Skip to main content

Carrot (Daucus carota L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops
  • 1503 Accesses

Abstract

Carrot is among the top 10 vegetable crops grown globally and a significant source of dietary vitamin A, derived from its orange carotenoid pigments. Most evidence points to a relatively recent domestication of carrot as a root crop around 1100 years ago in Central Asia, with the most extensive breeding effort underway the last 500 years in Europe. As an outcrossing plant unable to be clonally propagated, breeders developed open-pollinated cultivars until the discovery of cytoplasmic male sterility set the stage for hybrid cultivar development beginning in the 1950s. Color has been an important trait noted in carrots since their domestication, with yellow and purple being the colors of note before orange carrots were first observed in Europe, and with red carrots important in several Asian markets today. Flavor has also been an important trait under selection by breeders to improve consumer quality. Growers and consumers look for uniform, smooth storage roots for any cultivar, but root shape varies widely among cultivars and is used to differentiate them for fresh market or processing use. Several foliar and soil-borne diseases and pests can significantly reduce marketable yield, and consequently these biotic threats receive significant attention in carrot breeding programs. Carrots are categorized as a cool-season crop as much attention has been dedicated to improvement for cooler temperate growing regions. But as carrot production in warmer climates has increased rapidly in recent decades, carrot cultivar development for subtropical global regions has become a major focus for breeders. With this, more attention is being paid to the abiotic threats of heat, drought and salinity. As a crop with wide genetic diversity, the prospects for continued improvement are bright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alessandro MS, Galmarini CR (2007) Inheritance of vernalization requirement in carrot. J Amer Soc Hort Sci 132:525–529

    Article  Google Scholar 

  • Allender C (2019) Genetic resources for carrot improvement. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 93–100

    Chapter  Google Scholar 

  • Al-Safadi B, Simon PW (1990) The effects of gamma irradiation on the growth and cytology of carrot tissue culture. Env Exp Bot 30:361–371

    Article  Google Scholar 

  • Andersen SB, Christiansen I, Farestveit B (1990) Carrot (Daucus carota L.). In vitro production of haploids and field trials. In: Bajaj YPS (ed) Haploids in crop improvement I. Springer, Berlin, pp 393–402

    Chapter  Google Scholar 

  • Arscott SA, Tanumihardjo SA (2010) Carrots of many colors provide basic nutrition and bioavailable phytochemicals acting as a functional food. Compr Rev Food Sci Food Saf 9:223–239

    Article  CAS  Google Scholar 

  • Banasiak Ł, Wojewódzka A, Baczyński J et al (2016) Phylogeny of Apiaceae subtribe Daucinae and the taxonomic delineation of its genera. Taxon 65:563–585

    Article  Google Scholar 

  • Banga O (1957a) Origin of the European cultivated carrot. Euphytica 6:54–63

    Article  Google Scholar 

  • Banga O (1957b) The development of the original European carrot material. Euphytica 6:64–76

    Article  Google Scholar 

  • Banga O (1963) Main types of the western carotene carrot and their origin. W.E.J. Tjeenk Willink, Zwolle

    Google Scholar 

  • Baranski R (2008) Genetic transformation of carrot (Daucus carota) and other Apiaceae species. Transgenic Plant J 2:18–38

    Google Scholar 

  • Baranski R, Lukasiewicz A (2019) Genetic engineering of carrot. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 149–186

    Chapter  Google Scholar 

  • Baranski R, Nowak E, Grzebelus D et al (1997) Development of carrot callus in the presence of the crude extract from Erwinia carotovora culture. J Appl Genet 38:91–99

    Google Scholar 

  • Baranski R, Adamus A, Kiełkowska A (2014) An improved protocol for carrot haploid and doubled haploid plant production using induced parthenogenesis and ovule excision in vitro. In Vitro Cell Devel Biol Plant 50:376–383

    Article  CAS  Google Scholar 

  • Beejan, PBF (2018) Study to determine the growth reduction dose 50 (GR50) for gamma rays induced mutagenesis in carrot (Daucus carota (L.)). FAO/IAEA Int Symp Plant Mutation Breeding and Biotech, Vienna

