Skip to main content

Environmental Conditions, Site Types, and Climate Change

  • Chapter
  • First Online:
Management of Boreal Forests
  • 381 Accesses

Abstract

Trees grow in sites, the properties of which are characterized by climatic and edaphic factors. In growth and yield studies, the productivity (m3 ha−1 year−1) involves the potential stem wood growth in trees. Productivity combines the edaphic and climatic properties of sites on growth, including soil texture, supply of water and nutrients, precipitation, radiation, temperature and atmospheric carbon dioxide. In this context, climate change is likely to have multiple impacts on the properties of sites, thereby affecting the dynamics of the forest ecosystem. Climate change effects on the growing conditions like temperature sum, which integrates the changes in the length of growing season and thermal conditions. Climate change is likely to affect productivity substantially, thereby making it necessary to revise management to meet properly the benefits and problems induced by warming climate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber JD, Melillo JM (1991) Terrestrial ecosystems. Saunders College Publishing, Philadelphia, 429 p

    Google Scholar 

  • ACIA (2005) Arctic climate impact assessment, ACIA overview report. Cambridge University Press, 1020 p

    Google Scholar 

  • Burton AJ, Zogg GP, Pregitzer KS, Zak DR (1997) Effect of measurement CO2 concentration on sugar maple root respiration. Tree Physiol 17:421–427

    CAS  PubMed  Google Scholar 

  • Cajander AK (1909) Über Waldtypen. Fennia 28(2):1–175

    Google Scholar 

  • Carter TR, Fronzek S, Bärlund I (2004) FINSKEN: a framework for developing consistent global change scenarios for Finland in 21st century. Boreal Environmental Research 9:91–107

    Google Scholar 

  • Carter TR, Jylhä K, Perrels A, Fronzek S, Kankaanpää S (2005) FINADAPT scenarios for the 21st century. Alternative futures for considering adaptation to climate change in Finland. Finnish environment institute, FinAdapt Working Paper, vol 2. Finnish Environment Institute, Helsinki, pp 1–42

    Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer-Verlag, New York, 611 p

    Google Scholar 

  • Granier A, Bréda N, Biron P, Villette S (1999) A lumped water balance model to evaluate duration and intensity of drought constraints in forest stands. Ecol Model 116:269–283

    Google Scholar 

  • Granier A, Loustau D, Bréda N (2000) A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Ann For Sci 57(8):755–765

    Google Scholar 

  • Gregow H, Puranen U, Venäläinen A, Peltola H, Kellomäki S, Schulz D (2008) Temporal and spatial occurrence of strong winds and large snow load amounts in Finland during 1961–2000. Silva Fennica 42(2):515–534

    Google Scholar 

  • Hedwall PO, Skoglund J, Linder S (2015) Interactions with successional stage and nutrient status determines the life-form-specific effects of increased soil temperature on boreal forest floor vegetation. Ecol Evol 5(4):948–960

    PubMed  PubMed Central  Google Scholar 

  • Högberg P, Näsholm T, Frankling O, Högberg MN (2017) Tamm review: on the nature of nitrogen limitation to plant growth in Fennoscandian boreal forests. For Ecol Manag 403:161–185

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 p

    Google Scholar 

  • IPCC (2014) In: Core Writing Team, Pachauri RK, Meyer LA (eds) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, 151 p

    Google Scholar 

  • IPCC (2018) Summary for policymakers. In: Global warming of 15°C. an IPCC special report on the impacts of global warming of 15°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. World Meteorological Organization, Geneva, 32 p

    Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration–scaling up from leaf to region. Adv Ecol Res 15:1–49

    Google Scholar 

  • Jones HG (1983) Plants and microclimate. Cambridge University Press, Cambridge, 323 p

    Google Scholar 

  • Jylhä K, Ruosteenoja K, Räisänen J, Venäläinen A, Tuomenvirta H, Ruokolainen L, Saku S, Seitola T (2009) Arvioita Suomen muuttuvasta ilmastosta sopeutumistutkimuksia varten. ACCLIM– hankkeen raportti 2009. Raportteja 4:1–102

    Google Scholar 

  • Kalliola R (1973) Suomen kasvimaantiede. Werner Söderström Oy, Porvoo, 308 p

    Google Scholar 

  • Kauppi P, Kellomäki S, Saastamoinen O (1976) Metsäaapinen. Luonto-Liitto ry ja Suomen Luonnonsuojeluliitto ry. Luonnonsuojelujulkaisuja Sarja A, n:o 3:1–160

