Skip to main content

Biodiversity of Nicotiana (Solanaceae)

  • Chapter
  • First Online:
The Tobacco Plant Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

This brief synopsis outlines current knowledge of the biodiversity of the genus Nicotiana L., the fifth largest genus in the family Solanaceae. Of the 82 species of Nicotiana currently recognized, most are from the New World (North, Central, and South America), but a significant radiation has occurred in arid-zone Australia (ca. 35 species). The genus is divided into 13 sections, the largest of which is section Suaveolentes, which comprises species from Africa, Australia, and the Pacific. The last complete monograph of the genus Nicotiana was published in the 1950s, but considerable work in the field has identified new species, particularly in Australia. The biology and phenotype of species of Nicotiana are reviewed, as are phylogeny and biogeography. Advances in knowledge of species-level diversity in Nicotiana are summarized and some personal priorities for future research in Nicotiana biodiversity are suggested. A table of all 82 Nicotiana species with distribution, chromosome number, and reference to a botanical description is provided, along with photographs of representative habits and flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adam N, Kellenbach M, Meldau S, Veit D, van Dam NM, Baldwin IT, Schuman MC (2018) Functional variation in a key defense gene structures herbivore communities and alters plant performance. PLoS ONE 13(6):e0197221. https://doi.org/10.1371/journal.pone.0197221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aigner PA, Scott PF (2002) Use and pollination of a hawkmoth plant, Nicotiana attenuata, by migrant hummingbirds. Southwestern Nat 47:1–11

    Google Scholar 

  • Anssour S, Krügel T, Sharbel TF, Slauz HP, Bonaventure G, Baldwin IT (2009) Phenotypic, genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia. Ann Bot 103:1207–1217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aoki S, Ito M (2000) Molecular phylogeny of Nicotiana (Solanaceae) based on nucleotide sequence of the matK gene. Plant Biol 2:316–324

    CAS  Google Scholar 

  • Baldwin IT (2001) An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiol 127:1449–1458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin IT, Pandey S, Gase K, Navarro A (2019) Nicotiana attenuata, an ecological model. In: Ivanov NV et al (eds), The tobacco genome. Compendium of Plant Genomes, vol 20. Springer, Berlin, pp 30

    Google Scholar 

  • Bombarely A, Rosli AG, Vrebelov J, Moffett P, Mueller LA, Martin GB (2012) Draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Microbe Interact 25:1523–1530

    CAS  PubMed  Google Scholar 

  • Burbidge NT (1960) The phytogeogeography of the Australian region. Aust J Bot 8:75–209

    Google Scholar 

  • Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Proch N, Wyrwoll K-H (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol 17:4398–4417

    CAS  PubMed  Google Scholar 

  • Chase MW, Christenhusz MJM (2018a) 883. Nicotiana karijini. Curtis’ Bot Mag 35:228–236

    Google Scholar 

  • Chase MW, Christenhusz MJM (2018b) 885. Nicotiana gascoynica. Curtis’ Bot Mag 35:245–252

    Google Scholar 

  • Chase MW, Christenhusz MJM (2018c) 887. Nicotiana excelsior. Curtis’ Bot Mag 35:261–268

    Google Scholar 

  • Chase MW, Christenhusz MJM (2018d) 888. Nicotiana gossei. Curtis’ Bot Mag 35:269–277

    Google Scholar 

  • Chase MW, Christenhusz MJM (2018e) 889. Nicotiana umbratica. Curtis’ Bot Mag 35:278–294

    Google Scholar 

  • Chase MW, Christenhusz MJM (2018f) 890. Nicotiana benthamiana. Curtis’ Bot Mag 35:286–285

    Google Scholar 

  • Chase MW, Christenhusz MJM (2018g) 891. Nicotiana occidentalis subsp. obliqua. Curtis’ Bot Mag 35:295–303

    Google Scholar 

  • Chase MW, Christenhusz MJM (2018h) 894. Nicotiana stenocarpa. Curtis’ Bot Mag 35:319–327

    Google Scholar 

  • Chase MW, Knapp S, Cox AV, Clarkson J, Butsko Y, Joseph J, Savolainen V, Parokonny AS (2003) Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). Annals of Botany 92: 107–127.

