Skip to main content

Plant ecology at high elevations

  • Chapter
  • First Online:
Alpine Plant Life

Abstract

Plants respond to the harsh alpine environment with a high degree of specialization, the structural and functional aspects of which this book aims to explore. Palaeorecords suggest that life on land started out in sheltered, warm, and moist environments, and gradually expanded into more demanding habitats where water is rare, thermal energy is either low or overabundant or where mechanical disturbance is high.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agakhanyantz OE, Breckle SW (1995) Origin and evolution of the mountain flora in middle Asia and neighbouring mountain regions. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin Heidelberg New York, pp 63–80

    Google Scholar 

  • Agakhanyantz OE, Lopatin IK (1978) Main characteristics of the ecosystems of the Pamirs, USSR. Arct Alp Res 10:397–407

    Article  Google Scholar 

  • Alatalo JM, Jagerbrand AK, Molau U (2016) Impacts of different climate change regimes and extreme climatic events on an alpine meadow community. Sci Rep 6:21720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander JM, Diez JM, Levine JM (2015) Novel competitors shape species’ responses to climate change. Nature 525:515–518

    Article  CAS  PubMed  Google Scholar 

  • Almeida JP, Montufar R, Anthelme F (2013) Patterns and origin of intraspecific functional variability in a tropical alpine species along an altitudinal gradient. Plant Ecol Divers 6:423–433

    Article  Google Scholar 

  • Anthelme F, Lavergne S (2018) Alpine and arctic plant communities: a worldwide perspective. Persp Plant Ecol Evol Syst 30:1–5

    Article  Google Scholar 

  • Archibold OW (1995) Ecology of world vegetation. Chapman and Hall, London

    Book  Google Scholar 

  • Arroyo MK, Medina E, Ziegler H (1990) Distribution and ∂13C values of Portulaceae species of the high Andes in northern Chile. Bot Acta 103:291–295

    Article  CAS  Google Scholar 

  • Arroyo MTK, Cavieres LA (2013) High-elevation Andean ecosystems. Encyclopedia Biodiver (Elsevier) 4:96–110

    Article  Google Scholar 

  • Aubert S, Boucher F, Lavergne S, Renaud J, Choler P (2014) 1914–2014: a revised worldwide catalogue of cushion plants 100 years after Hauri and Schröter. Alp Bot 124:59–70

    Article  Google Scholar 

  • Bannister P, Maegli T, Dickinson KJM, Halloy SRP, Knight A, Lord JM, Mark AF, Spencer KL (2005) Will loss of snow cover during climatic warming expose New Zealand alpine plants to increased frost damage? Oecologia 144:245–256

    Article  PubMed  Google Scholar 

  • Baptist F, Flahaut C, Streb P, Choler P (2010) No increase in alpine snowbed productivity in response to experimental lengthening of the growing season. Plant Biol 12:755–764

    Article  CAS  PubMed  Google Scholar 

  • Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50:317–327

    Article  Google Scholar 

  • Baruch Z (1979) Elevational differentiation in Espeletia schultzii (Compositae), a giant rosette plant of the Venezuelan Páramos. Ecology 60:85–98

    Article  Google Scholar 

  • Beck E (1994) Cold tolerance in tropical alpine plants. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical alpine environments. Cambridge University Press, Cambridge, pp 77–110

    Chapter  Google Scholar 

  • Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (2008) Gradients in a tropical mountain ecosystem of ecuador. Ecological Studies 198:451–463

    Article  Google Scholar 

  • Beck E, Nauke P, Fetene M (2002) Hotspots der Biodiversitäts-entwicklung: Tropische Hochgebirge. Biol unserer Zeit 32:82–888

    Article  Google Scholar 

  • Billings WD (1957) Physiological ecology. Annu Rev Plant Physiol 8:375–391

    Article  CAS  Google Scholar 

  • Billings WD (1974) Adaptations and origins of alpine plants. Arct Alp Res 6:129–142

    Article  Google Scholar 

  • Billings WD (1979) High mountain ecosystems. Evolution, structure, operation and maintenance. In: Webber PJ (ed) High altitude geoecology, vol 12. AAAS Select Symp, pp 97–125

    Google Scholar 

  • Billings WD (1987) Constraints to plant growth, reproduction, and establishment in arctic environments. Arct Alp Res 19:357–365

    Article  Google Scholar 

  • Billings WD (1988) Alpine vegetation. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation. Cambridge University Press, Cambridge, pp 392–420

    Google Scholar 

  • Billings WD, Clebsch EEC, Mooney HA (1961) Effect of low concentrations of carbon dioxide on photosynthesis rates of two races of Oxyria. Science 133:1834

    Article  CAS  PubMed  Google Scholar 

  • Billings WD, Mooney HA (1968) The ecology of arctic and alpine plants. Biol Rev 43:481–529

    Article  Google Scholar 

  • Birks HH (2008) The late-quaternary history of arctic and alpine plants. Plant Ecol Divers 1:135–146

    Article  Google Scholar 

  • Blagowestschenski WA (1935) Über den Verlauf der Photosynthese im Hochgebirge des Pamirs. Planta 24:276–287

    Article  Google Scholar 

  • Bliss LC (1971) Arctic and alpine plant life cycles. Annu Rev Ecol Syst 2:405–438

    Article  Google Scholar 

  • Bliss LC (1985) Alpine. In: Chabot BF, Mooney HA (eds) Physiological ecology of North American plant communities. Chapman and Hall, London, pp 41–65

    Chapter  Google Scholar 

  • Bonnier G (1890) Cultures expérimentales dans les hautes altitudes. C R Acad Sci Paris 110:363–365

    Google Scholar 

  • Bonnier G (1895) Recherches expérimentales. L’adaptation des plantes au climat alpin. Ann Sci Nat 7th Ser Bot 19:219–360

