Skip to main content

The Role of Ground Ice

  • Chapter
  • First Online:
Thawing Permafrost

Abstract

The ice content of permafrost soils has a large impact on processes that occur when permafrost thaws; exposed ground ice is the primary cause of destructive abrupt thaw processes. This chapter presents the origin of common forms of ground ice: segregation ice, ice wedges and larger ground ice bodies. The presence of ground ice is expressed at the surface as geomorphological features such as ice wedge polygon networks, palsas and pingos. A processes that is important for transfer of carbon in permafrost soils is cryoturbation; it is also linked to micro-relief at the soil surface in the shape of various forms of patterned ground. The processes and landforms that result from thawing ground ice are discussed: erosional forms such as cryogenic landslides. Next, permafrost has a profound effect on the hydrology; a frozen subsurface acts as a barrier to groundwater movement. This affects also runoff and river discharge, which are further determined by water storage as snow in winter, and its sudden release in spring during snowmelt. Permafrost thaw results in hydrological changes: the development of thaw lakes and increased groundwater flow. The chapter concludes with a short presentation of geophysical methods to detect and map ground ice and permafrost in the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott BW, Jones JB (2015) Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob Chang Biol 21(12):4570–4587

    Google Scholar 

  • Abnizova A, Young KL (2008) Hillslope hydrological linkages: importance to ponds within a polar desert high Arctic wetland. Hydrol Res 39(4):309–321

    Article  Google Scholar 

  • Arp CD, Jones BM, Lu Z, Whitman MS (2012) Shifting balance of thermokarst lake ice regimes across the Arctic coastal plain of northern Alaska. Geophys Res Lett 39(16):L16503. https://doi.org/10.1029/2012GL052518

    Article  Google Scholar 

  • Arp CD, Jones BM, Grosse G, Bondurant AC, Romanovsky VE, Hinkel KM, Parsekian AD (2016) Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate. Geophys Res Lett 43(12):6358–6365

    Article  Google Scholar 

  • Bense V, Ferguson G, Kooi H (2009) Evolution of shallow groundwater flow systems in areas of degrading permafrost. Geophys Res Lett 36(22):L22041. https://doi.org/10.1029/2009GL039225

    Article  Google Scholar 

  • Beylich AA, Molau U, Luthbom K, Gintz D (2005) Rates of chemical and mechanical fluvial denudation in an arctic oceanic periglacial environment, Latnjavagge drainage basin, northernmost Swedish Lapland. Arct Antarct Alp Res 37(1):75–87

    Article  Google Scholar 

  • Billings W, Peterson K (1980) Vegetational change and ice-wedge polygons through the thaw-lake cycle in Arctic Alaska. Arct Alp Res 12(4):413–432

    Article  Google Scholar 

  • Bockheim JG, Tarnocai C (1998) Recognition of cryoturbation for classifying permafrost-affected soils. Geoderma 81(3–4):281–293

    Article  Google Scholar 

  • Boike J, Roth K, Overduin PP (1998) Thermal and hydrologic dynamics of the active layer at a continuous permafrost site (Taymyr Peninsula, Siberia). Water Resour Res 34(3):355–363

    Article  Google Scholar 

  • Boike J, Wille C, Abnizova A (2008a) Climatology and summer energy and water balance of polygonal tundra in the Lena River Delta, Siberia. J Geophys Res 113(G3). https://doi.org/10.1029/2007jg000540

  • Boike J, Ippisch O, Overduin PP, Hagedorn B, Roth K (2008b) Water, heat and solute dynamics of a mud boil, Spitsbergen. Geomorphology 95(1–2):61–73

    Article  Google Scholar 

  • Boike J, Langer M, Lantuit H, Muster S, Roth K, Sachs T, Overduin P, Westermann S, McGuire AD (2012) Permafrost–physical aspects, carbon cycling, databases and uncertainties. In: Recarbonization of the biosphere. Springer, pp 159–185

    Google Scholar 

  • Boike J, Georgi C, Kirilin G, Muster S, Abramova K, Fedorova I, Chetverova A, Grigoriev M, Bornemann N, Langer M (2015) Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia – observations and modeling (Lena River Delta, Siberia). Biogeosciences 12(20):5941–5965. https://doi.org/10.5194/bg-12-5941-2015

    Article  Google Scholar 

  • Brewer M, Carter, LD, Glenn, R (1993) Sudden drainage of a thaw lake on the Alaskan Arctic Coastal Plain. In: Sixth International Conference on Permafrost, 1993. Proceedings of the Sixth International Conference on Permafrost. South China University of Technology Press, Beijing, pp 48–53

    Google Scholar 

  • Briggs MA, Walvoord MA, McKenzie JM, Voss CI, Day-Lewis FD, Lane JW (2014) New permafrost is forming around shrinking Arctic lakes, but will it last? Geophys Res Lett 41(5):1585–1592

    Article  Google Scholar 

  • Broll G, Tarnocai C, Mueller G (1999) Interactions between vegetation, nutrients and moisture in soils in the Pangnirtung pass area, Baffin Island, Canada. Permafr Periglac Process 10(3):265–277

    Article  Google Scholar 

  • Brouchkov A, Fukuda M, Fedorov A, Konstantinov P, Iwahana G (2004) Thermokarst as a short-term permafrost disturbance, Central Yakutia. Permafr Periglac Process 15(1):81–87. https://doi.org/10.1002/ppp.473

    Article  Google Scholar 

  • Brown J, Ferrians O, Heginbottom JA, Melnikov E (2002) Circum-Arctic map of permafrost and ground-ice conditions, version 2. NSIDC. National Snow and Ice Data Center, Boulder

    Google Scholar 

  • Burn C (1990) Implications for palaeoenvironmental reconstruction of recent ice-wedge development at Mayo, Yukon Territory. Permafr Periglac Process 1(1):3–14

    Article  Google Scholar 

  • Burn C (2000) The thermal regime of a retrogressive thaw slump near Mayo, Yukon Territory. Can J Earth Sci 37(7):967–981

    Article  Google Scholar 

  • Burn C (2002) Tundra lakes and permafrost, Richards Island, western Arctic coast, Canada. Can J Earth Sci 39(8):1281–1298

    Article  Google Scholar 

  • Burn CR (2005) Lake-bottom thermal regimes, western Arctic coast, Canada. Permafr Periglac Process 16(4):355–367