    Google Scholar 

  • Bernstein L, Ayers A (1953) Salt tolerance of five varieties of carrots. J Amer Soc Hort Sci 61:360–366

    CAS  Google Scholar 

  • Boiteux LS, Belter JG, Roberts PA, Simon PW (2000) RAPD linkage map of the genomic region encompassing the root-knot nematode (Meloidogyne javanica) resistance locus in carrot. Theor Appl Genet 100:439–446

    Article  CAS  Google Scholar 

  • Boiteux LS, Hyman JR, Bach IC et al (2004) Employment of flanking codominant STS markers to estimate allelic substitution effects of a nematode resistance locus in carrot. Euphytica 136:37–44

    Article  CAS  Google Scholar 

  • Bolton A, Simon PW (2019) Variation for salinity tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience 54:38–44

    Article  CAS  Google Scholar 

  • Bolton A, Nijabat A, Mahmood-ur-Rehman M et al (2019) Variation for heat tolerance during seed germination in diverse carrot [Daucus carota (L.)] germplasm. HortScience 54:1470–1476

    Article  CAS  Google Scholar 

  • Bostan H, Senalik D, Simon PW, Iorizzo M (2019) Carrot genetics, omics and breeding toolboxes. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 225–246

    Chapter  Google Scholar 

  • Buishand JG, Gabelman WH (1979) Investigations on the inheritance of color and carotenoid content in phloem and xylem of carrot roots (Daucus carota L.). Euphytica 28:611–632

    Article  CAS  Google Scholar 

  • Castaneda-Alvarez NP, Khoury CK, Achicanoy HA et al (2016) Global conservation priorities for crop wild relatives. Nat Plants 2:16022

    Article  PubMed  Google Scholar 

  • Cavagnaro P, Iorizzo M (2019) Carrot anthocyanin diversity, genetics and genomics. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 261–278

    Chapter  Google Scholar 

  • Cavagnaro PF, Iorizzo M, Yildiz M et al (2014) A gene-derived SNP-based high resolution linkage map of carrot including the location of QTL conditioning root and leaf anthocyanin pigmentation. BMC Genomics 15:1118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colley M (2019) Organic carrot production. In: Geoffriau E, Simon PW (eds) Carrot and other cultivated Apiaceae. CABI, Wallingford

    Google Scholar 

  • Colquhoun J, Rittmeyer BA, Heider JD (2017) Tolerance and suppression of weeds varies among carrot varieties. Weed Technol 31:1–6

    Article  Google Scholar 

  • Davis DR (2009) Declining fruit and vegetable nutrient composition: what is the evidence? HortSci 44:15–19

    Article  Google Scholar 

  • Davis RM, Raid RN (2002) Compendium of umbelliferous crop diseases. American Phytopathological Society, St. Paul

    Google Scholar 

  • Davis DR, Epp MD, Riordan HD (2004) Changes in USDA food composition data for 43 garden crops, 1950 to 1999. J Amer College Nutr 23:669–682

    Article  CAS  Google Scholar 

  • Deroles S, Smith MAL, Lee C (2002) Factors affecting transformation of cell cultures from three dicotyledonous pigment-producing species using microprojectile bombardment. Plant Cell Tissue Organ Cult 70:69–76

    Article  CAS  Google Scholar 

  • du Toit LJ, Le Clerc V, Briard M (2019) Genetics and genomics of carrot biotic stress. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 317–362

    Chapter  Google Scholar 

  • Dudits D, Kao KN, Constabel F, Gamborg OL (1977a) Embryogenesis and formation of tetraploid and hexaploid plants from carrot protoplasts. Can J Bot 54:1063–1067

    Article  Google Scholar 

  • Dudits D, Hadlaczky G, Levi E et al (1977b) Somatic hybridisation of Daucus carota and D. capillifolius by protoplast fusion. Theor Appl Genet 51:127–132