    Google Scholar 

  • Bourgeron PS, Humphries HC, Liptzin D, Seastedt TR (2015) The forest-alpine ecotone: a multi-scale approach to spatial and temporal dynamics of treeline change at Niwot Ridge. Plant Ecol Divers 8:763–779

    Article  Google Scholar 

  • Bowman WD, Nemergut DR, McKnight DM, Miller MP, Williams MW (2015) A slide down a slippery slope: alpine ecosystem responses to nitrogen deposition. Plant Ecol Divers 8:727–738

    Article  Google Scholar 

  • Bowman WD, Seastedt TR (2001) Structure and function of an alpine ecosystem—Niwot Ridge. Oxford University Press, Oxford, Colorado

    Book  Google Scholar 

  • Bowman WD, Theodose TA, Schardt JC, Conant RT (1993) Constraints of nutrient availability on primary production in two alpine tundra communities. Ecology 74:2085–2097

    Article  Google Scholar 

  • Caldwell MM (1968) Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol Monogr 38:243–268

    Article  Google Scholar 

  • Callaghan TV (1976) Growth and population dynamics of Carex bigelowii in an alpine environment. Oikos 27:402–413

    Article  Google Scholar 

  • Campbell JS (1997) North American alpine ecosystems. In: Wielgolaski FE (ed) Polar and alpine tundra. Ecosystems of the world, Elsevier, Amsterdam, pp 211–261

    Google Scholar 

  • Carbutt C, Edwards TJ (2015) reconciling ecological and phytogeographical spatial boundaries to clarify the limits of the montane and alpine regions of sub-Sahelian Africa. SA J Bot 98:64–75

    Article  Google Scholar 

  • Cavieres LA et al. (2014) Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol Lett 17:193–202

    Google Scholar 

  • Cavieres LA, Badano EI (2009) Do facilitative interactions increase species richness at the entire community level? J Ecol 97:1181–1191

    Article  Google Scholar 

  • Cernusca A (1976) Bestandesstruktur, Bioklima und Energiehaushalt von alpinen Zwergstrauchbeständen. Oecol Plant 11:71–102

    Google Scholar 

  • Cernusca A (1989) Struktur und Funktion von Graslandökosystemen im Nationalpark Hohe Tauern. Veröffentlichungen des Österreichischen MaB-Programmes, vol 13. Österr Akad Wiss Wien and Wagner, Innsbruck, pp 33–47

    Google Scholar 

  • Cernusca A, Seeber MC (1981) Canopy structure, microclimate and the energy budget in different alpine plant communities. In: Grace J, Ford ED, Jarvis PG (eds) Plants and their atmospheric environment. Symp Brit Ecol Soc, Blackwell, Oxford, pp 75–81

    Google Scholar 

  • Chapin FS III, Körner C (1995) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Chen JG, Yang Y, Stöcklin J, Cavieres LA, Peng DL, Li ZM, Sun H (2015) Soil nutrient availability determines the facilitative effects of cushion plants on other plant species at high elevations in the south-eastern Himalayas. Plant Ecol Divers 8:199–210

    Article  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1948) Experimental studies on the nature of species. III. Environmental responses of climatic races of Achillea. Carnegie Inst Wash Publ 581:1–125

    Google Scholar 

  • Clements FE, Martin EV, Long FL (1950) Adaptation and origin in the plant world. The role of environment in evolution, Waltham, MA

    Book  Google Scholar 

  • Costin AB (1966) Management opportunities in Australian high mountain catchments. In: Proceedings of the International Symposium on Forest Hydrology, Pennsylvania 1965. Pergamon Press, Oxford, pp 565–577

    Google Scholar 

  • Dahl E (1986) Zonation in arctic and alpine tundra and fellfield ecobiomes. In: Polunin N (ed) Ecosystem theory application. Wiley, London, pp 35–62

    Google Scholar 

  • Dawes MA, Philipson CD, Fonti P, Bebi P, Hattenschwiler S, Hagedorn F, Rixen C (2015) Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Glob Change Biol 21:2005–2021

    Article  Google Scholar 

  • Decker JP (1959) Some effects of temperature and carbon dioxide concentration on photosynthesis of mimules. Plant Physiol 34:103–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dvorsky M, Altman J, Kopecky M, Chlumska Z, Rehakova K, Janatkova K, Dolezal J (2015) Vascular plants at extreme elevations in eastern Ladakh, northwest Himalayas. Plant Ecol Divers 8:571–584

    Article  Google Scholar 

  • Ehleringer JR, Miller PC (1975) Water relations of selected plant species in the alpine tundra, Colorado. Ecology 56:370–380

    Article  Google Scholar 

  • Elliott GP (2012) Extrinsic regime shifts drive abrupt changes in regeneration dynamics at upper treeline in the Rocky Mountains, USA. Ecology 93:1614–1625

    Article  PubMed  Google Scholar 

  • Engler A (1913) Einfluß der Provenienz des Samens auf die Eigenschaften der forstlichen Holzgewächse. Mitt Schweiz Centralanst Forstl Versuchswesen 10:190–386

    Google Scholar 

  • Fajardo A, Piper FI (2017) An assessment of carbon and nutrient limitations in the formation of the southern Andes tree line. J Ecol 105:517–527

    Article  CAS  Google Scholar 

  • Franz H (1979) Ökologie der Hochgebirge. Ulmer, Stuttgart

    Google Scholar 

  • Friedel H (1961) Schneedeckendauer und Vegetation-sverteilungen im Gelände. Mitt Forstl Bundes Versuchsanst Mariabrunn (Wien) 59:317–369

    Google Scholar 

  • Friend AD, Woodward FI (1990) Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Adv Ecol Res 20:59–124

