar H et al (2019) Mapping of a novel clubroot resistance QTL using ddRAD-seq in Chinese cabbage (Brassica rapa L.). BMC Plant Biol 19:13

    Google Scholar 

  • Lamboy WF, McFerson JR, Westman AL, Kresovich S (1994) Application of isozyme data to the management of the United States national Brassica oleracea L. genetic resources collection. Genet Resour Crop Evol 41(2):99–108

    Google Scholar 

  • Lan M, Li G, Hu J, Yang H, Zhang L et al (2019) iTRAQ-based quantitative analysis reveals proteomic changes in Chinese cabbage (Brassica rapa L.) response to Plasmodiophora brassicae infection. Sci Rep 9:12058

    Google Scholar 

  • Landry BS, Hubert N, Crete R, Chang MS, Lincoln SE et al (1992) A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome 35(3):409–420

    Article  CAS  Google Scholar 

  • Lanner-Herrera C, Gustafsson M, Falt AS, Bryngelsson T (1996) Diversity in natural populations of wild Brassica oleracea as estimated by isozyme and RAPD analysis. Genet Resour Crop Evol 43:13–23

    Article  Google Scholar 

  • Larkan NJ, Lydiate DJ, Parkin IA, Nelson MN, Epp DJ et al (2013) The Brassica napus blackleg resistance gene LepR3 encodes a receptor–like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol 197(2):595–605

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Lydiate DJ, Yu F, Rimmer SR, Borhan MH (2014) Co–localisation of the blackleg resistance genes Rlm2 and LepR3 on Brassica napus chromosome A10. BMC Plant Biol 14:1–9

    Article  CAS  Google Scholar 

  • Larkan NJ, Ma L, Borhan MH (2015) The Brassica napus receptor–like protein Rlm2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol J 13:983–992

    Article  CAS  PubMed  Google Scholar 

  • Larkan NJ, Raman H, Lydiate DJ, Robinson SJ, Yu F, Barbulescu DM, Raman R, Luckett DJ, Burton W, Wratten N, Salisbury PA (2016) Multi-environment QTL studies suggest a role for cysteine-rich protein kinase genes in quantitative resistance to blackleg disease in Brassica napus. BMC Plant Biol 16:183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larkan NJ, Ma L, Haddadi P, Buchwaldt M, Parkin IA et al (2020) The Brassica napus wall-associated kinase-like (WAKL) gene Rlm9 provides race-specific blackleg resistance. Plant J 104(4):892–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lázaro A, Aguinaglade I (1998) Genetic diversity in Brassica oleracea L. (Cruciferae) and wild relatives (2n = 18) using isozymes. Ann Bot 82:821–828

    Article  Google Scholar 

  • Lee J, Izzah NK, Jayakodi M, Perumal S, Joh HJ et al (2015) Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol 15(1):1–11

    Article  CAS  Google Scholar 

  • Lehmann P, Jenner CE, Kozubek E, Greenland AJ, Walsh JA (2003) Coat protein-mediated resistance to Turnip mosaic virus in oilseed rape (Brassica napus). Mol Breed 11(2):83–94

    Article  CAS  Google Scholar 

  • Lema M, Velasco P, Soengas P, Francisco M, Cartea ME (2012) Screening for resistance to black rot in Brassica oleracea crops. Plant Breed 131:607–613

    Article  Google Scholar 

  • Lema M, Cartea ME, Francisco M, Velasco P, Soengas P (2015) Screening for resistance to black rot in a Spanish collection of Brassica rapa. Plant Breed 134(5):551–556

    Article  Google Scholar 

  • Li H, Sivasithamparam K, Barbetti MJ (2007) Soil borne ascospores, and pycnidiospores of Leptosphaeria maculans can contribute significantly to blackleg disease epidemiology in oilseed rape (Brassica napus) in Western Australia. Australas Plant Pathol 36:439–444

    Article  Google Scholar 

  • Li GL, Qian W, Zhang SJ, Zhang SF, Li F et al (2016a) Development of gene-based markers for the Turnip mosaic virus resistance gene retr02 in Brassica rapa. Plant Breed 135(4):466–470