    Google Scholar 

  • Kellomäki S (2017) Managing boreal forests in the context of climate change. Impacts, adaptation, and climate change mitigation. CRC Press Taylor & Francis Group, Bocata Raton, 357 p

    Google Scholar 

  • Kellomäki S, Oker-Blom P (1981) Specific needle area of scots pine and its dependence on light conditions inside the canopy. Silva Fennica 15(2):190–198

    Google Scholar 

  • Kellomäki S, Oker-Blom P (1983) Canopy structure and light climate in young scots pine stand. Silva Fennica 17(1):1–21

    Google Scholar 

  • Kellomäki S, Väisänen H (1996) Model computations on the effect of elevating temperature on soil moisture and water availability in Scots pine dominated ecosystems in the boreal zone in Finland. Clim Chang 32:423–445

    Google Scholar 

  • Kellomäki S, Väisänen H (1997) Modelling the dynamics of the boreal forest ecosystems for climate change studies in the boreal conditions. Ecol Model 97(1, 2):121–140

    Google Scholar 

  • Kellomäki S, Hari P, Kanninen M, Ilonen P (1980) Eco-physiological studies on young Scots pine stands: II distribution of needle biomass and its application in approximating light conditions inside the canopy. Silva Fennica 14(3):243–257

    Google Scholar 

  • Kellomäki S, Strandman H, Nuutinen T, Peltola H, Korhonen KT, Väisänen H (2005) Adaptation of forest ecosystems, forests, and forestry to climate change. Finnish Environment Institute, FinAdapt Working Paper 4: 1–50

    Google Scholar 

  • Kellomäki S, Maajärvi M, Strandman H, Kilpeläinen A, Peltola H (2010) Model computations on the climate change effects on snow cover, soil moisture and soil frost in the boreal conditions over Finland. Silva Fennica 44(2):213–233

    Google Scholar 

  • Kellomäki S, Strandman H, Heinonen T, Asikainen A, Venäläinen A, Peltola H (2018) Temporal and spatial change in diameter growth of boreal scots pine, Norway spruce and birch under recent-generation (CMIP5) global climate model projections for the 21st century. Forests 9(3):1–24

    Google Scholar 

  • Laapas M, Lehtonen I, Venäläinen A, Peltola H (2019) 10-year return level of maximum wind speeds under frozen and unfrozen soil forest conditions in Finland. Climate 7:62. https://doi.org/10.3390/cli7050062

    Article  Google Scholar 

  • Landsberg JJ, Gower ST (1997) Applications of physiological ecology and to Forest management. Academic Press, San Diego, 354 p

    Google Scholar 

  • Landsberg JJ, James GB (1971) Wind profiles in plant canopies: studies on an analytical model. J Appl Ecol 8:729–741

    Google Scholar 

  • Larcher W (1980) Physiological plant ecology, 2nd edn. Springer-Verlag, Berlin, 303 p

    Google Scholar 

  • Lehtonen I, Hoppula P, Pirinen P, Gregow H (2014) Modelling crown snow loads in Finland: a comparison of two methods. Silva Fennica 48:article id 1120. https://doi.org/10.14214/sf1120

    Article  Google Scholar 

  • Leuzinger S, Bader MK-F (2012) Experimental vs modelled water use in mature Norway spruce (Picea abies) exposed to elevated CO2. Front Plant Sci 3(229):1–11

    Google Scholar 

  • Linkosalo T, Häkkinen R, Terhivuo J, Tuomenvirta H, Hari P (2009) The time series of flowering and leaf bud burst of boreal trees (1846–2005) support the direct temperature observations of climatic warming. Agric For Meteorol 149:453–461

    Google Scholar 

  • Lumb FE (1963) The influence of clouds on hourly amounts of total solar radiation at the sea level. Q J R Meteorol Soc 90:43–56

    Google Scholar 

  • Lundmark J-E (1986) Skogsmarkens ekologi. Ståndortsanpasst skogsbruk Del 1 – Grunder. Fälths Tryckeri Värnmo. 158 p

    Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of environmental physics. Edward Arnold, London, 291 p

    Google Scholar 

  • Oker-Blom P, Kellomäki S, Smolander H (1983) Photosynthesis of a Scots pine shoot: the effects of shoot inclination of the photosynthetic response of a shoot subjected to direct radiation. Agric Meteorol 29:191–206

    Google Scholar 

  • Oker-Bom P, Kellomäki S (1981) Light regime and photosynthetic production in the canopy of a Scots pine stand during a prolonged period. Agric Meteorol 24:185–199