    Article  Google Scholar 

  • Calmels F, Allard M (2008) Segregated ice structures in various heaved permafrost landforms through CT Scan. Earth Surf Process Landf 33(2):209–225

    Article  Google Scholar 

  • Carson CE, Hussey KM (1962) The oriented lakes of Arctic Alaska. J Geol 70(4):417–439

    Article  Google Scholar 

  • Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39(2):121–146

    Article  Google Scholar 

  • Cheng G (1983) The mechanism of repeated-segregation for the formation of thick layered ground ice. Cold Reg Sci Technol 8(1):57–66

    Article  Google Scholar 

  • Christiansen HH (2005) Thermal regime of ice-wedge cracking in Adventdalen, Svalbard. Permafr Periglac Process 16(1):87–98

    Article  Google Scholar 

  • Church M (1988) Floods in cold climates. Flood geomorphology. Wiley, New York, pp 205–229

    Google Scholar 

  • Costard F, Gautier E, Fedorov A, Konstantinov P, Dupeyrat L (2014) An assessment of the erosion potential of the fluvial thermal process during ice breakups of the Lena River (Siberia). Permafr Periglac Process 25(3):162–171

    Article  Google Scholar 

  • Dash J, Rempel A, Wettlaufer J (2006) The physics of premelted ice and its geophysical consequences. Rev Mod Phys 78(3):695

    Article  Google Scholar 

  • De Klerk P, Donner N, Karpov NS, Minke M, Joosten H (2011) Short-term dynamics of a low-centred ice-wedge polygon near Chokurdakh (NE Yakutia, NE Siberia) and climate change during the last ca 1250 years. Quat Sci Rev 30(21–22):3013–3031

    Article  Google Scholar 

  • De Leffingwell E (1915) Ground-ice wedges: the dominant form of ground-ice on the north coast of Alaska. J Geol 23(7):635–654

    Article  Google Scholar 

  • Dixon JC, Thorn CE, Darmody RG (2008) Spatial scale and chemical weathering in Kärkevagge: influences on landscape evolution. Zeitschrift für Geomorphologie 52(1):27–49

    Article  Google Scholar 

  • Elliott G (1996) Microfabric evidence for podzolic soil inversion by solifluction processes. Earth Surf Process Landf 21(5):467–476

    Article  Google Scholar 

  • Ellis CJ, Rochefort L (2004) Century-scale development of polygon-patterned tundra wetland, Bylot Island (73° N, 80° W). Ecology 85(4):963–978

    Article  Google Scholar 

  • Etienne S (2002) The role of biological weathering in periglacial areas: a study of weathering rinds in South Iceland. Geomorphology 47(1):75–86

    Article  Google Scholar 

  • Etzelmüller B, Hagen JO (2005) Glacier-permafrost interaction in Arctic and alpine mountain environments with examples from southern Norway and Svalbard. Geol Soc Lond, Spec Publ 242(1):11–27

    Article  Google Scholar 

  • Farquharson L, Anthony KW, Bigelow N, Edwards M, Grosse G (2016) Facies analysis of yedoma thermokarst lakes on the northern Seward Peninsula, Alaska. Sediment Geol 340:25–37

    Article  Google Scholar 

  • Fedorov A, Gavriliev P, Konstantinov P, Hiyama T, Iijima Y, Iwahana G (2014) Estimating the water balance of a thermokarst lake in the middle of the Lena River basin, eastern Siberia. Ecohydrology 7(2):188–196

    Article  Google Scholar 

  • Fortier D, Allard M, Shur Y (2007) Observation of rapid drainage system development by thermal erosion of ice wedges on Bylot Island, Canadian Arctic Archipelago. Permafr Periglac Process 18(3):229–243

    Article  Google Scholar 

  • French HM (2018) The periglacial environment. Wiley, Hoboken, p 515

    Google Scholar 

  • French H, Harry D (1983) Ground ice conditions and thaw lakes, Sachs River lowlands, Banks Island, Canada. Mesoformen des Reliefs im heutigen Periglazialraum:70–81

    Google Scholar 

  • French H, Shur Y (2010) The principles of cryostratigraphy. Earth Sci Rev 101(3–4):190–206

    Article  Google Scholar 

  • Frey KE, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23(1):169–182

    Article  Google Scholar 

  • Fuchs M, Kuhry P, Hugelius G (2015) Low below-ground organic carbon storage in a subarctic alpine permafrost environment. Cryosphere 9(2):427–438

    Article  Google Scholar 

  • Gooseff MN, Balser A, Bowden WB, Jones JB (2009) Effects of hillslope thermokarst in northern Alaska. EOS Trans Am Geophys Union 90(4):29–30

    Article  Google Scholar 

  • Grosse G, Jones B (2011) Spatial distribution of pingos in Northern Asia. Cryosphere 5(1):13

    Article  Google Scholar 

  • Grosse G, Harden J, Turetsky M, McGuire AD, Camill P, Tarnocai C, Frolking S, Schuur EAG, Jorgenson T, Marchenko S, Romanovsky V, Wickland KP, French N, Waldrop M, Bourgeau-Chavez L, Striegl RG (2011) Vulnerability of high-latitude soil organic carbon in North America to disturbance. J Geophys Res 116. https://doi.org/10.1029/2010jg001507

  • Grosse G, Jones B, Arp C (2013) Thermokarst Lakes, drainage, and drained basins. In: Shroder J, Giardino, R,Harbor, J (ed) Glacial and periglacial geomorphology, vol 8. Treatise on Geomorphology. pp 325–353. https://doi.org/10.1016/b978-0-12-374739-6.00216-5

    Chapter  Google Scholar 

  • Guglielmin M, Cannone N, Strini A, Lewkowicz AG (2005) Biotic and abiotic processes on granite weathering landforms in a cryotic environment, Northern Victoria land, Antarctica. Permafr Periglac Process 16(1):69–85

    Article  Google Scholar 

  • Günther F, Grosse G, Wetterich S, Jones BM, Kunitsky VV, Kienast F, Schirrmeister L (2015) The Batagay mega thaw slump, Yana Uplands, Yakutia, Russia: permafrost thaw dynamics on decadal time scale. TERRA NOSTRA-Schriften der GeoUnion Alfred-Wegener-Stiftung 2015(1):45–46