    Article  CAS  Google Scholar 

  • Li L, Luo Y, Chen B, Xu K, Zhang F et al (2016b) A genome-wide association study reveals new loci for resistance to clubroot disease in Brassica napus. Front Plant Sci 7:1483

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhu T, Yin X, Zhang C, Chen J et al (2017) The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China. Virol J 14(1):165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li G, Lv H, Zhang S, Zhang S, Li F, Zhang H, Qian W, Fang Z, Sun R (2019) TuMV management for Brassica crops through host resistance: retrospect and prospects. Plant Pathol 68(6):1035–1044

    Article  CAS  Google Scholar 

  • Li S, Hartman GL (2003) Molecular detection of Fusarium solani f. sp. glycines in soybean roots and soil. Plant Pathol 52(1):74–83

    Google Scholar 

  • Li Q, Zhang X, Zeng Q, Zhang Z, Liu S, (2015) Identification and mapping of a novel Turnip mosaic virus resistance gene TuRBCS01 in Chinese cabbage (Brassica rapa L.). Plant Breed 134(2):221–225

    Google Scholar 

  • Long Y, Wang Z, Sun Z, Fernando DW, McVetty PB et al. (2011) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘surpass 400’. Theor Appl Genet 122(6):1223–1231

    Google Scholar 

  • Lu A, Chen Z, Kong L, Fang R, Cun S et al (1996) Transgenic Brassica napus resistant to turnip mosaic virus. Acta Genet Sin 23:77–83

    CAS  PubMed  Google Scholar 

  • Lv HH, Yang LM, Kang JG, Wang QB, Wang XW et al (2013) Development of InDel markers linked to Fusarium wilt resistance in cabbage. Mol Breed 32(4):961–967

    Article  CAS  Google Scholar 

  • Lv H, Fang Z, Yang L, Zhang Y, Wang Y (2020) An update on the arsenal: mining resistance genes for disease management of Brassica crops in the genomic era. Hort Res 7(1):1–18

    CAS  Google Scholar 

  • Lv HH, Wang QB, Yang LM, Fang ZY, Liu YM, et al (2014) Breeding of cabbage (Brassica oleracea L. var. capitata) with fusarium wilt resistance based on microspore culture and marker-assisted selection. Euphytica 200(3):465–473

    Google Scholar 

  • Lydiate DJ, Pilcher RL, Higgins EE, Walsh JA (2014) Genetic control of immunity to Turnip mosaic virus (TuMV) pathotype 1 in Brassica rapa (Chinese cabbage). Genome 57(8):419–425

    Article  CAS  PubMed  Google Scholar 

  • Manzanares-Dauleux MJ, Delourme R, Baron F, Thomas G (2000) Mapping of one major gene and of QTLs involved in resistance to clubroot in Brassica napus. Theor Appl Genet 101(5):885–891

    Article  CAS  Google Scholar 

  • Matsumoto E, Ueno H, Aruga D, Sakamoto K, Hayashida N (2012) Accumulation of three clubroot resistance genes through marker-assisted selection in Chinese cabbage (Brassica rapa spp. pekinensis). J Jpn Soc Hortic Sci 81:184–190

    Article  CAS  Google Scholar 

  • Matsumoto E, Yasui C, Ohi M, Tsukada M (1998) Linkage analysis of RFLP markers for clubroot resistance and pigmentation in Chinese cabbage (Brassica rapa ssp. pekinensis). Euphytica 104:79

    Google Scholar 

  • Mayerhofer R, Good AG, Bansal VK, Thiagarajah MR, Stringam GR (1997) Molecular mapping of resistance to Leptosphaeria maculans in Australian cultivars of Brassica napus. Genome 40:294–301

    Article  CAS  PubMed  Google Scholar 

  • Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal VK et al (2005) Complexities of chromosome landing in a highly duplicated genome: toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics 171:1977–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y et al (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126(2):549–556

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Liu Y, Wei D, Wittkop B, Ding Y et al (2015) Transfer of sclerotinia resistance from wild relative of Brassica oleracea into Brassica napus using a hexaploidy step. Theor Appl Genet 128(4):639–644