    Google Scholar 

  • Chase MW, Christenhusz MJM, Conran JG, Dodsworth S, Medeiros Nollet, de Assis F, Felix LP, Fay MF (2018a) Unexpected diversity of Australian tobacco species (Nicotiana section Suaveolentes, Solanaceae). Curtis’ Bot Mag 35:212–227

    Google Scholar 

  • Chase MW, Conran JG, Christenhusz MJM (2018b) 884. Nicotiana yandinga. Curtis’ Bot Mag 35:237–244

    Google Scholar 

  • Chase MW, Conran JG, Christenhusz MJM (2018c) 886. Nicotiana faucicola. Curtis’ Bot Mag 35:253–260

    Google Scholar 

  • Chase MW, Conran JG, Christenhusz MJM (2018d) 892. Nicotiana burbidgeae. Curtis’ Bot Mag 35:304–311

    Google Scholar 

  • Chase MW, Conran JG, Christenhusz MJM (2018e) 893. Nicotiana maritima. Curtis’ Bot Mag 35:312–318

    Google Scholar 

  • Clarkson JR, Symon DE (1991) Nicotiana wuttkei (Solanaceae), a new species from north-eastern Queensland with an unusual chromosome number. Austrobaileya 3:389–392

    Google Scholar 

  • Clarkson JJ, Knapp S, Garcia VF, Olmstead RG, Leitch AR, Chase MW (2004) Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Mol Phylogenet Evol 33:75–90

    CAS  PubMed  Google Scholar 

  • Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, Leitch AR (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252

    CAS  PubMed  Google Scholar 

  • Clarkson JJ, Kelly LJ, Leitch AR, Knapp S, Chase MW (2009) Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid(diploid) hybrids. Mol Phylogenet Evol 55:99–112

    PubMed  Google Scholar 

  • Clarkson JJ, Dodsworth S, Chase MW (2017) Time-calibrated phylogenetic trees establish a lag between polyploidisation and diversification in Nicotiana (Solanaceae). Plant Syst Evol 303:1001–1012

    Google Scholar 

  • Cocucci AA (2013) Nicotiana. In: Anton AM, Zuloaga FO (eds), Barboza GE (coord.) Flora Argentina, Solanaceae, vol 13. IOBDA- IMBIV, CONICET: Buenos Aires & Córdoba, Argentina, pp 75–89

    Google Scholar 

  • Crisp MD, West JG, Weston PH (1999) Biogeography of the terrestrial flora. In: Orchard AE, Thompson HS (eds) Introduction, Flora of Australia, edn 2, vol 1. ABRS/CSIRO, Melbourne, pp 321–368

    Google Scholar 

  • Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP (2009) Phylogenetic biome conservatism on a global scale. Nature 458:754–756

    CAS  PubMed  Google Scholar 

  • D’Arcy WG (1977) [1976]) New names and taxa in the Solanaceae. Ann Mo Bot Gard 63:363–369

    Google Scholar 

  • Deanna R, Larter MD, Barboza GE, Smith SD (2019) Repeated evolution of a morphological novelty: a phylogenetic analysis of the inflated fruiting calyx in the Physalideae tribe (Solanaceae). Am J Bot 106(2):270–279

    PubMed  Google Scholar 

  • Dempewolf H, Eastwood RJ, Guarino L, Khoury CK, Müller JV, Toll J (2014) Adapting agriculture to climate change: a global initiative to collect, conserve, and use crop wild relatives. Agroecol Sustain Food Syst 38:369–377

    Google Scholar 

  • Diezel C, Kessler D, Baldwin IT (2011) Pithy protection: Nicotiana attenuata’s jasmonic acid-mediated defenses are required to resist stem-boring weevil larvae. Plant Physiol 155:1936–1946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodsworth S (2015) Genome skimming for phylogenomics. PhD thesis, Queen Mary University of London, London

    Google Scholar 

  • Dodsworth S, Chase MW, Leitch AR (2016) Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot J Linn Soc 180:1–5

    Google Scholar 

  • Dodsworth S, Jang T-S, Chase Struebig M, Weiss-Scheeweiss MW, Leitch AR (2017) Genome wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae). Plant Syst Evol 303:1013–1020. https://doi.org/10.1007/s00606-016-1356-9

    Article  PubMed  Google Scholar 

  • Echeverría-Londoño S, Särkinen T, Fenton IS, Knapp S, Purvis A (2018) Dynamism and context dependence in the diversification of the megadiverse genus Solanum L. (Solanaceae). https://www.biorxiv.org/content/early/2018/11/02/348961. Posted 2 Nov 2018

  • Edwards KD, Fernandez-Pozo N, Drake-Stowe K, Humphry M, Evans AD, Bombarely A, Allen F, Hurst R, White B, Kernodle SP, Bromley JR, Sanchez-Tamburrino JP, Lewis RS, Mueller LA (2017) A reference genome for Nicotiana tabacum enables map-based cloning of homeologus loci implicated in nitrogen utilization efficiency. BMC Genom 18:448. https://doi.org/10.1186/s12684-017-3791-6