    Google Scholar 

  • Hall K, Thorn CE, Matsuoka N, Prick A (2002) Weathering in cold regions: some thoughts and perspectives. Prog Phys Geogr 26(4):577–603

    Article  Google Scholar 

  • Hallet B (2013) Stone circles: form and soil kinematics. Phil Trans R Soc A 371(2004):20120357. https://doi.org/10.1098/rsta.2012.0357

    Article  Google Scholar 

  • Hallet B, Walder J, Stubbs C (1991) Weathering by segregation ice growth in microcracks at sustained subzero temperatures: verification from an experimental study using acoustic emissions. Permafr Periglac Process 2(4):283–300

    Article  Google Scholar 

  • Harris SA, French HM, Heginbottom JA, Johnston GH, Ladanyi B, Sego DC, van Everdingen RO (1988) Glossary of permafrost and related ground-ice terms. Tech Memorandum Natl Res Counc Canada 142:157

    Google Scholar 

  • Hauck C, Kneisel C (2008) Applied geophysics in Periglacial environments. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511535628

    Book  Google Scholar 

  • Hillel D (1998) Environmental soil physics: fundamentals, applications, and environmental considerations. Elsevier, Burlington. 771 p

    Google Scholar 

  • Hinkel K, Nelson F, Shur Y, Brown J, Everett K (1996) Temporal changes in moisture content of the active layer and near-surface permafrost at Barrow, Alaska, USA: 1962–1994. Arct Alp Res 28(3):300–310

    Article  Google Scholar 

  • Hinkel KM, Eisner WR, Bockheim JG, Nelson FE, Peterson KM, Dai X (2003) Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula, Alaska. Arct Antarct Alp Res 35(3):291–300

    Article  Google Scholar 

  • Hinkel KM, Jones BM, Eisner WR, Cuomo CJ, Beck RA, Frohn R (2007) Methods to assess natural and anthropogenic thaw lake drainage on the western Arctic coastal plain of northern Alaska. J Geophys Res Earth 112:F2

    Google Scholar 

  • Hopkins DM (1949) Thaw lakes and thaw sinks in the Imuruk Lake area, Seward Peninsula, Alaska. J Geol 57(2):119–131

    Article  Google Scholar 

  • Hopkins D, Kidd J (1988) Thaw lake sediments and sedimentary environments. In: Proceedings of the 5th international permafrost conference, 1988. pp 790–795

    Google Scholar 

  • Iwahana G, Takano S, Petrov RE, Tei S, Shingubara R, Maximov TC, Fedorov AN, Desyatkin AR, Nikolaev AN, Desyatkin RV (2014) Geocryological characteristics of the upper permafrost in a tundra-forest transition of the Indigirka River Valley, Russia. Pol Sci 8(2):96–113

    Article  Google Scholar 

  • Jeffries MO, Zhang T, Frey K, Kozlenko N (1999) Estimating late-winter heat flow to the atmosphere from the lake-dominated Alaskan North Slope. J Glaciol 45(150):315–324

    Article  Google Scholar 

  • Jepsen SM, Voss CI, Walvoord MA, Minsley BJ, Rover J (2013) Linkages between lake shrinkage/expansion and sublacustrine permafrost distribution determined from remote sensing of interior Alaska, USA. Geophys Res Lett 40(5):882–887

    Article  Google Scholar 

  • Jones A, Stolbovay V, Tarnocai C, Broll G, Spaargaren O, Montanarella L (2010) Soil atlas of the northern circumpolar region. European Commission, Publications office of the European Union, Luxembourg, p 144

    Google Scholar 

  • Jones BM, Grosse G, Hinkel KM, Arp CD, Walker S, Beck RA, Galloway JP (2012) Assessment of pingo distribution and morphometry using an IfSAR derived digital surface model, western Arctic coastal plain, Northern Alaska. Geomorphology 138(1):1–14

    Article  Google Scholar 

  • Jorgenson MT, Shur Y (2007) Evolution of lakes and basins in northern Alaska and discussion of the thaw lake cycle. J Geophys Res Earth Surface 112(F2):F02S17. https://doi.org/10.1029/2006JF000531

    Article  Google Scholar 

  • Jorgenson MT, Romanovsky V, Harden J, Shur Y, O’Donnell J, Schuur EA, Kanevskiy M, Marchenko S (2010) Resilience and vulnerability of permafrost to climate change. Can J For Res 40(7):1219–1236

    Article  Google Scholar 

  • Jorgenson MT, Kanevskiy M, Shur Y, Moskalenko N, Brown D, Wickland K, Striegl R, Koch J (2015) Role of ground ice dynamics and ecological feedbacks in recent ice wedge degradation and stabilization. J Geophys Res Earth 120(11):2280–2297

    Article  Google Scholar 

  • Kaiser C, Meyer H, Biasi C, Rusalimova O, Barsukov P, Richter A (2007) Conservation of soil organic matter through cryoturbation in arctic soils in Siberia. J Geophys Res Biogeo 112(G2):G02017. https://doi.org/10.1029/2006JG000258

    Article  Google Scholar 

  • Kane K, Slaughter C (1973) Recharge of a central Alaska lake by subpermafrost groundwater. In: International Conference on Permafrost, 2nd, Yakutsk, Siberia. Papers, 1973

    Google Scholar 

  • Kanevskiy M, Shur Y, Jorgenson M, Ping C-L, Michaelson G, Fortier D, Stephani E, Dillon M, Tumskoy V (2013) Ground ice in the upper permafrost of the Beaufort Sea coast of Alaska. Cold Reg Sci Technol 85:56–70

    Article  Google Scholar 

  • Kanevskiy M, Shur Y, Jorgenson T, Brown DNR, Moskalenko N, Brown J, Walker DA, Raynolds MK, Buchhorn M (2017) Degradation and stabilization of ice wedges: implications for assessing risk of thermokarst in Northern Alaska. Geomorphology 297:20–42

    Article  Google Scholar 

  • Katamura F, Fukuda M, Bosikov NP, Desyatkin RV, Nakamura T, Moriizumi J (2006) Thermokarst formation and vegetation dynamics inferred from a palynological study in Central Yakutia, Eastern Siberia, Russia. Arct Antarct Alp Res 38(4):561–570