    Article  Google Scholar 

  • Gaire NP, Koirala M, Bhuju DR, Borgaonkar HP (2014) Treeline dynamics with climate change at the central Nepal Himalaya. Clim Past 10:1277–1290

    Article  Google Scholar 

  • Gasarch EI, Seastedt TR (2015) Plant community response to nitrogen and phosphorus enrichment varies across an alpine tundra moisture gradient. Plant Ecol Divers 8:739–749

    Article  Google Scholar 

  • Gauslaa Y (1984) Heat resistance and energy budget in different Scandinavian plants. Holarct Ecol 7:1–78

    Google Scholar 

  • Geng Y, Wang L, Jin DM, Liu HY, He JS (2014) Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia 175:445–455

    Article  PubMed  Google Scholar 

  • Geyger E (1985) Untersuchungen zum Wasserhaushalt der Vegetation im nordwestargentinischen Andenhochland. Diss Bot 88

    Google Scholar 

  • Girardin CAJ, Farfan-Rios W, Garcia K, Feeley KJ, Jorgensen PM, Murakami AA, Perez LC, Seidel R, Paniagua N, Claros AFF, Maldonado C, Silman M, Salinas N, Reynel C, Neill DA, Serrano M, Caballero CJ, Cuadros MDL, Macia MJ, Killeen TJ, Malhi Y (2014) Spatial patterns of above-ground structure, biomass and composition in a network of six Andean elevation transects. Plant Ecol Divers 7:161–171

    Article  Google Scholar 

  • Gjaerevoll O (ed) (1990) Alpine plants. The Royal Norwegian Society of Sciences and Tapir Publishers, Trondheim

    Google Scholar 

  • Goldstein G, Meinzer F, Monasterio M (1985) Physiological and mechanical factors in relation to size-dependent mortality in an Andean giant rosette species. Oecol Plant 6:263–275

    Google Scholar 

  • Goldstein M, DellaSala D (2020) Encyclopedia of the worlds’s biomes 1. ISBN 9780 128160961, Elsevier, 2600 pp

    Google Scholar 

  • Gonzalez JA, de Riera MQ, de Israilev LA (1993) Chlorophyll concentration and flavonoids in the fern Woodsia montevidensis in different light regimes at two altitudes in northwestern Argentina. Acta Oecol 14:839–846

    Google Scholar 

  • Graae BJ et al (2018) Stay or go—how topographic complexity influences alpine population and community responses to climatic change. Persp Plant Ecol Evol Syst 30:41–50

    Article  Google Scholar 

  • Grabherr G (1997) The high mountain ecosystems of the alps. In: Wielgolaski FE (ed) Ecosytems of the world, vol 3. Polar and alpine tundra. Elsevier, Amsterdam, pp 97–121

    Google Scholar 

  • Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin Heidelberg New York, pp 167–181

    Google Scholar 

  • Grace J (1987) Climatic tolerance and the distribution of plants. New Phytol 106:113–130

    Article  Google Scholar 

  • Grace J (1989) Tree lines. Philos Trans R Soc London (Biol) 324:233–245

    Google Scholar 

  • Green K (2009) Causes of stability in the alpine treeline in the Snowy Mountains of Australia: a natural experiment. Aust J Bot 57:171–179

    Article  Google Scholar 

  • Gruber A, Pirkebner D, Oberhuber W (2013) Seasonal dynamics of mobile carbohydrate pools in phloem and xylem of two alpine timberline conifers. Tree Physiol 33:1076–1083

    Article  CAS  PubMed  Google Scholar 

  • Grytnes JA, Kapfer J, Jurasinski G, Birks HH, Henriksen H, Klanderud K, Odland A, Ohlson M, Wipf S, Birks HJB (2014) Identifying the driving factors behind observed elevational range shifts on European mountains. Glob Ecol Biogeogr 23:876–884

    Article  Google Scholar 

  • Guy CL (2003) Freezing tolerance of plants: current understanding and selected emerging concepts. Can J Bot 81:1216–1223

    Article  CAS  Google Scholar 

  • Halloy SRP (1982) Climatologia y edafologia de alta montana en relacion con la composicion y adaptacion de las comu-nidades bioticas (con especial referencia a las Cumbres Calchaquies, Tucuman, Argentina). PhD Thesis, San Miguel Tucuman. University Microfilm International, Ann Arbor, no 8502967

    Google Scholar 

  • Halloy SRP (1991) Islands of life at 6000 m altitude: the environment of the highest autotrophic communities on earth (Socompa Volcano, Andes). Arct Alp Res 23:247–262

    Article  Google Scholar 

  • Hamerlynck EP, Smith WK (1994) Subnivean and emergent microclimate, photosynthesis, and growth in Erythronium grandiflorum Pursh, a snowbank geophyte. Arct Alp Res 26:21–28

    Article  Google Scholar 

  • Harte J, Saleska SR, Levy C (2015) Convergent ecosystem responses to 23-year ambient and manipulated warming link advancing snowmelt and shrub encroachment to transient and long-term climate-soil carbon feedback. Glob Change Biol 21:2349–2356

    Article  Google Scholar 

  • Hedberg I, Hedberg O (1979) Tropical-alpine life-forms of vascular plants. Oikos 33:297–307

    Article  Google Scholar 

  • Hedberg O (1964) Features of afroalpine plant ecology. Acta Phytogeogr Suec 139

    Google Scholar 

  • Hemp A (2002) Ecology of the pteridophytes on the southern slopes of Mt. Kilimanjaro, I. Altitudinal distribution. Plant Ecol 159:211–239

    Article  Google Scholar 

  • Hemp A (2005) Climate change-driven forest fires marginalize the impact of ice cap wasting on Kilimanjaro. Glob Change Biol 11:1013–1023

    Article  Google Scholar 

  • Henrici M (1918) Chlorophyllgehalt und Kohlensäure-Assimilation bei Alpen- und Ebenen-Pflanzen. Verh Naturforsch Ges Basel 30:43–136