    Article  CAS  PubMed  Google Scholar 

  • Mei J, Qian L, Disi JO, Yang X, Li Q et al (2011) Identification of resistant sources against Sclerotinia sclerotiorum in Brassica species with emphasis on B. oleracea. Euphytica 177(3):393–399

    Google Scholar 

  • Mei J, Shao C, Yang R, Feng Y, Gao Y, et al (2020) Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theor Appl Genet 133(4):1313–1319

    Google Scholar 

  • Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10(3):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyaji N, Akter MA, Suzukamo C, Mehraj H, Shindo T et al (2021a) Development of a new DNA marker for Fusarium yellows resistance in Brassica rapa vegetables. Plants 10(6):1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyaji N, Shimizu M, Takasaki-Yasuda T, Dennis ES, Fujimoto R (2021b) The transcriptional response to salicylic acid plays a role in Fusarium yellows resistance in Brassica rapa L. Plant Cell Rep 40(4):605–619

    Article  CAS  PubMed  Google Scholar 

  • Nagaharu U, Nagaharu N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7(7):389–452

    Google Scholar 

  • Namai H (1971) Studies on the breeding of oil rape (Brassica napus var. oleifera) by means of interspecific crosses between B. campestris ssp. oleifera and B. oleracea. 1. Interspecific crosses solution. JpnJ Breed 21:40–48

    Google Scholar 

  • Nellist CF, Qian W, Jenner CE, Moore JD, Zhang S et al (2014) Multiple copies of eukaryotic translation initiation factors in Brassica rapa facilitate redundancy, enabling diversification through variation in splicing and broad-spectrum virus resistance. Plant J 77(2):261–268

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M, Monakhos G, Komakhin R, Monakhos S (2018) The new Clubroot resistance locus is located on chromosome A05 in Chinese cabbage (Brassica rapa L.). Russ J Genet 54:296–304

    Article  CAS  Google Scholar 

  • Nyalugwe EP, Barbetti M, Jones R (2015) Studies on resistance phenotypes to Turnip mosaic virus in five species of Brassicaceae, and identification of a virus resistance gene in Brassica juncea. Eur J Plant Pathol 141:647–666

    Article  CAS  Google Scholar 

  • Nyalugwe EP, Barbetti MJ, Jones RAC (2016) Strain specificity of Turnip mosaic virus resistance gene TuRBJU 01 in Brassica juncea. Eur J Plant Pathol 145(1):209–213

    Article  CAS  Google Scholar 

  • Ohshima K, Tanaka M, Sako N (1996) The complete nucleotide sequence of turnip mosaic virus RNA Japanese strain. Arch Virol 141(10):1991–1997

    Article  CAS  PubMed  Google Scholar 

  • Palukaitis P, Kim S (2021) Resistance to turnip mosaic virus in the family Brassicaceae. Plant Pathol J 37(1):1–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey KK, Pandey PK, Singh B, Kalloo G, Kapoor KS (2001) Sources of resistance to downy mildew (Peronospora parasitica) disease in the Asiatic group of cauliflower. Veg Sci 28:55–57

    Google Scholar 

  • Pandey KK, Pandey PK, Singh B (2003) Artificial screening against white rot for resistance sources in Asiatic group of cauliflower. Veg Sci 30(1):77–78

    Google Scholar 

  • Pandey SC, Naik G, Ramkishan, Sridhar TS (1995) Breeding resistant varieties in cauliflower and cabbage. Agroecosyst Manage 144–149

    Google Scholar 

  • Pang W, Fu P, Li X, Zhan Z, Yu S, et al (2018) Identification and mapping of the clubroot resistance gene CRd in Chinese cabbage (Brassica rapa ssp. pekinensis). Front Plant Sci 9:653

    Google Scholar 

  • Pearson OH (1929) A dominant white flower color in Brassica oleracea L. Am Nat 63:561–565