    Article  Google Scholar 

  • Kessler M, Plug LJ, Walter Anthony K (2012) Simulating the decadal-to millennial-scale dynamics of morphology and sequestered carbon mobilization of two thermokarst lakes in NW Alaska. J Geophys Res Biogeo 117(G2):G00M06. https://doi.org/10.1029/2011JG001796

    Article  Google Scholar 

  • Khomutov A, Leibman M (2014) Assessment of landslide hazards in a typical tundra of Central Yamal, Russia. In: Landslides in cold regions in the context of climate change. Springer, Cham, pp 271–290

    Chapter  Google Scholar 

  • Kirpotin SN, Polishchuk Y, Bryksina N (2009) Abrupt changes of thermokarst lakes in Western Siberia: impacts of climatic warming on permafrost melting. Int J Environ Stud 66(4):423–431. https://doi.org/10.1080/00207230902758287

    Article  Google Scholar 

  • Kirpotin S, Polishchuk Y, Bryksina N, Sugaipova A, Kouraev A, Zakharova E, Pokrovsky OS, Shirokova L, Kolmakova M, Manassypov R, Dupre B (2011) West Siberian palsa peatlands: distribution, typology, cyclic development, present day climate-driven changes, seasonal hydrology and impact on CO2 cycle. Int J Environ Stud 68(5):603–623. https://doi.org/10.1080/00207233.2011.593901

    Article  Google Scholar 

  • Kneisel C, Hauck C, Fortier R, Moorman B (2008) Advances in geophysical methods for permafrost investigations. Permafr Periglac Process 19(2):157–178

    Article  Google Scholar 

  • Koch JC, Runkel RL, Striegl R, McKnight DM (2013) Hydrologic controls on the transport and cycling of carbon and nitrogen in a boreal catchment underlain by continuous permafrost. J Geophys Res Biogeo 118(2):698–712

    Article  Google Scholar 

  • Kokelj S, Burn C (2004) Tilt of spruce trees near ice wedges, Mackenzie Delta, Northwest Territories, Canada. Arct Antarct Alp Res 36(4):615–623

    Article  Google Scholar 

  • Kokelj S, Pisaric MF, Burn C (2007a) Cessation of ice-wedge development during the 20th century in spruce forests of eastern Mackenzie Delta, Northwest Territories, Canada. Can J Earth Sci 44(11):1503–1515

    Article  Google Scholar 

  • Kokelj S, Burn C, Tarnocai C (2007b) The structure and dynamics of earth hummocks in the subarctic forest near Inuvik, Northwest Territories, Canada. Arct Antarct Alp Res 39(1):99–109

    Article  Google Scholar 

  • Kokelj SV, Lantz TC, Kanigan J, Smith S, Coutts R (2009) Origin and polycyclic behaviour of tundra thaw slumps, Mackenzie Delta region, Northwest Territories, Canada. Permafr Periglac Process 20(2):173–184

    Article  Google Scholar 

  • Konishchev V, Rogov V (1993) Investigations of cryogenic weathering in Europe and Northern Asia. Permafr Periglac Process 4(1):49–64

    Article  Google Scholar 

  • Kravtsova V, Bystrova A (2009) Changes in thermokarst lake sizes in different regions of Russia for the last 30 years (Изменение размеров термокарстовых озер в различных районах россии за последние 30 лет). Kriosfera Zemli (Earth Cryosphere) 13:16–26

    Google Scholar 

  • Kuhry P (2008) Palsa and peat plateau development in the Hudson Bay Lowlands, Canada: timing, pathways and causes. Boreas 37(2):316–327

    Article  Google Scholar 

  • Kurylyk BL, Watanabe K (2013) The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils. Adv Water Resour 60:160–177

    Article  Google Scholar 

  • Labrecque S, Lacelle D, Duguay CR, Lauriol B, Hawkings J (2009) Contemporary (1951-2001) evolution of lakes in the old Crow Basin, Northern Yukon, Canada: remote sensing, numerical modeling, and stable isotope analysis. Arctic:225–238

    Google Scholar 

  • Lacelle D, Bjornson J, Lauriol B (2010) Climatic and geomorphic factors affecting contemporary (1950–2004) activity of retrogressive thaw slumps on the Aklavik Plateau, Richardson Mountains, NWT, Canada. Permafr Periglac Process 21(1):1–15

    Article  Google Scholar 

  • Lachenbruch AH (1962) Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost, vol 70. Special GSA Papers. Geological Society of America, 65 p

    Google Scholar 

  • Langer M, Westermann S, Walter Anthony K, Wischnewski K, Boike J (2015) Frozen ponds: production and storage of methane during the Arctic winter in a lowland tundra landscape in northern Siberia, Lena River delta. Biogeosciences 12(4):977–990. https://doi.org/10.5194/bg-12-977-2015

    Article  Google Scholar 

  • Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol 296(1–4):1–22

    Article  Google Scholar 

  • Leibman M, Kizakov A, Sulerzhitsky L, Zaretskaia N (2003) Dynamics of landslide slopes and their development on Yamal peninsula. In: Permafrost. Proceedings of the 8th international conference on permafrost. Swets and Zeitlinger, Lisse, pp 651–656

    Google Scholar 

  • Leibman M, Khomutov A, Kizyakov A (2014) Cryogenic landslides in the West-Siberian plain of Russia: classification, mechanisms, and landforms. In: Landslides in cold regions in the context of climate change. Springer, Cham, pp 143–162

    Chapter  Google Scholar 

  • Lewkowicz AG (2007) Dynamics of active-layer detachment failures, Fosheim peninsula, Ellesmere Island, Nunavut, Canada. Permafr Periglac Process 18(1):89–103

    Article  Google Scholar 

  • Lewkowicz AG, Harris C (2005) Frequency and magnitude of active-layer detachment failures in discontinuous and continuous permafrost, northern Canada. Permafr Periglac Process 16(1):115–130

    Article  Google Scholar 

  • Lewkowicz AG, Way RG (2019) Extremes of summer climate trigger thousands of thermokarst landslides in a high Arctic environment. Nat Commun 10(1):1329. https://doi.org/10.1038/s41467-019-09314-7

    Article  Google Scholar 

  • Lewkowicz AG, Etzelmüller B, Smith SL (2011) Characteristics of discontinuous permafrost based on ground temperature measurements and electrical resistivity tomography, southern Yukon, Canada. Permafr Periglac Process 22(4):320–342