    Article  CAS  Google Scholar 

  • Edwards RD, Crisp MD, Cook LG (2018) Species limits and cryptic biogeographic structure in a widespread complex of Australian monsoon tropics trees (broad-leaf paperbarks: Melaleuca, Myrtaceae). Aust Syst Bot 31:495–503

    Google Scholar 

  • Fernie A, Usadel B (2020) The Nicotiana glauca genome. In: Ivanov NV et al (eds), The tobacco genome. Compendium of plant genomes, vol 20. Springer, Berlin, p 30

    Google Scholar 

  • Florentine SK, Westbrooke ME (2005) Invasion of the noxious weed Nicotiana glauca R. Graham after an episodic flooding event in the arid zone of Australia. J Arid Environ 60:531–545

    Google Scholar 

  • Funk VA (2018) Collections-based science in the 21st century. J Syst Evol 56:175–193. https://doi.org/10.1111/jse.12315

    Article  Google Scholar 

  • Goodspeed TH (1945) Studies in Nicotiana: III. A taxonomic organization of the genus. Univ Calif Publ Bot 18:335–344

    Google Scholar 

  • Goodspeed TH (1954) The genus Nicotiana. Chron Bot 16:1–536

    Google Scholar 

  • Haverkamp A, Hansson BS, Baldwin IT, Knaden M, Yon F (2018) Floral trait variations among wild tobacco populations influence the foraging behaviour of hawkmoth pollinators. Front Ecol Evol 6:19. https://doi.org/10.3389/fevo.2018.00019

    Article  Google Scholar 

  • Hernández H (1981) Sobre la ecología reproductive de Nicotiana glauca Grah.: una maleza de distribución cosmopolita. Boletin de la Sociedad Botánica de Mexico 41:47–73

    Google Scholar 

  • Huang J, Yu H, Guan X, Wang G, Guo R (2016) Accelerated dryland expansion under climate change. Nat Clim Change 6:166–171

    Google Scholar 

  • Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Zregler E, Lee JS, Baute GJ, Owens GL, Grassa CJ, Ebert DP, Ostevik KL, Moyers BT, Yakimoski S, Masalia RR, Gao L, Ćalić I, Bowers JE, Kane NC, Swanevelder DZH, Muños S, Langlade NB, Burke JM, Rieseberg LH (2019) Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat Plants 5:64–72. https://doi.org/10.1038/s41477-018-0329-0

    Article  CAS  Google Scholar 

  • Hughes CE, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Nat Acad Sci USA 103:10334–10339. https://doi.org/10.1073/pnas.0601928103

    Article  CAS  Google Scholar 

  • Hunziker AT (2001) Genera Solanacearum. ARG Gantner Verlag, Rügen

    Google Scholar 

  • Kaczorowski RL, Gardener MC, Holtsford TP (2005) Nectar traits in Nicotiana sect. Alatae (Solanaceae) in relation to floral traits, pollinators, and mating system. Am J Bot 92:1270–1283

    PubMed  Google Scholar 

  • Kamoun S, van West P, Vleeshouwers VGAA, de Groot KE, Govers F (1998) Resistance of Nicotiana benthamiana to Phytophthora infestans is mediated by the recognition of the elicitor protein INF1. Plant Cell 10:1413–1425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly LJ, Leitch AR, Clarkson JJ, Hunter RB, Knapp S, Chase MW (2010) Intragenic recombination events and evidence for hybrid speciation in Nicotiana (Solanaceae). Mol Biol Evol 27:781–799

    CAS  PubMed  Google Scholar 

  • Kelly LJ, Leitch AR, Clarkson JJ, Knapp S, Chase MW (2013) Reconstructing the complex evolutionary origin of wild allopolyploid tobaccos (Nicotiana section Suaveolentes). Evolution 76:80–94

    Google Scholar 

  • Kenton A, Parokonny AS, Gleba YY, Bennett MD (1993) Characterization of the Nicotiana tabacum L. genome by molecular cytogenetics. Mol Gen Genet 240:159–169

    CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144

    CAS  PubMed  Google Scholar 

  • Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49(5):840–854

    Google Scholar 

  • Kessler D, Gase K, Baldwin IT (2008) Field experiments with transformed plants reveal the sense of floral scents. Science 321:1200–1202