    Article  CAS  PubMed  Google Scholar 

  • Dudits D, Maroy E, Praznovszky T et al (1987) Transfer of resistance traits from carrot into tobacco by asymmetric somatic hybridization: regeneration of fertile plants. Proc Nat Acad Sci 84:8434–8438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunemann F, Unkel K, Sprink T (2019) Using CRISPR/Cas9 to produce haploid inducers of carrot through targeted mutations of centromeric histone H3 (CENH3). Acta Hort 1264:211–219

    Article  Google Scholar 

  • Ellison S (2019) Carrot domestication. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 77–92

    Chapter  Google Scholar 

  • Ellison S, Luby C, Corak K et al (2018) Association analysis reveals the importance of the Or gene in carrot (Daucus carota L.) carotenoid presence and domestication. Genetics 210:1–12

    Article  CAS  Google Scholar 

  • FAO (2019) www.fao.org/statistics

  • Freeman RE, Simon PW (1983) Evidence for simple genetic control of sugar type in carrot (Daucus carota L.). J Am Soc Hortic Sci 108:50–54

    Article  Google Scholar 

  • Grambow HJ, Kao KN, Miller RA, Gamborg OL (1972) Cell division and plant development from protoplasts of carrot cell suspension cultures. Planta 103:348–355

    Article  CAS  PubMed  Google Scholar 

  • Grzebelus D (2019) Genetics and genomics of carrot abiotic stress. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 363–372

    Chapter  Google Scholar 

  • Grzebelus E, Szklarczyk M, Baranski R (2012) An improved protocol for plant regeneration from leaf- and hypocotyl-derived protoplasts of carrot. Plant Cell Tissue Organ Cult 109(1):101–109

    Article  Google Scholar 

  • Grzebelus E, Kruk M, Macko-Podgorni A, Grzebelus D (2013) Response of carrot protoplasts and protoplast-derived aggregates to selection using a fungal culture filtrate of Alternaria radicina. Plant Cell Tiss Organ Cult 115:209–222

    Article  CAS  Google Scholar 

  • Han L, Zhou C, Shi J et al (2009) Ginsenoside Rb1 in asymmetric somatic hybrid calli of Daucus carota with Panax quinquefolius. Plant Cell Report 28:627–638

    Article  CAS  Google Scholar 

  • Hardegger M, Sturm A (1998) Transformation and regeneration of carrot (Daucus carota L.). Mol Breed 4:119–127

    Article  CAS  Google Scholar 

  • Holden JM, Eldridge AL, Beecher GR et al (1999) Carotenoid content of U.S. foods: an update of the database. J Food Composit Anal 12:169–196

    Article  CAS  Google Scholar 

  • Hu KL, Matsubara S, Murakami K (2003) Haploid plant production by anther culture in carrot (Daucus carrota L.). J Japan Soc Hort Sci 62:561–565

    Article  Google Scholar 

  • Iorizzo M, Senalik DA, Grzebelus D et al (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genom 12:389

    Article  CAS  Google Scholar 

  • Iorizzo M, Senalik DA, Ellison S et al (2013) Genetic structure and domestication of carrot (Daucus carota L. subsp. sativus L.) (Apiaceae). Amer J Bot 100:930–938

    Article  Google Scholar 

  • Iorizzo M, Ellison S, Senalik D et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657–666

    Article  CAS  PubMed  Google Scholar 

  • Iorizzo M, Ellison S, Pottorff M, Cavagnaro P (2019a) Carrot molecular genetics and mapping. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 101–118

    Chapter  Google Scholar 

  • Iorizzo M, Macko-Podgórni A, Senalik D et al (2019b) The carrot nuclear genome and comparative analysis. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 187–204

    Chapter  Google Scholar 

  • Iorizzo M, Cavagnaro P, Bostan A et al (2019c) A cluster of MYB transcription factors regulates anthocyanin biosynthesis in carrot (Daucus carota L.) root and petiole. Front Plant Sci 9:1927

    Article  PubMed  PubMed Central  Google Scholar 

  • Iovene M, Grzebelus E (2019) Carrot molecular cytogenetics. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 119–136

    Chapter  Google Scholar 

  • Jones HA, Clarke AE (1943) Inheritance of male sterility in the onion and the production of hybrid seed. Proc Amer Soc Hort Sci 43:189–194