    Article  Google Scholar 

  • Liljedahl AK, Boike J, Daanen RP, Fedorov AN, Frost GV, Grosse G, Hinzman LD, Iijma Y, Jorgenson JC, Matveyeva N, Necsoiu M, Raynolds MK, Romanovsky VE, Schulla J, Tape KD, Walker DA, Wilson CJ, Yabuki H, Zona D (2016) Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat Geosci 9(4):312–318. https://doi.org/10.1038/ngeo2674

    Article  Google Scholar 

  • Ling F, Zhang T (2003) Numerical simulation of permafrost thermal regime and talik development under shallow thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res 108(D16):4511. https://doi.org/10.1029/2002JD003014

    Article  Google Scholar 

  • Ling F, Zhang T (2004) Modeling study of talik freeze-up and permafrost response under drained thaw lakes on the Alaskan Arctic Coastal Plain. J Geophys Res Atmos 109. (D1:D01111. https://doi.org/10.1029/2003JD003886

    Article  Google Scholar 

  • Luoto M, Heikkinen RK, Carter TR (2004) Loss of palsa mires in Europe and biological consequences. Environ Conserv 31(1):30–37

    Article  Google Scholar 

  • Lupachev A, Gubin S (2012) Suprapermafrost organic-accumulative horizons in the tundra cryozems of northern Yakutia. Eurasian Soil Sci 45(1):45–55

    Article  Google Scholar 

  • Mackay JR (1971) The origin of massive icy beds in permafrost, western Arctic coast, Canada. Can J Earth Sci 8(4):397–422

    Article  Google Scholar 

  • Mackay JR (1972) The world of underground ice. Ann Assoc Am Geogr 62(1):1–22

    Article  Google Scholar 

  • Mackay JR (1980a) The origin of hummocks, western Arctic coast, Canada. Can J Earth Sci 17(8):996–1006

    Article  Google Scholar 

  • Mackay JR (1980b) Deformation of ice-wedge polygons, Garry Island, Northwest Territories. Curr Res, Part A Geol Surv Canada, Paper:287–291

    Google Scholar 

  • Mackay JR (1983) Downward water movement into frozen ground, western arctic coast, Canada. Can J Earth Sci 20(1):120–134

    Article  Google Scholar 

  • Mackay J (1988) Catastrophic lake drainage, Tuktoyaktuk peninsula area, district of Mackenzie. Curr Res Part D Geol Surv Canada, Paper:83–90

    Google Scholar 

  • Mackay JR (1989) Ice-wedge cracks, Western Arctic coast. The Canadian Geographer/Le Géographe canadien 33(4):365–368

    Article  Google Scholar 

  • Mackay JR (1990) Some observations on the growth and deformation of epigenetic, syngenetic and anti-syngenetic ice wedges. Permafr Periglac Process 1(1):15–29

    Article  Google Scholar 

  • Mackay JR (1992a) The frequency of ice-wedge cracking (1967–1987) at Garry Island, western Arctic coast, Canada. Can J Earth Sci 29(2):236–248

    Article  Google Scholar 

  • Mackay JR (1992b) Lake stability in an ice-rich permafrost environment: examples from the western Arctic coast. In: Aquatic ecosystems in semi-arid regions: implications for resource management. NHRI Symposium Series. pp 1–26

    Google Scholar 

  • Mackay JR (1993) Air temperature, snow cover, creep of frozen ground, and the time of ice-wedge cracking, western Arctic coast. Can J Earth Sci 30(8):1720–1729

    Article  Google Scholar 

  • Mackay JR (1997) A full-scale field experiment (1978–1995) on the growth of permafrost by means of lake drainage, western Arctic coast: a discussion of the method and some results. Can J Earth Sci 34(1):17–33

    Article  Google Scholar 

  • Mackay JR (1998) Pingo growth and collapse, Tuktoyaktuk Peninsula area, western Arctic coast, Canada: a long-term field study. Géog Phys Quatern 52(3):271–323

    Google Scholar 

  • Mackay JR (1999) Cold-climate shattering (1974 to 1993) of 200 glacial erratics on the exposed bottom of a recently drained arctic lake, Western Arctic coast, Canada. Permafr Periglac Process 10(2):125–136

    Article  Google Scholar 

  • Mackay JR (2000) Thermally induced movements in ice-wedge polygons, western Arctic coast: a long-term study. Géog Phys Quatern 54(1):41–68

    Google Scholar 

  • Mackay JR, Burn C (2002) The first 20 years (1978-1979 to 1998–1999) of ice-wedge growth at the Illisarvik experimental drained lake site, western Arctic coast, Canada. Can J Earth Sci 39(1):95–111

    Article  Google Scholar 

  • Marsh P, Neumann NN (2001) Processes controlling the rapid drainage of two ice-rich permafrost-dammed lakes in NW Canada. Hydrol Process 15(18):3433–3446

    Article  Google Scholar 

  • Marsh P, Woo M (1993) Infiltration of meltwater into frozen soils in a continuous permafrost environment. In: Proceedings of the sixth international conference on permafrost. South China University of Technology Press, Beijing, pp 443–448

    Google Scholar 

  • Marsh P, Russell M, Pohl S, Haywood H, Onclin C (2009) Changes in thaw lake drainage in the Western Canadian Arctic from 1950 to 2000. Hydrol Process Int J 23(1):145–158

    Article  Google Scholar 

  • Matsuoka N (2001) Solifluction rates, processes and landforms: a global review. Earth Sci Rev 55(1–2):107–134

    Article  Google Scholar 

  • Matsuoka N, Murton J (2008) Frost weathering: recent advances and future directions. Permafr Periglac Process 19(2):195–210

    Article  Google Scholar 

  • Matsuoka N, Christiansen HH, Watanabe T (2018) Ice-wedge polygon dynamics in Svalbard: lessons from a decade of automated multi-sensor monitoring. Permafr Periglac Process 29(3):210–227

    Article  Google Scholar 

  • Minke M, Donner N, Karpov N, de Klerk P, Joosten H (2009) Patterns in vegetation composition, surface height and thaw depth in polygon mires in the Yakutian Arctic (NE Siberia): a microtopographical characterisation of the active layer. Permafr Periglac Process 20(4):357–368