    Google Scholar 

  • Hertel D, Wesche K (2008) Tropical moist Polylepis stands at the treeline in East Bolivia: the effect of elevation on stand microclimate, above- and below-ground structure, and regeneration. Trees, Struct Funct 22:303–331

    Article  Google Scholar 

  • Hiesey WM, Milner HW (1965) Physiology of ecological races and species. Annu Rev Plant Physiol 16:203–216

    Article  CAS  Google Scholar 

  • Hnatiuk RJ (1978) The growth of tussock grasses on an equatorial high mountain and on two sub-antarctic islands. In: Troll C, Lauer W (eds) Geoecological relations between the southern temperate zone and the tropical mountains. Erdwiss Forschung 11, Steiner, Wiesbaden, pp 159–190

    Google Scholar 

  • Hoch G, Körner C (2005) Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct Ecol 19:941–951

    Article  Google Scholar 

  • Inauen N, Körner C, Hiltbrunner E (2012) No growth stimulation by CO2 enrichment in alpine glacier forefield plants. Glob Change Biol 18:985–999

    Article  Google Scholar 

  • Ives JD, Barry RG (1974) Arctic and alpine environments. Methuen, London

    Google Scholar 

  • Izmailova NN (1977) Wasserhaushalt kryophiler Polsterpflanzen im östlichen Pamir. Ekol Akad Nauk SSSR 2:17–22 (in Russian)

    Google Scholar 

  • Kerner A (1869) Die Abhängigkeit der Pflanzengestalt von Klima und Boden. Festschrift der 43. Jahresversammlung Deutscher Naturforscher und Ärzte, Wagner, Innsbruck, pp 29–45

    Google Scholar 

  • Kerner A (1896) Pflanzenleben. Bibliographic Institute, Leipzig and Vienna

    Google Scholar 

  • Kikuzawa K, Kudo G (1995) Effects of the length of the snow-free period on leaf longevity in alpine shrubs: a cost-benefit model. Oikos 73:214–220

    Article  Google Scholar 

  • Klanderud K (2008) Species-specific responses of an alpine plant community under simulated environmental change. J Veg Sci 19:363–372

    Article  Google Scholar 

  • Kleier C, Rundel P (2009) Energy balance and temperature relations of Azorella compacta, a high-elevation cushion plant of the central Andes. Plant Biol 11:351–358

    Article  CAS  PubMed  Google Scholar 

  • Klimes L, Dolezal J (2010) An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas. Ecography 33:590–596

    Google Scholar 

  • Klotz G (1990) Hochgebirge der Erde und ihre Pflanzen- und Tierwelt. Urania, Leipzig

    Google Scholar 

  • Knowles JF, Burns SP, Blanken PD, Monson RK (2015) Fluxes of energy, water, and carbon dioxide from mountain ecosystems at Niwot Ridge, Colorado. Plant Ecol Divers 8:663–676

    Article  Google Scholar 

  • Körner C (1991) Some often overlooked plant characteristics as determinants of plant growth: a reconsideration. Funct Ecol 5:162–173

    Article  Google Scholar 

  • Körner C (1995) Alpine plant diversity: a global survey and functional interpretations. In: Chapin FS III, Körner C (eds) Arctic and alpine biodiversity: patterns, causes and ecosystem consequences. Ecological studies, vol 113. Springer, Berlin Heidelberg New York, pp 45–62

    Google Scholar 

  • Körner C (1998) Alpine plants: stressed or adapted? In: Press MC, Scholes JD, Barker MG (eds) Physiological plant ecology. Blackwell Science, Oxford, pp 297–311

    Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514

    Article  Google Scholar 

  • Körner C (2004) Mountain biodiversity, its causes and function. Ambio Special Report 13:11–17

    Google Scholar 

  • Körner C (2006) Significance of temperature in plant life. In: Morison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell Publishing Ltd, Oxford p, pp 48–69

    Chapter  Google Scholar 

  • Körner C (2007) The use of “altitude” in ecological research. Trends Ecol Evol 22:569–574

    Article  PubMed  Google Scholar 

  • Körner C (2009) Global statistics of “mountain” and “alpine” research. Mountain Res Dev 29:97–102

    Google Scholar 

  • Körner C (2012) Alpine treelines. Springer, Basel

    Book  Google Scholar 

  • Körner C (2018) Concepts in empirical plant ecology. Plant Ecol Div 11:405–428

    Article  Google Scholar 

  • Körner C, Hiltbrunner E (2018) The 90 ways to describe plant temperature. Persp Plant Ecol Evol Syst 30:16–21

    Article  Google Scholar 

  • Körner C, Larcher W (1988) Plant life in cold climates. Symp Soc Exp Biol 42:25–57

    PubMed  Google Scholar 

  • Körner C, Pelaez Menendez-Riedl S (1989) The significance of developmental aspects in plant growth analysis. In: Lambers H, Cambridge ML, Konings H, Pons TL (eds) Causes and consequences of variation in growth rate and productivity of higher plants. SPB Academic Publishers, The Hague, pp 141–157

    Google Scholar 

  • Körner C, Spehn EM (2002) Mountain biodiversity, a global assessment. The Parthenon Publishing Group, Boca Raton

    Google Scholar 

  • Körner C, Allison A, Hilscher H (1983) Altitudinal variation in leaf diffusive conductance and leaf anatomy in heliophytes of montane New Guinea and their interrelation with microclimate. Flora 174:91–135

    Article  Google Scholar 

  • Körner C, Farquhar GD, Wong SC (1991) Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40

    Article  PubMed  Google Scholar 

  • Körner C, Jetz W, Paulsen J, Payne D, Rudmann-Maurer K, Spehn EM (2017) A global inventory of mountains for bio-geographical applications. Alp Bot 127:1–15