    Google Scholar 

  • Keilwagen J, Lehnert H, Berner T et al (2017) The terpene synthase gene family of carrot (Daucus carota L.): identification of QTLs and candidate genes associated with terpenoid volatile compounds. Front Plant Sci 8:1930

    Article  PubMed  PubMed Central  Google Scholar 

  • Kielkowska A, Adamus A (2010) In vitro culture of unfertilized ovules in carrot (Daucus carota L.). Plant Cell Tissue Organ Cult 102:309–319

    Article  Google Scholar 

  • Kiszczak W, Kowalska U, Kapuścińska A et al (2017) Comparison of methods for obtaining doubled haploids of carrot. Acta Soc Bot Pol 86:3547

    Article  CAS  Google Scholar 

  • Klimek-Chodacka M, Oleszkiewicz T, Lowder LG et al (2018) Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Rep 37:575–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Latif Z, Nasir IA, Riazuddin S (2007) Indigenous production of synthetic seeds in Daucus carota. Pak J Bot 39:849–855

    Google Scholar 

  • Laufer B (1919) Sino-Iranica. Chicago, Field Museum of Natural Hist. Pub. 201. Anthropot Ser 15:451–454

    Google Scholar 

  • Le Clerc V, Briard M (2019) Carrot disease management. In: Geoffriau E, Simon PW (eds) Carrot and other cultivated Apiaceae. CABI, Wallingford

    Google Scholar 

  • Le Clerc V, Briard M, Granger J, Delettre J (2003) Genebank biodiversity assessments regarding optimal sample size and seed harvesting technique for the regeneration of carrot accessions. Biodivers Conserv 12:2227–2336

    Article  Google Scholar 

  • Le Clerc V, Pawelec A, Birolleau-Touchard C et al (2009) Genetic architecture of factors underlying partial resistance to Alternaria leaf blight in carrot. Theor Appl Genet 118:1251–1259

    Article  PubMed  Google Scholar 

  • Le Clerc V, Marques S, Suel A et al (2015) QTL mapping of carrot resistance to leaf blight with connected populations: stability across years and consequences for breeding. Theoret Appl Genet 128:2177–2187

    Article  Google Scholar 

  • Li JR, Zhuang FY, Ou CG et al (2013) Microspore embryogenesis and production of haploid and doubled haploid plants in carrot (Daucus carota L.). Plant Cell Tissue Organ Cult 112:275–287

    Article  Google Scholar 

  • Linke B, Nothnagel T, Börner T (2003) Flower development in carrot CMS plants: mitochondria affect the expression of MADS box genes homologous to GLOBOSA and DEFICIENS. Plant J 34:27–37

    Article  CAS  PubMed  Google Scholar 

  • Linke B, Alessandro MS, Galmarini C, Nothnagel T (2019) Carrot floral development and reproductive biology. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 27–58

    Chapter  Google Scholar 

  • Liu JR, Jeon JH, Yang SG et al (1992) Dry type of carrot (Daucus carota L.) artificial seeds. Sci Hortic 51:1–11

    Article  Google Scholar 

  • Lo Schiavo FL, Giuliano G, Sung ZR (1988) Characterization of a temperature-sensitive carrot cell mutant impaired in somatic embryogenesis. Plant Sci 54:157–164

    Article  CAS  Google Scholar 

  • Lucier G, Lin BH (2007) Factors affecting carrot consumption in the United States. USDA-ERS,VGS319-01, 21 pp http://www.ers.usda.gov/Briefing/Vegetables/vegpdf/OnionConsump.pdf

  • Mackevic VI (1929) The carrot of Afghanistan. Bul Appl Bot Genet Plant Breeding 20:517–562

    Google Scholar 

  • Macko-Podgórni A, Machaj G, Stelmach K et al (2017) Characterization of a genomic region under selection in cultivated carrot (Daucus carota subsp. sativus) reveals a candidate domestication gene. Front Plant Sci 8:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimento WM, Vieira JV, Silva GO et al (2008) Carrot seed germination at high temperature: effect of genotype and association with ethylene production. HortSci 43:1538–1543