    Article  Google Scholar 

  • Minsley BJ, Abraham JD, Smith BD, Cannia JC, Voss CI, Jorgenson MT, Walvoord MA, Wylie BK, Anderson L, Ball LB (2012) Airborne electromagnetic imaging of discontinuous permafrost. Geophys Res Lett 39(2):L02503. https://doi.org/10.1029/2011GL050079

    Article  Google Scholar 

  • Morgenstern A, Grosse G, Schirrmeister L (2008) Genetic, morphological, and statistical characterization of lakes in the permafrost-dominated Lena Delta. In: Proceedings, ninth international conference on permafrost, 2008. pp 1239–1244

    Google Scholar 

  • Morgenstern A, Grosse G, Günther F, Fedorova I, Schirrmeister L (2011) Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. Cryosphere 5(4):849–867. https://doi.org/10.5194/tc-5-849-2011

    Article  Google Scholar 

  • Morgenstern A, Ulrich M, Günther F, Roessler S, Fedorova IV, Rudaya NA, Wetterich S, Boike J, Schirrmeister L (2013) Evolution of thermokarst in East Siberian ice-rich permafrost: a case study. Geomorphology 201:363–379. https://doi.org/10.1016/j.geomorph.2013.07.011

    Article  Google Scholar 

  • Murton JB (1996) Thermokarst-lake-basin sediments, Tuktoyaktuk Coastlands, western arctic Canada. Sedimentology 43(4):737–760

    Article  Google Scholar 

  • Murton JB (2001) Thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, western Arctic Canada. Glob Planet Chang 28(1–4):175–192

    Article  Google Scholar 

  • Murton JB, French HM (1994) Cryostructures in permafrost, Tuktoyaktuk coastlands, western arctic Canada. Can J Earth Sci 31(4):737–747

    Article  Google Scholar 

  • Murton JB, Lautridou JP (2003) Recent advances in the understanding of quaternary periglacial features of the English Channel coastlands. J Quat Sci 18(3–4):301–307

    Article  Google Scholar 

  • Murton JB, Peterson R, Ozouf J-C (2006) Bedrock fracture by ice segregation in cold regions. Science 314(5802):1127–1129

    Article  Google Scholar 

  • Murton JB, Goslar T, Edwards ME, Bateman MD, Danilov PP, Savvinov GN, Gubin SV, Ghaleb B, Haile J, Kanevskiy M (2015) Palaeoenvironmental interpretation of Yedoma silt (ice complex) deposition as cold-climate loess, Duvanny Yar, Northeast Siberia. Permafr Periglac Process 26(3):208–288

    Article  Google Scholar 

  • Murton JB, Edwards ME, Lozhkin AV, Anderson PM, Savvinov GN, Bakulina N, Bondarenko OV, Cherepanova MV, Danilov PP, Boeskorov V (2017) Preliminary paleoenvironmental analysis of permafrost deposits at Batagaika megaslump, Yana Uplands, northeast Siberia. Quat Res 87(2):314–330

    Article  Google Scholar 

  • Olenchenko V, Sinitsky A, Antonov E, Eltsov I, Kushnarenko O, Plotnikov A, Potapov V, Epov M (2015) Results of geophysical surveys of the area of “Yamal Crater”, the new geological structure. Methods 19(4):84–95

    Google Scholar 

  • Palmtag J, Hugelius G, Lashchinskiy N, Tamstorf MP, Richter A, Elberling B, Kuhry P (2015) Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct Antarct Alp Res 47(1):71–88

    Article  Google Scholar 

  • Peppin SS, Style RW (2013) The physics of frost heave and ice-lens growth. Vadose Zone J 12(1)

    Article  Google Scholar 

  • Peterson R, Krantz W (2008) Differential frost heave model for patterned ground formation: corroboration with observations along a North American arctic transect. J Geophys Res Biogeo 113(G3):G03S04. https://doi.org/10.1029/2007JG000559

    Article  Google Scholar 

  • Peterson R, Walker D, Romanovsky V, Knudson J, Raynolds M, Krantz W (2003) A differential frost heave model: cryoturbation-vegetation interactions. In: Proceedings of the eighth international conference on permafrost, 2003. pp 885–890

    Google Scholar 

  • Pissart A (2002) Palsas, lithalsas and remnants of these periglacial mounds. A progress report. Prog Phys Geogr 26(4):605–621

    Article  Google Scholar 

  • Plug LJ, Werner B (2001) Fracture networks in frozen ground. J Geophys Res Solid Earth 106(B5):8599–8613

    Article  Google Scholar 

  • Plug LJ, Werner B (2002) Nonlinear dynamics of ice-wedge networks and resulting sensitivity to severe cooling events. Nature 417(6892):929

    Article  Google Scholar 

  • Plug LW, West JJ (2009) Thaw lake expansion in a two-dimensional coupled model of heat transfer, thaw subsidence, and mass movement. J Geophys Res Earth 114(F1):F01002. https://doi.org/10.1029/2006JF000740

    Article  Google Scholar 

  • Plug LJ, Walls C, Scott B (2008) Tundra lake changes from 1978 to 2001 on the Tuktoyaktuk Peninsula, western Canadian Arctic. Geophys Res Lett 35(3):L03502. https://doi.org/10.1029/2007GL032303

    Article  Google Scholar 

  • Pollard W, French H (1980) A first approximation of the volume of ground ice, Richards Island, Pleistocene Mackenzie Delta, Northwest Territories, Canada. Can Geotech J 17(4):509–516

    Article  Google Scholar 

  • Rempel A (2007) Formation of ice lenses and frost heave. J Geophys Res Earth 112(F2):F02S21. https://doi.org/10.1029/2006JF000525

    Article  Google Scholar 

  • Reynolds JM (1997) An introduction to applied environmental geophysics. Wiley, Hoboken, p 796

    Google Scholar 

  • Romanovskii N (1985) Distribution of recently active ice and soil wedges in the USSR. Field and Theory: Lectures in Geocryology, pp 154–165

    Google Scholar 

  • Romanovskii N, Hubberten HW, Gavrilov A, Tumskoy V, Tipenko G, Grigoriev M, Siegert C (2000) Thermokarst and land–ocean interactions, Laptev Sea region, Russia. Permafr Periglac Process 11(2):137–152