    Article  Google Scholar 

  • Pease MA (1926) Genetic situation in Brassica oleracea. J Genet 16:363–385

    Article  Google Scholar 

  • Pelofske PJ, Baggett JR (1979) Inheritance of internode length, plant form and annual habit in a cross of cabbage and broccoli (Brassica oleracea var. capitata and var. italica). Euphytica 28:189–197

    Article  Google Scholar 

  • Perez-Lopez E, Waldner M, Hossain M, Kusalik AJ, Wei Y et al (2018) Identification of Plasmodiophora brassicae effectors—a challenging goal. Virulence 9:1344–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piao Z, Deng Y, Choi S, Park Y, Lim Y (2004) SCAR and CAPS mapping of CRb, a gene conferring resistance to Plasmodiophora brassicae in Chinese cabbage (Brassica rapa ssp. pekinensis). Theor Appl Genet 108:1458–1465

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Bhat SR (2007) Contribution of wild crucifers in Brassica improvement: past accomplishment and future perspectives. In: GCIRC 12th international rapeseed congress, sustainable development in cruciferous oilseed crops production. Wuhan, China, pp 213–216

    Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop Brassicas, a review. Opera Bot 55:1–57

    Google Scholar 

  • Pu ZJ, Shimizu M, Zhang YJ, Nagaoka T, Hayashi T (2012) Genetic mapping of a fusarium wilt resistance gene in Brassica oleracea. Mol Breed 30:809–818

    Article  CAS  Google Scholar 

  • Qasim MU, Zhao Q, Shahid M, Samad RA, Ahmar S et al (2020a) Identification of QTLs containing resistance genes for Sclerotinia Stem Rot in Brassica napus using comparative transcriptomic studies. Front Plant Sci 11:776

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian W, Zhang S, Zhang S, Li F, Zhang H (2013) Mapping and candidate-gene screening of the novel Turnip mosaic virus resistance gene retr02 in Chinese cabbage (Brassica rapa L.). Theor Appl Genet 126(1):179–188

    Google Scholar 

  • Quiros CF, Ochoa O, Kianian SF, Douches D (1987) Analysis of the Brassica oleracea genome by the generation of B. rapa oleracea chromosome addition lines: characterization by isozymes and rDNA genes. Theor Appl Genet 74:758–766

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Diffey S, Barbulescu DM, Coombes N, Luckett D et al. (2020) Genetic and physical mapping of loci for resistance to blackleg disease in canola (Brassica napus L.). Sci Rep 10(1):1–12

    Google Scholar 

  • Raman, R. Taylor B, Marcroft S, Stiller J, Eckermann P et al. (2012) Molecular mapping of qualitative and quantitative loci for resistance to Leptosphaeria maculans causing blackleg disease in canola (Brassica napus L.). Theor Appl Genet 125:405

    Google Scholar 

  • Rathore JP, Rashid M, Sharma A, Rasool A, Hussain SM (2018) Biotechnology and breeding approaches to increase disease resistances in cabbage. J Pharmacogn Phytochem 7(4):2667–2671

    CAS  Google Scholar 

  • Rusholme RL, Higgins EE, Walsh JA, Lydiate DJ (2007) Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol 88(11):3177–3186

    Article  CAS  PubMed  Google Scholar 

  • Saha P, Kalia P, Sharma M, Singh D (2016) New source of black rot disease resistance in Brassica oleracea and genetic analysis of resistance. Euphytica 207:35–48

    Article  CAS  Google Scholar 

  • Saha P, Ghoshal C, Ray S, Saha ND, Srivastava M et al (2020) Genetic analysis of downy mildew resistance and identification of molecular markers linked to resistance gene Ppa 207 on chromosome 2 in cauliflower. Euphytica 216(11):1–13

    Article  CAS  Google Scholar 

  • Saha P, Kalia P, Sonah H, Sharma TR (2014) Molecular mapping of black rot resistance locus Xca1bo on chromosome 3 in Indian cauliflower (Brassica oleracea var. botrytis L.). Plant Breed 133(2):268–274

    Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2017) Downy mildew disease of crucifers: biology. Springer, Ecology and disease management Singapore

    Book  Google Scholar 

  • Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A et al (2016) Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep 6(1):1–14