    Article  Google Scholar 

  • Kullman L, Oberg L (2009) Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. J Ecol 97:415–429

    Article  Google Scholar 

  • Ladinig U, Hacker J, Neuner G, Wagner J (2013) How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment. Oecologia 171:743–760

    Article  PubMed  PubMed Central  Google Scholar 

  • Langlet O (1971) Two hundred years genecology. Taxon 20:653–722

    Article  Google Scholar 

  • Larcher W (1967) Die Berge – einzigartiges Versuchsfeld der Natur. Jahrb Vereins Schutze Alpenpflanzen Tiere 32:1–7

    Google Scholar 

  • Larcher W (1970) Aufgaben und Möglichkeiten ökophysiologischer Forschung im Gebirge. Mitt Ostalp Dinarische Ges Vegetationskd 11:95–100

    Google Scholar 

  • Larcher W (1975) Pflanzenökologische Beobachtungen in der Paramostufe der venezolanischen Anden. Anz Math Naturwiss Kl Österr Akad Wiss (Wien) 11:194–213

    Google Scholar 

  • Larcher W (1977) Ergebnisse des IBP-Projekts “Zwergstrauchheide Patscherkofel”. Sitzungsber Österr Akad Wiss (Wien) Math Naturwiss Kl Abt I 186:301–371

    Google Scholar 

  • Larcher W (1980) Klimastress im Gebirge – Adaptationstrain-ing und Selektionsfilter für Pflanzen. Rheinisch Westfäl Akad Wiss (Düsseldorf) Naturwiss Vortr 291:49–88

    Google Scholar 

  • Larcher W (1981) Resistenzphysiologische Grundlagen der evolutiven Kälteakklimatisation von Sprosspflanzen. Plant Syst Evol 137:145–180

    Article  Google Scholar 

  • Larcher W (1983) Ökophysiologische Konstitutionseigenschaften von Gebirgspflanzen. Ber Dtsch Bot Ges 96:73–85

    Google Scholar 

  • Larcher W (1994) Hochgebirge: An den Grenzen des Wachstums. In: Morawetz W (ed) Ökologische Grundwerte in Österreich. Österr Akad Wiss Wien, pp 304–343

    Google Scholar 

  • Larcher W (2005) Climatic constraints drive the evolution of low temperature resistance in woody plants. J Agric Meteorol 61:189–202

    Article  Google Scholar 

  • Larcher W, Kainmüller C, Wagner J (2010) Survival types of high mountain plants under extreme temperatures. Flora 205:3–18

    Article  Google Scholar 

  • Li LP, Li ZK, Cadotte MW, Jia P, Chen GG, Jin LS, Du GZ (2016) Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows. Oecologia 182:419–428

    Article  PubMed  Google Scholar 

  • Lipp CC, Goldstein G, Meinzer FC, Niemczura W (1994) Freezing tolerance and avoidance in high elevation Hawaiian plants. Plant, Cell Environ 17:1035–1044

    Article  Google Scholar 

  • Llambi LD, Rada F (2019) Ecological research in the tropical alpine ecosystems of the Venezuelan paramo: past, present and future. Plant Ecol Divers 12:519–538

    Google Scholar 

  • Lütz C (2012) Plants in alpine regions. Springer Wien New York

    Google Scholar 

  • Mark AF (1975) Photosynthesis and dark respiration in three alpine snow tussocks (Chionochloa spp.) under controlled environments. N Z J Bot 13:93–122

    Article  CAS  Google Scholar 

  • Mark AF, Korsten AC, Guevara DU, Dickinson KJM, Humar-Maegli T, Michel P, Halloy SRP, Lord JM, Venn SE, Morgan JW, Whigham PA, Nielsen JA (2015) Ecological responses to 52 years of experimental snow manipulation in high-alpine cushionfield, Old Man Range, south-central New Zealand. Arct Antarct Alp Res 47:751–772

    Article  Google Scholar 

  • Masuzawa T (1987) A comparison of the photosynthetic activity of Polygonum weyrichii var. alpinum under field conditions at the timberline of Mt. Fuji and in the laboratory. Bot Mag Tokyo 100:103–108

    Article  Google Scholar 

  • Meinzer FC, Goldstein GH, Rundel PW (1985) Morphological changes along an altitude gradient and their consequences for an Andean giant rosette plant. Oecologia 65:278–283

    Article  CAS  PubMed  Google Scholar 

  • Miehe G (1991) Der Himalaya, eine multizonale Gebirgsregion. In: Walter H, Breckle SW (eds) Ökologie der Erde, vol 4. Spezielle Ökologie der gemäßigten und arktischen Zonen außerhalb Euro-Nordasiens. Fischer, Stuttgart, pp 181–230

    Google Scholar 

  • Miehe G, Miehe S, Vogel J, Co S, Duo L (2007) Highest treeline in the northern hemisphere found in southern Tibet. Mt Res Dev 27:169–173

    Article  Google Scholar 

  • Miehe G, Pendry C (2016) Nepal: An introduction to the natural history, ecology and human environment in the Himalayas (A companion to the flora of Nepal). Royal Botanical Garden, Edinburgh

    Google Scholar 

  • Mizunaga Y, Kudo G (2017) A linkage between flowering phenology and fruit-set success of alpine plant communities with reference to the seasonality and pollination effectiveness of bees and flies. Oecologia 185:453–464

    Article  PubMed  Google Scholar 

  • Molau U (1997) Responses to natural climatic variation and experimental warming in two tundra plant species with contrasting life forms: Cassiope tetragona and Ranunculus nivalis. Glob Change Biol 3:97–107

    Article  Google Scholar 

  • Monasterio M, Sarmiento L (1991) Adaptive radiation of Espeletia in the cold Andean tropics. TREE 6:387–392