    Article  Google Scholar 

  • Romanovsky V, Osterkamp T (2000) Effects of unfrozen water on heat and mass transport processes in the active layer and permafrost. Permafr Periglac Process 11(3):219–239

    Article  Google Scholar 

  • Romanovsky V, Marchenko S, Daanen R, Sergeev D, Walker D (2008) Soil climate and frost heave along the permafrost/ecological North American Arctic transect. In: Proceedings of the ninth international conference on permafrost. Institute of Northern Engineering, Fairbanks, pp 1519–1524

    Google Scholar 

  • Roulet NT, Woo M-K (1988) Runoff generation in a low arctic drainage basin. J Hydrol 101(1–4):213–226

    Article  Google Scholar 

  • Sannel A, Kuhry P (2011) Warming-induced destabilization of peat plateau/thermokarst lake complexes. J Geophys Res Biogeo 116(G3):G03035. https://doi.org/10.1029/2010JG001635

    Article  Google Scholar 

  • Schirrmeister L, Kunitsky V, Grosse G, Wetterich S, Meyer H, Schwamborn G, Babiy O, Derevyagin A, Siegert C (2011) Sedimentary characteristics and origin of the late Pleistocene ice complex on north-east Siberian Arctic coastal lowlands and islands – a review. Quat Int 241(1–2):3–25. https://doi.org/10.1016/j.quaint.2010.04.004

    Article  Google Scholar 

  • Schirrmeister L, Bobrov A, Raschke E, Herzschuh U, Strauss J, Pestryakova LA, Wetterich S (2018) Late Holocene ice-wedge polygon dynamics in northeastern Siberian coastal lowlands. Arct Antarct Alp Res 50(1):e1462595. https://doi.org/10.1080/15230430.2018.1462595

    Article  Google Scholar 

  • Schunke E, Zoltai SC (1988) Earth hummocks (thufur). In: Clark M (ed) Advances in Periglacial geomorphology. Wiley, Chichester, pp 231–245

    Google Scholar 

  • Schwamborn G, Dix J, Bull J, Rachold V (2002) High-resolution seismic and ground penetrating radar–geophysical profiling of a thermokarst lake in the western Lena Delta, Northern Siberia. Permafr Periglac Process 13(4):259–269

    Article  Google Scholar 

  • Schwamborn G, Schirrmeister L, Frütsch F, Diekmann B (2012) Quartz weathering in freeze–thaw cycles: experiment and application to the El’Gygytgyn crater lake record for tracing Siberian permafrost history. Geogr Ann Ser B 94(4):481–499

    Article  Google Scholar 

  • Seppälä M (2011) Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quat Res 75(2):366–370

    Article  Google Scholar 

  • Seppälä M, Kujala K (2009) The role of buoyancy in palsa formation. Geol Soc Lond, Spec Publ 320(1):51–56

    Article  Google Scholar 

  • Shiklomanov A, Lammers R (2009) Record Russian river discharge in 2007 and the limits of analysis. Environ Res Lett 4(4):045015

    Article  Google Scholar 

  • Shilo N, Lozhkin A, Anderson P (2007) Radiocarbon dates of evolution cycles of thermokarst lakes on the Kolyma lowland. In: Doklady earth sciences, vol 1. Springer, New York, pp 259–261

    Google Scholar 

  • Shur Y, Hinkel KM, Nelson FE (2005) The transient layer: implications for geocryology and climate-change science. Permafr Periglac Process 16(1):5–17

    Article  Google Scholar 

  • Sjöberg Y, Hugelius G, Kuhry P (2013) Thermokarst lake morphometry and erosion features in two peat plateau areas of northeast European Russia. Permafr Periglac Process 24(1):75–81

    Article  Google Scholar 

  • Smith LC, Sheng Y, MacDonald G, Hinzman L (2005) Disappearing arctic lakes. Science 308(5727):1429–1429

    Article  Google Scholar 

  • Teltewskoi A, Beermann F, Beil I, Bobrov A, De Klerk P, Lorenz S, Lüder A, Michaelis D, Joosten H (2016) 4000 years of changing wetness in a permafrost polygon Peatland (Kytalyk, NE Siberia): a comparative high-resolution multi-proxy study. Permafr Periglac Process 27(1):76–95

    Article  Google Scholar 

  • Thorn CE, Darmody RG, Dixon JC, Schlyter P (2001) The chemical weathering regime of Kärkevagge, arctic–alpine Sweden. Geomorphology 41(1):37–52

    Article  Google Scholar 

  • Thorn CE, Dixon JC, Darmody RG, Allen CE (2006) Ten years (1994–2004) of ‘potential’weathering in Kärkevagge, Swedish Lapland. Earth Surf Process Landf 31(8):992–1002

    Article  Google Scholar 

  • Thorn CE, Darmody RG, Campbell SW, Allen CE, Dixon JC (2007) Microvariability in the early stages of cobble weathering by microenvironment on a glacier foreland, Storbreen, Jotunheimen, Norway. Earth Surf Process Landf 32(14):2199–2211

    Article  Google Scholar 

  • Van der Molen M, Van Huissteden J, Parmentier F, Petrescu A, Dolman A, Maximov T, Kononov A, Karsanaev S, Suzdalov D (2007) The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. Biogeosciences 4(6):985–1003. https://doi.org/10.5194/bg-4-985-2007

    Article  Google Scholar 

  • Van Everdingen R (1990) Ground-water hydrology. In: Prowse TD OC (ed) Northern hydrology: Canadian perspectives, vol 1. NHRI Science Report. National Hydrology Research Institute, Environment Canada, pp 77–101

    Google Scholar 

  • Van Huissteden J (1990) Tundra rivers of the last glacial: sedimentation and geomorphological processes during the Middle Pleniglacial in Twente, Eastern Netherlands. In: Van Amerom H (ed) Mededelingen Rijks Geologische Dienst, vol 44–3. Rijks Geologische Dienst, 1–136

    Google Scholar 

  • Van Huissteden J, Dolman AJ (2012) Soil carbon in the Arctic and the permafrost carbon feedback. Curr Opin Environ Sustain 4(5):545–551. https://doi.org/10.1016/j.cosust.2012.09.008

    Article  Google Scholar 

  • Van Huissteden J, Berrittella C, Parmentier F, Mi Y, Maximov T, Dolman A (2011) Methane emissions from permafrost thaw lakes limited by lake drainage. Nat Clim Chang 1(2):119–123