    Article  CAS  Google Scholar 

  • Sakamoto K, Saito A, Hayashida N, Taguchi G, Matsumoto E (2008) Mapping of isolate-specific QTLs for clubroot resistance in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Theor Appl Genet 117:759–767

    Article  CAS  PubMed  Google Scholar 

  • Sarmah BK, Sarla N (1998) Erucastrum abyssinicum× Brassica oleracea hybrids obtained by ovary and ovule culture. Euphytica 102(1):37–45

    Article  Google Scholar 

  • Sawaza HE, Nagai H, Sodek L (1997) Characterization of genetic variability of kale plants by enzymatic polymorphism and RAPD. Bragantia 56:9–19

    Google Scholar 

  • Shah N, Sun J, Yu S, Yang Z, Wang Z, et al (2019) Genetic variation analysis of field isolates of clubroot and their responses to Brassica napus lines containing resistant genes CRb and PbBa8.1 and their combination in homozygous and heterozygous state. Mol Breed 39:153

    Google Scholar 

  • Sharma BR, Swarup V, Chatterjee SS (1972) Inheritance of resistance to blackrot in cauliflower. Canadian J Genet Cytol 14(2):363–370

    Article  Google Scholar 

  • Sharma BR, Dhiman JS, Thakur JC, Singh A, Bajaj KL (1991) Multiple disease resistance in cauliflower. Adv Hort Sci 5(1):30–34

    Google Scholar 

  • Sharma SR, Kapoor KS, Gill HS (1995) Screening against Sclerotinia rot (Sclerotinia sclerotiarum), downy mildew (Peronospora parasitica) and black rot (Xanthomonas compestris) in cauliflower (Brassica oleracea var. botrytis subvar. cauliflora DC). Indian J Agric Sci 65:916–918

    Google Scholar 

  • Sharma G, Kumar VD, Haque A, Bhat SR, Prakash S (2002) Brassica coenospecies: a rich reservoir for genetic resistance to leaf spot caused by Alternaria brassicae. Euphytica 125:411–417

    Article  Google Scholar 

  • Sharma BB, Kalia P, Singh D, Sharma TR (2017) Introgression of black rot resistance from Brassica carinata to cauliflower (Brassica oleraceabotrytis group) through embryo rescue. Front Plant Sci 8:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma BB, Kalia P, Yadava DK, Singh D, Sharma TR (2016a) Genetics and molecular mapping of black rot resistance locus Xca1bc on Chromosome B-7 in Ethiopian Mustard (Brassica carinata A. Braun). PLoS One 11:e0152290

    Google Scholar 

  • Sharma BB, Kalia P, Yadava DK, Singh D, Sharma TR (2016b) Genetics and molecular mapping of black rot resistance locus Xca1bc on chromosome B-7 in Ethiopian mustard (Brassica carinata A. Braun). PLoS One 11(3):e0152290

    Google Scholar 

  • Shattuck VI (1992) The biology, epidemiology, and control of turnip mosaic virus. Hortic Rev 14:199–238

    Google Scholar 

  • Shimizu M, Fujimoto R, Ying H, Pu ZJ, Ebe Y et al (2014) Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression analysis. Plant Mol Biol 85(3):247–257

    Article  CAS  PubMed  Google Scholar 

  • Shimizu M, Pu ZJ, Kawanabe T, Kitashiba H, Matsumoto S (2015) Map-based cloning of a candidate gene conferring Fusarium yellows resistance in Brassica oleracea. Theor Appl Genet 128(1):119–130

    Article  CAS  PubMed  Google Scholar 

  • Shivanna KR (1996) Incompatibility and wide hybridization. In: Chopra VL, Prakash S (eds) Oilseed and vegetable Brassicas: Indian perspective. Oxford & IBH New Delhi, pp 77–102

    Google Scholar 

  • Shopan J, Mou H, Zhang L, Zhang C, Ma W et al (2017) Eukaryotic translation initiation factor 2B-beta (eIF2Bβ), a new class of plant virus resistance gene. Plant J 90:929–940