    CAS  PubMed  Google Scholar 

  • Monteiro JAF, Hiltbrunner E, Körner C (2011) Functional morphology and microclimate of Festuca orthophylla, the dominant tall tussock grass in the Andean altiplano. Flora 206:387–396

    Article  Google Scholar 

  • Moser W, Brzoska W, Zachhuber K, Larcher W (1977) Ergebnisse des IBP-Projekts “Hoher Nebelkogel 3184 m”. Sitzungsber Oesterr Akad Wiss (Wien) Math Naturwiss Kl Abt I 186:387–419

    Google Scholar 

  • Moyes AB, Germino MJ, Kueppers LM (2015) Moisture rivals temperature in limiting photosynthesis by trees establishing beyond their cold-edge range limit under ambient and warmed conditions. New Phytol 207:1005–1014

    Article  PubMed  Google Scholar 

  • Nagy L, Grabherr G, Körner C, Thompson DBA (2003) Alpine biodiversity in Europe. Ecol Studies, Springer, Berlin

    Book  Google Scholar 

  • Nakhutshrisvili GS, Gamtsemlize SG (1984) Plant life under extreme high mountain conditions (exemplified by the central Causasus). Isdatjelstwo Nauka, Leningrad (in Russian)

    Google Scholar 

  • Nakhutsrishvili G (1976) Plant life in extreme high mountain conditions of the Caucasus. Is Akad Nauk Gruz SSR Ser Biol 2:132–140 (in Russian)

    Google Scholar 

  • Nakhutsrishvili G (1999) The vegetation of Georgia (Caucasus). Braun-Blanquetia 15

    Google Scholar 

  • Nakhutsrishvili G, Abdaladze O, Batsatsashvili K, Spehn E, Körner C (2017) Plant diversity in the Central Great Caucasus: A quantitative assessment. Springer, Cham

    Book  Google Scholar 

  • Neuner G (2014) Frost resistance in alpine woody plants. Front Plant Sci 5

    Google Scholar 

  • Onipchenko VG (2004) Alpine ecosystems in the northwest Caucasus. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Onipchenko VG, Blinnikov MS (1994) Experimental investigation of alpine plant communities in the northwestern Caucasus. Veröff Geobot Inst ETH (Stiftung Rübel, Zürich) 115:3–118

    Google Scholar 

  • Ozenda P (1988) Die Vegetation der Alpen im europäischen Gebirgsraum. Fischer, Stuttgart

    Google Scholar 

  • Pangtey YPS, Rawal RS, Bankoti NS, Samant SS (1990) Phenology of high altitude plants of Kumaun in Central Himalaya, India. Int J Biometeorol 34:122–127

    Article  Google Scholar 

  • Patty L, Halloy SRP, Hiltbrunner E, Körner C (2010) Biomass allocation in herbaceous plants under grazing impact in the high semi-arid Andes. Flora 205:695–703

    Article  Google Scholar 

  • Pauli H et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    Article  CAS  PubMed  Google Scholar 

  • Paulsen J, Körner C (2014) A climate-based model to predict potential treeline position around the globe. Alp Bot 124:1–12

    Article  Google Scholar 

  • Peters MK et al (2016a) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat Com 7:13736

    Article  CAS  Google Scholar 

  • Peters MK, Hemp A, Appelhans T, Behler C, Classen A, Detsch F, Ensslin A, Ferger SW, Frederiksen SB, Gebert F, Haas M, Helbig-Bonitz M, Hemp C, Kindeketa WJ, Mwangomo E, Ngereza C, Otte I, Roder J, Rutten G, Costa DS, Tardanico J, Zancolli G, Deckert J, Eardley CD, Peters RS, Rödel MO, Schleuning M, Ssymank A, Kakengi V, Zhang J, Böhning-Gaese K, Brandl R, Kalko EKV, Kleyer M, Nauss T, Tschapka M, Fischer M, Steffan-Dewenter I (2016b) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat Commun 7:13736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petraglia A, Tomaselli M, Bon MP, Delnevo N, Chiari G, Carbognani M (2014) Responses of flowering phenology of snowbed plants to an experimentally imposed extreme advanced snowmelt. Plant Ecol 215:759–768

    Article  Google Scholar 

  • Pickering C, Green K, Barros AA, Venn S (2014) A resurvey of late-lying snowpatches reveals changes in both species and functional composition across snowmelt zones. Alp Bot 124:93–103

    Article  Google Scholar 

  • Pisek A (1960) Pflanzen der Arktis und des Hochgebirges. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie, vol 5. Springer, Berlin Göttingen Heidelberg, pp 377–413

    Google Scholar 

  • Pisek A, Larcher W (1954) Zusammenhang zwischen Austrocknungsresistenz und Frosthärte bei Immergrünen. Protoplasma 44:30–45

    Article  Google Scholar 

  • Prock S, Körner C (1996) A cross-continental comparison of phenology, leaf dynamics and dry matter allocation in arctic and temperate zone herbaceous plants from contrasting altitudes. Ecol Bull 45:93–103

    CAS  Google Scholar 

  • Purohit AN, Nautiyal AR, Thapliyal P (1988) Leaf optical properties of an alpine perennial herb Selinum vaginatum Clarke grown at two altitudes. Biol Plant (Praha) 30:373–378

    Article  Google Scholar 

  • Pyankov VI, Voznesenskaya EV, Kuzmin AN, Demidov ED, Vasilev AA, Dzyubenko OA (1992) C4 photosynthesis in alpine species of the Pamirs, Soviet. Plant Physiol 39:421–430

    Google Scholar 

  • Rabotnov TA (1987) The biocoenoses of alpine tundra (for example, the northwestern Caucasus) (russ). Istadelstwo Nauka, Moscow (in Russian)