    CAS  PubMed  Google Scholar 

  • Kessler D, Diezel C, Baldwin IT (2010) Changing pollinators as a means of escaping herbivores. Curr Biol 20:237–242

    CAS  PubMed  Google Scholar 

  • Kessler D, Kallenbach M, Diezel C, Rothe E, Mardock M, Baldwin IT (2015) How scent and nectar influence flora antagonists and mutalists. eLife 4:e07641. http://doi.org/10:7554/eLife.07641

  • Knapp S (2012) Solanaceae. In: Acevedo-Rodriguez P, Strong MT (eds) Catalogue of seed plants of the west Indies, vol 98. Smithsonian Contributions to Botany, pp 898–913. https://botany.si.edu/Antilles/WestIndies/

  • Knapp S, Chase MW, Clarkson JJ (2004) Nomenclatural changes and a new sectional classification in Nicotiana (Solanaceae). Taxon 53:73–82

    Google Scholar 

  • Knapp S (in press) Nicotiana. In: Sullivan J (ed) Solanaceae, in Flora of North America vol 14. Missouri Botanical Garden Press, St Louis, p 30

    Google Scholar 

  • Kovarik A, Matyasek R, Lim KY, Skalická K, Koukalová B, Knapp S, Chase M, Leitch AR (2004) Concerted evolution of 18-5.8-26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc 82(4):615–625

    Google Scholar 

  • Ladiges PY, Marks CE, Nelson G (2011) Biogeography of Nicotiana section Suaveolentes (Solanaceae) reveals geographical tracks in arid Australia. J Biogeogr 38:2066–2077

    Google Scholar 

  • Lagomarsino L, Condamine FL, Antonelli A, Mulch A, Davis CC (2016) The abiotic and biotic drivers of rapid diversification in Andean bellflowers. New Phytol 210:1430–1442. https://doi.org/10.1111/nph.13920

    Article  PubMed  PubMed Central  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82(4):651–663

    Google Scholar 

  • Leitch IL, Hanson L, Lim YK, Kovarik A, Clarkson JJ, Chase MW, Leitch AR (2008) The ups and downs of genome size evolution in polyploid species of Nicotiana (Solanaceae). Ann Bot 101:805–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim KY, Matyasek R, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Lin Soc 82:599–606

    Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Knapp S, McCarthy E, Clarkson JJ, Leitch AR (2006) Comparative genomics and repetitive sequence divergence in the species of diploid Nicotiana section Alatae. Plant J 48:907–919

    CAS  PubMed  Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien MA, Leitch AR (2007) Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol 175:756–763

    CAS  PubMed  Google Scholar 

  • Macbride JF (1930) Spermatophytes, mostly Peruvian. 3. Peruvian Solanaceae. Publ Field Mus Nat Hist Bot Ser 8(2):105–112

    Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237

    PubMed  Google Scholar 

  • Marks CE (2010) Definition of South Pacific taxa of Nicotiana section Suaveolentes (Solanaceae). Muelleria 28:74–84

    Google Scholar 

  • Marks CE, Newbigin E, Ladiges PY (2011) Comparative morphology and phylogeny of Nicotiana section Suaveolentes (Solanaceae) in Australia and the South Pacific. Aust Syst Bot 24:61–86

    Google Scholar 

  • McCarthy EW, Arnold SEJ, Chittka L, LeComber SC, Verity R, Dodsworth S, Knapp S, Lj Kelly, Chase MW, Baldwin IT, Kovarik A, Mhiri C, Taylor L, Leitch AR (2015) The effect of polyploidy and hybridization on the evolution of flower colour in Nicotiana (Solanaceae). Ann Bot 115:1117–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy EW, Chase MW, Knapp S, Litt A, Leitch AR, LeComber SC (2016) Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids. Nat Plants 2016:119. https://doi.org/10.1038/nplants.2016.119

    Article  Google Scholar 

  • McCarthy EW, Landis JB, Kurti A, Lawhorn AJ, Chase MW, Knapp S, Le Comber SC, Leitch AR, Litt A (2019) Early consequences of allopolyploidy alter floral evolution in Nicotiana (Solanaceae). BMC Plant Biol

    Google Scholar 

  • McCarthy EW, Landis JB, Kurti A, Lawhorn AJ, Litt A (2020) The Genetic Basis of Flower Color Differences in Nicotiana tabacum. In: N. V. Ivanov et al. (eds) The Tobacco Plant Genome. Springer Nature Switzerland AG, Switzerland, pp 175–192