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Dhar S, Yadava DK (2011) Genetic and pathogenic variability of Indian strains of Xanthomonas campestris pv. campestris causing black rot disease in crucifers. Curr Microbiol 63:551–560

    Article  CAS  PubMed  Google Scholar 

  • Singh BD, Singh AK (2015) Marker assisted plant breeding: principles and practices. Springer 1069

    Google Scholar 

  • Singh S, Sharma SR, Kalia P, Deshmukh R, Kumar V et al (2012) Molecular mapping of the downy mildew resistance gene Ppa3 in cauliflower (Brassica oleracea var. botrytis L.). J Hort Sci Biotechnol 87(2):137–143

    Google Scholar 

  • Singh S, Sharma SR, Kalia P, Sharma P, Kumar V, et al (2013) Screening of cauliflower (Brassica oleracea L. var. botrytis L.) germplasm for resistance to downy mildew [Hyaloperonospora parasitica. Constant (Pers.:Fr) Fr.] and designing appropriate multiple resistance breeding strategies. J Hort Sci Biotechnol 88(1):103–109

    Google Scholar 

  • Sivasithamparam K, Barbetti MJ, Li H (2005) Recurring challenges from a necrotrophic fungal plant pathogen: a case study with Leptosphaeria maculans (causal agent of blackleg disease in Brassicas) in Western Australia. Ann Bot 96:363–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith KM (1935) A virus disease of cultivated crucifers. Ann Appl Biol 22(2):239–242

    Article  Google Scholar 

  • Soengas P, Hand P, Vicente JG, Pole JM, Pink DAC (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114:637–645

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1988) Brassica taxonomy based on nuclear restriction fragment length polymorhisms (RFLPs). Theor Appl Genet 75:784–794

    Article  CAS  Google Scholar 

  • Sprague S, Marcroft S, van De Wouw AP, Lindbeck K, Brill R (2017) Blackleg in Canola—outcomes from 2016 and update for 2017. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2017/08/blackleg-in-canola-outcomes-from-2016-and-update-for-2017. Accessed on 10 April 2020

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Fujimura M (2003) Identification of two loci for resistance to clubroot (Plasmodiophora brassicae Woronin) in Brassica rapa L. Theor Appl Genet 107:997–1002

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tollenaere R, Hayward A, Dalton-Morgan J, Campbell E, Lee JR et al (2012) Identification and characterization of candidate Rlm4 blackleg resistance genes in Brassica napus using next-generation sequencing. Plant Biotechnol J 10:709–715

    Article  CAS  PubMed  Google Scholar 

  • Tonguç M, Earle ED, Griffiths PD (2003) Segregation distortion of Brassica carinata derived black rot resistance in Brassica oleracea. Euphytica 134(3):269–276

    Article  Google Scholar 

  • Tonguç M, Griffiths PD (2004) Evaluation of Brassica carinata accessions for resistance to black rot (Xanthomonas campestris pv. campestris). Hort Sci 39(5):952–954

    Google Scholar 

  • Tonu NN, Doullah MA, Shimizu M, Karim MM, Kawanabe T et al (2013) Comparison of positions of QTLs conferring resistance to Xanthomonas campestris pv. campestris in Brassica oleracea. Am J Plant Sci 4:11–20

    Article  Google Scholar 

  • Toscano-Underwood C, Huang Y, Fitt B, Hall A (2003) Effects of temperature on maturation of pseudothecia of Leptosphaeria maculans and L. biglobosa on oilseed rape stem debris. Plant Pathol 52:726–736

    Article  Google Scholar 

  • Trivedi BM, Sen B, Singh R, Sharma SR, Verma JP (2000) Breeding multiple disease resistance in mid-season cauliflower. In: Proceedings of Indian phytopathology society on golden Jublee in international conference integrated plant disease management and sustainable agriculture, vol 2, pp 699–700

    Google Scholar 

  • Ueno H, Matsumoto E, Aruga D, Kitagawa S, Matsumura H et al (2012) Molecular characterization of the CRa gene conferring clubroot resistance in Brassica rapa. Plant Mol Biol 80:621–629