    Google Scholar 

  • Rada F, Goldstein G, Azocar A, Torres F (1987) Supercooling along an altitudinal gradient in Espeletia schultzii, a caulescent giant rosette species. J Exp Bot 38:491–497

    Article  Google Scholar 

  • Rehm EM, Feeley KJ (2015) Freezing temperatures as a limit to forest recruitment above tropical Andean treelines. Ecology 96:1856–1865

    Article  PubMed  Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carrer M (2008) Age-dependent xylogenesis in timberline conifers. New Phytol 177:199–208

    Article  PubMed  Google Scholar 

  • Rundel PW, Smith AP, Meinzer FC (1994) Tropical alpine environments. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Ruthsatz B (1977) Pflanzengesellschaften und ihre Lebensbe-dingungen in den Andinen Halbwüsten Nordwest-Argentiniens. Diss Bot 39

    Google Scholar 

  • Scheepens JF, Stöcklin J (2013) Flowering phenology and reproductive fitness along a mountain slope: maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia 171:679–691

    Article  CAS  PubMed  Google Scholar 

  • Scherrer D, Körner C (2009) Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob Change Biol 16:2602–2613

    Google Scholar 

  • Schimper AFW (1898) Pflanzen-Geographie auf physiologischer Grundlage. Fischer, Jena (Engl. transl). 1903: Plant geography upon a physiological basis. Clarendon Press, Oxford)

    Google Scholar 

  • Schimper AFW, von Faber FC (1935) Pflanzengeographie auf physiologischer Grundlage, 2nd edn. Fischer, Jena

    Google Scholar 

  • Schmid SF, Stöcklin J, Hamann E, Kesselring H (2017) High-elevation plants have reduced plasticity in flowering time in response to warming compared to low-elevation congeners. Basic Appl Ecol 21(1):12

    Google Scholar 

  • Schroeter C (1908/1926) Das Pflanzenleben der Alpen. Eine Schilderung der Hochgebirgsflora. Albert Raustein, Zürich

    Google Scholar 

  • Schulze ED, Beck E, Scheibe R, Ziegler P (1985) Carbon dioxide assimilation and stomatal response of afroalpine giant rosette plants. Oecologia 65:207–213

    Article  Google Scholar 

  • Semichatowa OA (1965) About respiration of high mountain plants. Isdatelstwo Nauka Prob Bot 7:142–158 (in Russian)

    Google Scholar 

  • Senn G (1922) Untersuchungen über die Physiologie der Alpenpflanzen. Verh Schweiz Naturforsch Ges 103:149–169

    Google Scholar 

  • Shi P, Körner C, Hoch G (2008) A test of the growth-limitation theory for alpine tree line formation in evergreen and deciduous taxa of the eastern Himalayas. Funct Ecol 22:213–220

    Article  Google Scholar 

  • Shibata O (1985) Altitudinal botany. Uchida Rokakuho, Tokyo (in Japanese)

    Google Scholar 

  • Shibata O, Nishida T (1993) Seasonal changes in sugar and starch content of the alpine snowbed plants, Primula cuneifolia ssp. hakusanensis and Fauria crista-galli, in Japan. Arct Alp Res 25:207–210

    Article  Google Scholar 

  • Sklenar P, Kucerova A, Macek P, Mackova J (2010) Does plant height determine the freezing resistance in the paramo plants? Austral Ecol 35:929–934

    Article  Google Scholar 

  • Sklenar P, Kucerova A, Mackova J, Romoleroux K (2016) Temperature microclimates of plants in a tropical alpine environment: How much does growth form matter? Arct Antarct Alp Res 48:61–78

    Article  Google Scholar 

  • Slatyer RO (1976) Water deficits in timberline trees in the Snowy Mountains of south-eastern Australia. Oecologia 24:357–366

    Article  CAS  PubMed  Google Scholar 

  • Slatyer RO (1978) Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. VII. Relationship between gradients of field temperature and photosynthetic temperature optima in the Snowy Mountains area. Aust J Bot 26:111–121

    Article  Google Scholar 

  • Smith AP, Young TP (1987) Tropical alpine plant ecology. Annu Rev Ecol Syst 18:137–158

    Article  Google Scholar 

  • Smith JG, Sconiers W, Spasojevic MJ, Ashton IW, Suding KN (2012) Phenological changes in alpine plants in response to increased snowpack, temperature, and nitrogen. Arct Antarct Alp Res 44:135–142

    Article  Google Scholar 

  • Sonesson M, Schipperges B, Carlsson BA (1991) Seasonal patterns of photosynthesis in alpine and subalpine populations of the lichen Nephroma arcticum. Oikos 65:3–12

    Article  Google Scholar 

  • Squeo A, Rada F, Azocar A, Goldstein G (1991) Freezing tolerance and avoidance in high tropical Andean plants: is it equally represented in species with different plant height? Oecologia 86:378–382

    Article  CAS  PubMed  Google Scholar 

  • Steinbauer MJ et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234

    Article  CAS  PubMed  Google Scholar 

  • Streb R, Aubert S, Bligny R (2003) High temperature effects on light sensitivity in the two high mountain plant species Soldanella alpina (L.) and Rannunculus glacialis (L.). Plant Biol 5:432–440

    Article  CAS  Google Scholar 

  • Sullivan JH, Teramura AH, Ziska LH (1992) Variation in UV-B sensitivity in plants from a 3000-m elevational gradient in Hawaii. Am J Bot 79:737–743

    Article  Google Scholar 

  • Sundriyal RC, Joshi AP (1992) Annual nutrient budget for an alpine grassland in the Garhwal Himalaya. J Veg Sci 3:21–26

    Article  Google Scholar 

  • Sveshnikova VM (1973) Water regime of plants under the extreme conditions of high-mountain deserts of Pamirs. UNESCO (Ecology and conservation 5), Plant response to climatic factors. Proc Uppsala Symp 1970:555–561