    Article  Google Scholar 

  • Navazio J (2014) How to breed carrots for organic agriculture. Organic Seed Alliance, https://seedalliance.org/publications/how-to-breed-carrots-for-organic-agriculture/

  • Nothnagel T, Straka P, Budahn H (1997) Development of new cms-systems for carrot breeding. J Appl Genet 38A:172–177

    Google Scholar 

  • Nothnagel T, Straka P, Linke B (2000) Male sterility in populations of Daucus and the development of alloplasmic male-sterile carrot lines. Plant Breed 119:145–152

    Article  CAS  Google Scholar 

  • Parsons J, Matthews W, Iorizzo M et al (2015) Meloidogyne incognita nematode resistance QTL in carrot. Mol Breed 35:114

    Article  CAS  Google Scholar 

  • Peterson CE, Simon PW (1986) Carrot breeding. In: Bassett MJ (ed) Breeding vegetable crops. AVI, Westport, pp 321–356

    Google Scholar 

  • Rubatzky VE, Quiros CF, Simon PW (1999) Carrots and related vegetable Umbelliferae. CABI Publishing, New York

    Google Scholar 

  • Ruhlman T, Lee S-B, Jansen RK et al (2006) Complete plastid genome sequence of Daucus carota: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7:222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santos CAF, Simon PW (2002) QTL analyses reveal clustered loci for accumulation of major provitamin A carotenes and lycopene in carrot roots. Mol Genet Genomics 268:122–129

    Article  CAS  PubMed  Google Scholar 

  • Schaber M, Goldman I (2013) Visual versus marker-based selection of hybrid progeny in fertile × fertile beet and carrot crosses. Crop Sci 53:1419–1426. https://doi.org/10.2135/cropsci2012.07.0412

    Article  Google Scholar 

  • Scott RJ, Draper J (1987) Transformation of carrot tissues derived from proembryogenic suspension cells: a useful model system for gene expression studies in plants. Plant Mol Biol 8:265–274

    Article  CAS  PubMed  Google Scholar 

  • Simon PW (2000) Domestication, historical development, and modern breeding of carrot. Plant Breed Rev 19:157–190

    Google Scholar 

  • Simon PW (2019) Economic and academic importance. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 1–8

    Chapter  Google Scholar 

  • Simon PW, Goldman IL (2007) Carrot. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement series, vol 3. CRC Press, Boca Raton, pp 497–517

    Google Scholar 

  • Simon PW, Peterson CE, Lindsay RC (1980) Correlations between sensory and objective parameters of carrot flavor. J Agric Food Chem 28:549–552

    Article  CAS  PubMed  Google Scholar 

  • Simon PW, Matthews WC, Roberts PA (2000) Evidence for simply inherited dominant resistance to Meloidogyne javanica in carrot. Theor Appl Genet 100:735–742

    Article  Google Scholar 

  • Simon PW, Freeman RE, Vieira JV et al (2008) Carrot. In: Prohens J, Nuez F (eds) Handbook of plant breeding: vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae. Springer, New York, pp 327–357

    Google Scholar 

  • Simon PW, Geoffriau E, Ellison S et al (2019) Carrot carotenoid genetics and genomics. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 247–260

    Chapter  Google Scholar 

  • Spooner DM (2019) Daucus: taxonomy, phylogeny, distribution. In: Simon PW, Iorizzo M, Grzebelus D, Baranski R (eds) The carrot genome. Springer, Cham, pp 9–26

    Chapter  Google Scholar 

  • Steward FC, Mapes MO, Smith J (1958) Growth and organized development at cultured cells. I. Growth and division of freely suspended cells. Am J Bot 45:693–703

    Article  Google Scholar 

  • Steward FC, Mapes MO, Kent AE, Holsten RD (1964) Growth and development of cultured plant cells. Science 743:20–27

    Article  Google Scholar 

  • Stolarczyk J, Janick J (2011) Carrot: history and iconography. Chron Hort 51:13–18