    Article  Google Scholar 

  • Van Huissteden J, Vandenberghe J, Gibbard PL, Lewin J (2013) Permafrost and Periglacial features | Periglacial fluvial sediments and forms. In: Elias SA (ed) Encyclopedia of the quaternary, vol 3. Elsevier, Amsterdam, pp 490–499. https://doi.org/10.1016/b978-0-444-53643-3.00108-4

    Chapter  Google Scholar 

  • Van Vliet-Lanoë B (1985) Frost effects in soils. Soils and Quaternary Landscape Evolution:117–158

    Google Scholar 

  • Van Vliet-Lanoe B, Fox CA, Gubin SV (2004) Micromorphology of cryosols. In: Cryosols. Springer, New York, pp 365–390

    Chapter  Google Scholar 

  • Vandenberghe J (1988) Cryoturbations. In: Clark M (ed) Advances in Periglacial geomorphology. Wiley, New York, pp 179–198

    Google Scholar 

  • Vandenberghe J (2013) Cryoturbation structures. Encyclopedia of quaternary science, vol 3, 2nd edn. Elsevier, Amsterdam, pp 430–435

    Book  Google Scholar 

  • Vandenberghe J, Wang X, Vandenberghe D (2016) Very large cryoturbation structures of last permafrost maximum age at the foot of the Qilian Mountains (NE Tibet Plateau, China). Permafr Periglac Process 27(1):138–143

    Article  Google Scholar 

  • Vitt DH (2006) Functional characteristics and indicators of boreal peatlands. In: Wieder R, Vitt DH (eds) Boreal peatland ecosystems. Springer, pp 9–24

    Google Scholar 

  • Vonk JE, Gustafsson Ö (2013) Permafrost-carbon complexities. Nat Geosci 6(9):675

    Article  Google Scholar 

  • Walder J, Hallet B (1985) A theoretical model of the fracture of rock during freezing. Geol Soc Am Bull 96(3):336–346

    Article  Google Scholar 

  • Walker DA, Epstein HE, Gould WA, Kelley AM, Kade AN, Knudson JA, Krantz WB, Michaelson G, Peterson RA, Ping CL (2004) Frost-boil ecosystems: complex interactions between landforms, soils, vegetation and climate. Permafr Periglac Process 15(2):171–188

    Article  Google Scholar 

  • Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS 3rd (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443(7107):71–75. https://doi.org/10.1038/nature05040

    Article  Google Scholar 

  • Walter K, Edwards M, Grosse G, Zimov S, Chapin F (2007) Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318(5850):633–636

    Article  Google Scholar 

  • Walvoord MA, Kurylyk BL (2016) Hydrologic impacts of thawing permafrost—a review. Vadose Zone J 15(6):0. https://doi.org/10.2136/vzj2016.01.0010

    Article  Google Scholar 

  • Washburn AL (1956) Classification of patterned ground and review of suggested origins. Geol Soc Am Bull 67(7):823–866

    Article  Google Scholar 

  • Washburn AL (1980) Geocryology: a survey of periglacial processes and environments. Wiley, New York

    Google Scholar 

  • Weiss N, Blok D, Elberling B, Hugelius G, Jørgensen CJ, Siewert MB, Kuhry P (2016) Thermokarst dynamics and soil organic matter characteristics controlling initial carbon release from permafrost soils in the Siberian Yedoma region. Sediment Geol 340:38–48. https://doi.org/10.1016/j.sedgeo.2015.12.004

    Article  Google Scholar 

  • West J, Plug LJ (2008) Time-dependent morphology of thaw lakes and taliks in deep and shallow ground ice. J Geophys Res Earth 113(F1):F01009. https://doi.org/10.1029/2006JF000696

    Article  Google Scholar 

  • Williams PJ, Smith MW (1991) The frozen earth. Fundamentals of geocryology. Cambridge University Press, Cambridge. 306 p

    Google Scholar 

  • Wolter J, Lantuit H, Wetterich S, Rethemeyer J, Fritz M (2018) Climatic, geomorphologic and hydrologic perturbations as drivers for mid-to late Holocene development of ice-wedge polygons in the western Canadian Arctic. Permafr Periglac Process:1–18. https://doi.org/10.1002/ppp.1977

    Article  Google Scholar 

  • Woo M-k (1990) Consequences of climatic change for hydrology in permafrost zones. J Cold Reg Eng 4(1):15–20

    Article  Google Scholar 

  • Woo M-k (2012) Permafrost hydrology. Springer, Berlin, p 563

    Book  Google Scholar 

  • Woo MK, Guan XJ (2006) Hydrological connectivity and seasonal storage change of tundra ponds in a polar oasis environment, Canadian High Arctic. Permafr Periglac Process 17(4):309–323

    Article  Google Scholar 

  • Wright N, Hayashi M, Quinton WL (2009) Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour Res 45(5)

    Google Scholar 

  • Yoshikawa K, Harada K (1995) Observations on nearshore pingo growth, Adventdalen, Spitsbergen. Permafr Periglac Process 6(4):361–372

    Article  Google Scholar 

  • Yoshikawa K, Hinzman LD (2003) Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near council, Alaska. Permafr Periglac Process 14(2):151–160

    Article  Google Scholar 

  • Yoshikawa K, White D, Hinzman L, Goering D, Petrone K, Bolton W, Ishikawa N, Plummer N (2003) Water in permafrost; case study of aufeis and pingo hydrology in discontinuous permafrost. In: Proceedings of the international conference on permafrost. Zurich

    Google Scholar 

  • Yoshikawa K, Leuschen C, Ikeda A, Harada K, Gogineni P, Hoekstra P, Hinzman L, Sawada Y, Matsuoka N (2006) Comparison of geophysical investigations for detection of massive ground ice (pingo ice). J Geophys Res Planets 111(E6):E06S19. https://doi.org/10.1029/2005JE002573

    Article  Google Scholar 

  • Zhang T, Barry R, Knowles K, Heginbottom J, Brown J (2008) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 31(1–2):47–68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Huissteden, J. (2020). The Role of Ground Ice. In: Thawing Permafrost. Springer, Cham. https://doi.org/10.1007/978-3-030-31379-1_3

Download citation

Publish with us

Policies and ethics