    Google Scholar 

  • Tappeiner U, Cernusca A (1996) Microclimate and fluxes of water vapour, sensible heat and carbon dioxide in structurally differing subalpine plant communities in the central Caucasus. Plant, Cell Environ 19:403–417

    Article  Google Scholar 

  • Terashima I, Masuzawa T, Ohba H (1993) Photosynthetic characteristics of a giant alpine plant, Rheum nobile Hook. f. et Thoms. and of some other alpine species measured at 4300 m, in the eastern Himalaya. Nepal. Oecologia 95:194–201

    Article  PubMed  Google Scholar 

  • Tingstad L, Olsen SL, Klanderud K, Vandvik V, Ohlson M (2015) Temperature, precipitation and biotic interactions as determinants of tree seedling recruitment across the tree line ecotone. Oecologia 179:599–608

    Article  PubMed  Google Scholar 

  • Tranquillini W (1964) The physiology of plants at high altitudes. Annu Rev Plant Physiol 15:345–362

    Article  CAS  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline. Tree existence at high altitudes with special references to the European Alps. Ecological studies vol 31. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Troll C, Lauer W (1978) Geoökologische Beziehungen zwischen der temperierten Zone der Südhalbkugel und den Tropengebieten. Steiner, Wiesbaden

    Google Scholar 

  • Turesson G (1925) The plant species in relation to habitat and climate. Contributions to the knowledge of genecological units. Hereditas 6:147–236

    Article  Google Scholar 

  • Turesson G (1931) The geographical distribution of the alpine ecotype of some eurasiatic plants. Hereditas 15:329–346

    Article  Google Scholar 

  • Vareschi V (1951) Zur Frage der Oberflächenentwicklung von Pflanzengesellschaften der Alpen und Subtropen. Planta 40:1–35

    Article  Google Scholar 

  • Venn SE, Green K, Pickering CM, Morgan JW (2011) Using plant functional traits to explain community composition across a strong environmental filter in Australian alpine snowpatches. Plant Ecol 212:1491–1499

    Article  Google Scholar 

  • Venn SE, Morgan JW, Lord JM (2013) Foliar freezing resistance of Australian alpine plants over the growing season. Austral Ecol 38:152–161

    Article  Google Scholar 

  • Vuilleumier F, Monasterio M (eds) (1986) High altitude tropical biogeography. Oxford University Press, Oxford

    Google Scholar 

  • Wagner A (1892) Zur Kenntnis des Blattbaues der Alpenpflanzen und dessen biologischer Bedeutung. Sitzungsber Math Naturwiss Kl Kais Akad Wiss Wien 101:487–547

    Google Scholar 

  • Wagner J, Steinacher G, Ladinig U (2010) Ranunculus glacialis L.: successful reproduction at the altitudinal limits of higher plant life. Protoplasma 243:117–128

    Article  PubMed  Google Scholar 

  • Walker D (1968) A reconnaissance of the non-arboreal vegetation of the Pindaunde Catchment, Mount Wilhelm, New Guinea. J Ecol 56:445–465

    Article  Google Scholar 

  • Walter H, Breckle SW (1991–1994) Ökologie der Erde, vols 1–4. Fischer, Stuttgart

    Google Scholar 

  • Wardle P (1974) Alpine timberlines. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 371–402

    Google Scholar 

  • Wardle P (2008) New Zealand forest to alpine transitions in global context. Arct Antarct Alp Res 40:240–249

    Article  Google Scholar 

  • Webster GL (1961) The altitudinal limits of vascular plants. Ecology 42:587–590

    Article  Google Scholar 

  • Wielgolaski FE (1975) Fennoscandian tundra ecosystems. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Wieser G, Tausz M (2007) Trees at their upper limit: treelife limitation at the Alpine timberline. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Winkler M et al (2016) The rich sides of mountain summits—a pan-European view on aspect preferences of alpine plants. J Biogeogr 43:2261–2273

    Article  Google Scholar 

  • Wipf S, Stöckli V, Herz K, Rixen C (2013) The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol Divers 6:447–455

    Article  Google Scholar 

  • Woodward FI (1983) The significance of interspecific differences in specific leaf area to the growth of selected herbaceous species from different altitudes. New Phytol 95:313–323

    Article  Google Scholar 

  • Zalenskij OV (1955) Photosynthesis and frost resistance of plants under the conditions of high mountains. Exp Bot 10:194–227 (in Russian)

    Google Scholar 

  • Zhang ZL, Niu KC, Liu XD, Jia P, Du GZ (2014) Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow. J Plant Ecol 7:231–239

    Article  Google Scholar 

  • Zhou YC, Fan JW, Zhang WY, Harris W, Zhong HP, Hu ZM, Song LL (2011) Factors influencing altitudinal patterns of C3 plant foliar carbon isotope composition of grasslands on the Qinghai-Tibet Plateau, China. Alpine Botany 121:79–90

    Article  Google Scholar 

  • Zhu Y, Siegwolf RTW, Durka W, Körner C (2010) Phylogenetically balanced evidence for structural and carbon isotope responses in plants along elevational gradients. Oecologia 162:853–863

    Article  PubMed  Google Scholar 

  • Ziska LH, Teramura AH, Sullivan JH (1992) Physiological sensitivity of plants along an elevational gradient to UV-B radiation. Am J Bot 79:863–871

    Article  Google Scholar 

  • Zoller H (2000) La découverte des Alpes de Pétrarque à Gessner. In: Pont JC, Lacki J (eds) Une cordeé originale. Georg, Geneva, pp 417–428

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Körner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Körner, C. (2021). Plant ecology at high elevations. In: Alpine Plant Life. Springer, Cham. https://doi.org/10.1007/978-3-030-59538-8_1

Download citation

Publish with us

Policies and ethics