    Google Scholar 

  • Stommel JR, Simon PW (1989) Influence of 2-deoxy-D-glucose upon growth and invertase activity of carrot (Daucus carota L.) cell suspension cultures. Plant Cell Tissue Organ Cult 16:89–102

    Article  CAS  Google Scholar 

  • Sung ZR (1976) Mutagenesis of cultured plant cells. Genetics 84:51–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turan Büyükdinç D, Kantoğlu Y, Karatas et al (2019) Determination of effective mutagen dose for carrot (Daucus carota ssp. sativus var. atrorubens alef and D. carota) callus cultures. Int J Sci Tech Res 5:15–23

    Google Scholar 

  • Turner SD, Maurizio PL, Valdar W et al (2017) Dissecting the genetic architecture of shoot growth in carrot (Daucus carota L.) using a diallel mating design. G3 8:411–426

    Article  PubMed Central  Google Scholar 

  • Turner S, Ellison S, Senalik DA et al (2018) An automated, high-throughput image analysis pipeline enables genetic studies of shoot and root morphology in carrot (Daucus carota L.). front. Plant Sci 9:1703

    Google Scholar 

  • USDA National Nutrient Database for standard reference, release 25 (2018) http://www.ars.usda.gov/ba/bhnrc/ndl

  • USDA Agricultural Statistics (1950–2010) Natl Agric Stat Service, US Govt Printing Office, Washington, DC

    Google Scholar 

  • Vavilov NI, trans. from Russian by K. Starr Chester (1951) The origin, variation, immunity and breeding of cultivated plants. Chronica Botanica/Stechert-Hafner, Waltham/New York

    Book  Google Scholar 

  • Vegetable and pulses yearbook (2019) https://www.ers.usda.gov/data-products/vegetables-and-pulses-data/vegetables-and-pulses-yearbook-tables/

  • Vieira JV, Della Vecchia P, Ikuta H (1983) Cenoura ‘Brasilia’. Hort Bras 1:42

    Google Scholar 

  • Wake H, Umetsu H, Matsunaga T (1995) Somatic embryogenesis and artificial seed in carrot (Daucus carota L.). In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed. II. Biotechnology in agriculture and forestry, vol 31. Springer, Berlin, pp 170–182

    Chapter  Google Scholar 

  • Wang M, Goldman I (1996) Resistance to root knot nematode (Meloidogyne hapla Chitwood) in carrot is controlled by two recessive genes. J Hered 87:119–123

    Article  Google Scholar 

  • Watt BK, Merrill (1950) Composition of foods: raw, processed, prepared. USDA, Washington, DC

    Google Scholar 

  • Welch JE, Grimball EI (1947) Male sterility in carrot. Science 12:594

    Article  Google Scholar 

  • Wohlfeiler J, Alessandro MS, Galmarini CR (2019) Multiallelic digenic control of vernalization requirement in carrot (Daucus carota L.). Euphytica 215:1–10

    Article  CAS  Google Scholar 

  • Xu Z-S, Tan HW, Wang F et al (2014) CarrotDB: a genomic and transcriptomic database for carrot. Database (Oxford) 2014. https://doi.org/10.1093/database/bau096

  • Xu Z-S, Feng K, Que F et al (2017) A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci Rep 7:45324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z-S, Feng K, Xiong A-S (2019) CRISPR/Cas9-mediated multiply targeted mutagenesis in orange and purple carrot plants. Molec. Biotech 61:191–199

    CAS  Google Scholar 

  • Yau Y, Simon PW (2003) A 2.5-kb insert eliminates acid soluble invertase isozyme II transcript in carrot (Daucus carota L.) roots, causing high sucrose accumulation. Plant Molec Biol 53:151–162

    Article  CAS  Google Scholar 

  • Yau YY, Santos K, Simon PW (2005) Molecular tagging and selection for sugar type in carrot roots with codominant, PCR-based markers. Mol Breed 16:1–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp W. Simon .