    Article  CAS  PubMed  Google Scholar 

  • Van Hintum TJL, Boukema IW, Visser DL (1996) Reduction of duplication in a Brassica oleracea germplasm collection. Genetic Resour Crop Evol 43:343–349

    Article  Google Scholar 

  • Vaughan JG (1977) A multidisciplinary study of the taxonomy and origin of Brassica crops. Bioscience 27:35–40

    Article  Google Scholar 

  • Vicente JG, Conway J, Roberts SJ, Taylor JD (2001) Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492–499

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Taylor JD, Sharpe AG, Parkin IAP, Lydiate DJ et al (2002) Inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Gunn ND, Bailey L, Dac P, Holub EB (2012a) Genetics of resistance to downy mildew in Brassica oleracea and breeding towards durable disease control for UK vegetable production. Plant Pathol 61:600–609

    Article  Google Scholar 

  • Vicente JG, Gunn ND, Bailey L, Pink DAC, Holub EB (2012b) Genetics of resistance to downy mildew in Brassica oleracea and breeding towards durable disease control for UK vegetable production. Plant Pathol 61(3):600–609

    Article  Google Scholar 

  • Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3:289–300

    Article  CAS  PubMed  Google Scholar 

  • Walsh JA, Jenner CE (2006) Resistance to Turnip mosaic virus in the Brassicaceae. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Dordrecht, Netherlands, pp 415–430

    Chapter  Google Scholar 

  • Walsh JA, Sharpe AG, Jenner CE, Lydiate DJ (1999) Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theor Appl Genet 99(7):1149–1154

    Article  CAS  Google Scholar 

  • Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defense gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant-Microbe Interact 12(5):410–418

    Article  CAS  Google Scholar 

  • Warwick SI, Black LD (1991) Molecular systematics of Brassica and allied genera (Subtribe Brassicinae Brassicae) chloroplast genome and cytodeme congruence. Theor Appl Genet 82:81–92

    Article  CAS  PubMed  Google Scholar 

  • Wei L, Jian H, Lu K, Filardo F, Yin N et al (2016) Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant Biotechnol J 14(6):1368–1380

    Article  CAS  PubMed  Google Scholar 

  • Werner S, Diederichsen E, Frauen M, Schondelmaier J, Jung C (2008) Genetic mapping of clubroot resistance genes in oilseed rape. Theor Appl Genet 116(3):363–372

    Article  CAS  PubMed  Google Scholar 

  • West JS, Kharbanda PD, Barbetti MJ, Fitt BDL (2001) Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol 50:10–27

    Article  Google Scholar 

  • Williams PHA (1966) System for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology 56:624–626

    Google Scholar 

  • Williams RH, Fitt BDL (1999) Differentiating A and B groups of Leptosphaeria maculans, causal agent of stem canker (blackleg) of oilseed rape. Plant Pathol 48:161–175

    Article  Google Scholar 

  • Wu J, Zhao Q, Yang Q, Liu H, Li Q et al (2016) Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci Rep 6(1):1–16

    CAS  Google Scholar 

  • Wu J, Cai G, Tu J, Li L, Liu S, et al (2013) Identification of QTLs for resistance to Sclerotinia stem rot and BnaC.IGMT5.a as a candidate gene of the major resistant QTL SRC6 in Brassica napus. PLoS One 8(7):e67740

    Google Scholar 

  • Xinhua W, Yang L, Huoying C (2011) A linkage map of pak-choi (Brassica rapa ssp. chinensis) based on AFLP and SSR markers and identification of AFLP markers for resistance to TuMV. Plant Breed 130(2):275–277

    Google Scholar 

  • Yasaka R, Fukagawa H, Ikematsu M, Soda H, Korkmaz S et al (2017) The timescale of emergence and spread of turnip mosaic potyvirus. Sci Rep 7(1):4240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yin X, Yi B, Chen W, Zhang W, Tu J (2010) Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173(1):25–35

    Article  CAS  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2005) Identification of two novel genes for blackleg resistance in Brassica napus. Theor Appl Genet 110(5):969–979

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Zhang F, Yu R, Zou Y, Qi J et al (2009) Genetic mapping and localization of a major QTL for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Mol Breed 23:573–590