    Google Scholar 

  • Perttu K, Bischof W, Grip H, Jansson P-E, Lindgren Å, Lindroth A, Norén B (1980) Micrometeorology and hydrology of pine forest ecosystems I field studies. In: Persson T (ed) Structure and function of northern coniferous forests, Ecological Bulletins 32. Swedish Natural Science Research Council (NFR), Stockholm, pp 75–122

    Google Scholar 

  • Qi J, Marshall JD, Mattson KG (1994) High soil carbon dioxide concentrations inhibit root respiration of Douglas fir. New Phytol 128:435–442

    PubMed  Google Scholar 

  • Ross J, Kellomäki S, Oker-Blom P, Ross V, Vilikainen L (1986) Architecture of scots pine crown: phytometrical characteristics of needles and shoots. Silva Fennica 20(2):91–105

    Google Scholar 

  • Ruosteenoja K, Jylhä K, Tuomenvirta H (2005) Climate scenarios for FINADAPT studies of climate change adaptation, FinAdapt working paper 15. Finnish Environment Institute, pp 1–15

    Google Scholar 

  • Ruosteenoja K, Jylhä K, Kämäräinen M (2016) Climate projections for Finland under the RCP forcing scenarios. Geophysica 51(1):17–50

    Google Scholar 

  • Ruosteenoja K, Markkanen T, Venäläinen A, Räisänen P, Peltola H (2018) Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Clim Dyn 50:1177–1192

    Google Scholar 

  • Sathre R, Gustavsson L, Haus S (2013) Time dynamics and radiative forcing of forest bioenergy systems. In: Kellomäki S, Kilpeläinen A, Alam A (eds) Forest BioEnergy production. Springer Science+Business Media, New York, pp 185, 268 p–206

    Google Scholar 

  • Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts even-aged stands. Forestry 81(1):13–31

    Google Scholar 

  • Stenberg P (1986) Photosynthetic radiation regime and canopy structure in modelled forest stands. Acta Forestalia Fennica 197:1–43

    Google Scholar 

  • Stenberg P (1996) Metsikön rakenne, säteilyolot ja tuotos. Helsingin yliopiston metsäekologian laitoksen julkaisuja 15:1–68

    Google Scholar 

  • Strandman H, Väisänen H, Kellomäki S (1993) A procedure for generating synthetic weather records in conjunction of climatic scenario for modelling ecological impacts of changing climate in boreal conditions. Ecol Model 70:195–220

    Google Scholar 

  • Sturm N, Reber S, Kessler A, Tenhunen JB (1996) Soil moisture variation and plant water stress at Hartheim scots pine plantation. Theor Appl Climatol 53:123–133

    Google Scholar 

  • Tamminen P (1993) Pituusboniteetin ennustaminen kasvupaikan ominaisuuksien avulla Etelä–Suomen kangasmetsissä. Summary: estimation of site index for scots pine and Norway spruce stands in South Finland using site properties. Folia Forestalia 819:1–26

    Google Scholar 

  • Timofeeva G, Treydte K, Bugmann H, Risling A, Schaub M, Siegwolf R, Sauer M (2017) Long–term effects of drought on tree-ring growth and carbon isotope variability in scots pine in a dry environment. Tree Physiol 37:1028–1041

    PubMed  Google Scholar 

  • Venäläinen A, Tuomenvirta H, Lahtinen R, Heikinheimo M (2001a) The influence of climatic warming on soil frost on snow-free surface in Finland. Clim Chang 50:111–128

    Google Scholar 

  • Venäläinen A, Tuomenvirta H, Heikinheimo H, Kellomäki S, Peltola H, Strandman H, Väisänen H (2001b) Impacts of climate change on soil frost and snow cover in a forested landscape. Clim Res 17:63–72

    Google Scholar 

  • Venäläinen A, Lehtonen I, Laapas M, Ruosteenoja K, Tikkanen O-P, Viiri H, Ikonen V-P, Peltola H (2020) Climate change induces multiple risks to boreal forests and forestry in Finland: a literature review. Glob Chang Biol 26:4178–4196

    PubMed  PubMed Central  Google Scholar 

  • Vuokila Y (1987) Metsänkasvatuksen perusteet ja menetelmät. WSOY, Porvoo, 258 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kellomäki, S. (2022). Environmental Conditions, Site Types, and Climate Change. In: Management of Boreal Forests. Springer, Cham. https://doi.org/10.1007/978-3-030-88024-8_2

Download citation

Publish with us

Policies and ethics