Editor information

Editors and Affiliations

Appendixes

Appendixes

1.1 Appendix I: Public Sector Carrot Breeding, Genetics, and Biotechnology Research Programs and their Websites

Institute Name and Location

Website

Instituto Nacional de Tecnología Agropecuaria, Mendoza, Argentina

https://inta.gob.ar/mendoza

Bangladesh Agricultural University, Mymensingh, Bangladesh

https://www.bau.edu.bd/

EMBRAPA, Brasilia, Brazil

https://www.embrapa.br/en/contando-ciencia/embrapa-hortalicas

University of Guelph, Guelph, Canada

https://www.plant.uoguelph.ca/mrmcdona

Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China

https://www.gfar.net/organizations/institute-vegetables-and-flowers-chinese-academy-agricultural-sciences

Nanjing Agricultural University, Nanjing, China

http://www.njau.edu.cn

Shanxi Agricultural University, Shanxi, China

http://www.sxau.edu.cn/

Institut National de la Recherche Agronomique, Institut de Recherche en Horticulture et Semences, Angers, France

https://www6.angers-nantes.inra.fr/irhs

Julius Kuhn Institute, Quedlinburg, Germany

https://www.julius-kuehn.de/en/

Humboldt University, Berlin, Germany

https://agnes.hu-berlin.de

Indian Agricultural Research Institute, Delhi India

http://www.iari.res.in

Punjab Agricultural University, Ludhiana, India

https://www.researchgate.net/institution/Punjab_Agricultural_University/department/Department_of_Vegetable_Science

New Ya’ar Researc Center. Agriculture Research Organization, Ramat Yishay, Israel

https://www.agri.gov.il/en/people/1043.aspx

Institute of Biosciences and Bioresources, CNR, Portici, Italy

http://ibbr.cnr.it/ibbr/info/ibbr-divisions/ibbr-uos-portici

Food and Agricultural Research & Extension Institute, Mauritius

https://farei.mu/farei/

University of Sargodha, Pakistan

https://uos.edu.pk/

University of Agriculture in Krakow, Poland

https://wbio.urk.edu.pl/en

World Vegetable Center, Tainan, Taiwan

https://avrdc.org/

National Gene Bank of Tunisia, Tunis, Tunisia

http://www.bng.nat.tn

Uludag University, Bursa, Turkey

https://www.uludag.edu.tr/

Yuzuncu Yil University, Van, Turkey

https://www.yyu.edu.tr/

Warwick University, Genetic Resources Unit, Warwick, United Kingdom

https://warwick.ac.uk/fac/sci/lifesci/wcc/gru/

North Carolina State University, Kannapolis, NC, USA

https://plantsforhumanhealth.ncsu.edu /people/massimo-iorizzo/

University of California – Davis, Davis, CA, USA

https://www.plantsciences.ucdavis.edu/people/allen-van-deynze

University of California – Riverside, Riverside, CA, USA

www.faculty.ucr.edu/~proberts/biography.html

Purdue University, West Lafayette, IN, USA

https://www.purdue.edu/hla/sites/hoaglandlab/

University of Memphis, Memphis, TN, USA

https://www.memphis.edu/biology/people/faculty/jennifer-mandel.php

Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

https://www.biol.vt.edu/faculty/tholl/index.html

Washington State University, Mount Vernon, WA, USA

https://plantpath.wsu.edu/people/faculty/du-toit

University of Wisconsin-Madison, Madison, WI, USA

https://goldman.horticulture.wisc.edu/

United States Department of Agriculture, Agricultural Research Service, Madison, WI, USA

http://vcru.wisc.edu/simon/

1.2 Appendix II: Carrot Genetic Resources

Cultivar

Important traits

Cultivation location

Nantes types

Shape, flavor, storage quality

Europe

Danvers, Chantenay, Berlicum, Flakkee types

Cooking, canning, freezing, storage quality

Europe, North America

Imperator types

Fresh market, flavor, convenience

North America

Amsterdam types

Early carrots

Europe

Kuroda types

Cooking and processing, storage quality

Asia

Brasilia types

All-purpose, heat and disease tolerance

South America, subtropical Asia

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simon, P.W. (2021). Carrot (Daucus carota L.) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66965-2_5

Download citation

Publish with us

Policies and ethics