    Article  CAS  Google Scholar 

  • Yu F, Zhang X, Peng G, Falk KC, Strelkov SE et al (2017) Genotyping-by-sequencing reveals three QTL for clubroot resistance to six pathotypes of Plasmodiophora brassicae in Brassica rapa. Sci Rep 7:1–11

    CAS  Google Scholar 

  • Yu F, Lydiate DJ, Rimmer SR (2008) Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome 51(1):64–72

    Google Scholar 

  • Yu S, Zhang F, Zhao X, Yu Y, Zhang D (2011) Sequence‐characterized amplified region and simple sequence repeat markers for identifying the major quantitative trait locus responsible for seedling resistance to downy mildew in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant Breed 130(5):580–583

    Google Scholar 

  • Yu F, Lydiate DJ, Gugel RK, Sharpe AG, Rimmer SR (2012) Introgression of Brassica rapa subsp. sylvestris blackleg resistance into B. napus. Mol Breed 30(3):1495–1506

    Google Scholar 

  • Yu S, Su T, Zhi S, Zhang F, Wang W, et al (2016) Construction of a sequence-based bin map and mapping of QTLs for downy mildew resistance at four developmental stages in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 36(4):44

    Google Scholar 

  • Yuen JE (1991) Resistance to Peronospora parasitica in Chinese cabbage. Plant Dis 75:10

    Article  Google Scholar 

  • Zhandong Y, Shuangyi Z, Qiwei H (2007) High level resistance to Turnip mosaic virus in Chinese cabbage (Brassica campestris ssp. pekinensis (Lour) Olsson) transformed with the antisense NIb gene using marker-free Agrobacterium tumefaciens infiltration. Plant Sci 172(5):920–929

    Google Scholar 

  • Zhang B, Li P, Su T, Li P, Xin X et al (2018) BrRLP48, encoding a receptor-like protein, involved in downy mildew resistance in Brassica rapa. Front Plant Sci 9:1708

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Su T, Li P, Xin X, Cao Y (2021) Identification of long noncoding RNAs involved in resistance to downy mildew in Chinese cabbage. Hort Res 8(1):1–15

    CAS  Google Scholar 

  • Zhao J, Meng J (2003) Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor Appl Genet 106:759–764

    Article  PubMed  Google Scholar 

  • Zhao J, Udall JA, Quijada PA, Grau CR, Meng J et al (2006) Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor Appl Genet 112(3):509–516

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Lei JJ, Chen GJ, Cao BH (2008) Obtainment of transgenic mustard (Brassica juncea Coss.) with Pokeweed antiviral protein gene and its resistance to TuMV. J Agric Biotechnol 16:971–976

    CAS  Google Scholar 

  • Zhao S, Hao X (2010) High level resistance to TuMV (Turnip mosaic virus) in transgenic Mustard with the Antisense NIb Gene of the Virus. In: 2010 international conference on computational and information sciences, IEEE, 17–19 December Chengdu, Sichuan China, pp 1080–1082

    Google Scholar 

  • Zhu L, Li Y, Ara N, Yang J, Zhang M (2012) Role of a newly cloned alternative oxidase gene (BjAOX1a) in turnip mosaic virus (TuMV) resistance in mustard. Plant Mol Biol Rep 30(2):309–318

    Article  CAS  Google Scholar 

  • Zhu H, Zhai W, Li X, Zhu Y (2019) Two QTLs controlling clubroot resistance identified from bulked segregant sequencing in pakchoi (Brassica campestris ssp. chinensis Makino). Sci Rep 9:1–9

    CAS  Google Scholar 

  • Zink F, Duffus J (1970) Linkage of turnip mosaic virus susceptibility and downy mildew, Bremia lactucae, resistance in lettuce. J Am Soc Hortic Sci 95:420–422

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Pyo Lim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Satish Chhapekar, S. et al. (2022). Genomic Design for Biotic Stress Tolerance in Vegetable Brassicas. In: Kole, C. (eds) Genomic Designing for Biotic Stress Resistant Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-97785-6_5

Download citation

Publish with us

Policies and ethics