    Google Scholar 

  • Merxmüller H, Butler KP (1975) Nicotiana in der Afrikanischen Namib—ein Pflanzengeographisches und Phylogenetisches Ratsel. Mitteilungen aus der Botanischen Staatssammlung München 12:91–104

    Google Scholar 

  • Nattero J, Cocucci AA (2007) Geographical variation in floral traits of the tree tobacco in relation to its hummingbird pollinator fauna. Biol J Lin Soc 90:657–667

    Google Scholar 

  • Navarro-Quezada A, Gase K, Singh RK, Pandey SP, Baldwin IT (2020) Nicotiana attenuata Genome Reveals Genes in the Molecular Machinery Behind Remarkable Adaptive Phenotypic Plasticity. In: Ivanov et al. (eds) The Tobacco Plant Genome. Springer Nature, Switzerland, pp 209–227

    Google Scholar 

  • Ohashi Y (1985) Thremmatological studies of wild species related to Nicotiana tabacum, with special reference to disease resistance. Iwata Tabako Shikenjo Hokoku (Bull Iwata Tob Exp Station) 17:1–67

    Google Scholar 

  • Olmstead RG, Palmer JD (1992) A chloroplast DNA phylogeny of the Solanaceae: subfamilial relationships and character evolution. Ann Mo Bot Gard 79:249–265

    Google Scholar 

  • Olmstead RG, Sweere JA (1994) Combining data in phylogenetic systematics: an empirical approach using three molecular data sets in Solanaceae. Syst Biol 43:467–481

    Google Scholar 

  • Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA data. In: Nee M, Symon DE, Lester RN, Jessop JP (eds), Solanaceae IV: advances in biology and utilization. Royal Botanic Gardens, Kew, pp 111–137

    Google Scholar 

  • Olmstead RG, Bohs L, Migid HA, Santiago-Valentín E, Garcia VF, Collier SM (2008) A molecular phylogeny of the Solanaceae. Taxon 57:1159–1181

    Google Scholar 

  • Pease JB, Haak DC, Hahn MW, Moyle LC (2016) Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol 14:e1002379. https://doi.org/10.1371/journal.pbio.1002379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purdie RW, Symon DE, Haegi L (1982) Nicotiana. In: George AS (ed) Flora of Australia, vol 29. Australian Government Publishing Service, Canberra, pp 38–57

    Google Scholar 

  • Raven PH (1963) Amphitropical relationships in the floras of North and South America. Q Rev Biol 38:151–177

    Google Scholar 

  • Rieseberg LH (2006) Hybrid speciation in sunflowers. Ann Mo Bot Gard 93:34–48

    Google Scholar 

  • Särkinen T, Bohs L, Olmstead RG, Knapp S (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evol Biol 13:214

    PubMed  PubMed Central  Google Scholar 

  • Särkinen T, Pennington RT, Lavin M, Simon MC, Hughes CE (2012) Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. J Biogeogr 39:884–900

    Google Scholar 

  • Särkinen T, Poczai P, Barboza GE, van der Weerden GM, Baden M, Knapp S (2018) A revision of the old world black nightshades (Morelloid clade of Solanum L., Solanaceae). PhytoKeys 106:1–223. https://doi.org/10.3897/phytokeys.106.21991

    Article  Google Scholar 

  • Sauer JD (1988) Plant migration: the dynamics of geographic patterning in seed plant species. University of California Press, Los Angeles

    Google Scholar 

  • Schueller SK (2004) Self-pollination in island and mainland populations of the introduced hummingbird-pollinated plant, Nicotiana glauca (Solanaceae). Am J Bot 91:672–681

    PubMed  Google Scholar 

  • Sherwood S, Fu Q (2014) A drier future? Science 343:737–739

    CAS  PubMed  Google Scholar 

  • Sierro N, Battey JND, Ouadi S, Bovet L, Goepfert S, Bakaher N, Peitsch MC, Ivanov NV (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60

    PubMed  PubMed Central  Google Scholar 

  • Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, Willig A, Goepfert S, Peitsch MC, Ivanov NV (2014) The tobacco genome sequence and its comparison to those of tomato and potato. Nat Commun 5:3822

    Google Scholar 

  • Simpson MG, Johnson LA, Villaverde T, Guilliams CM (2017) American amphitropical disjuncts: perspectives from vascular plant analyses and prospects for future research. Am J Bot 104:1600–1650

    Google Scholar 

  • Skalicka K, Lim Y, Matyasek R, Matzka M, Leitch A, Kovarik A (2005) Preferential elimination of repeated DNA sequences from the paternal N. tomentosiformis genome donor of a synthetic allotetraploid tobacco. New Phytol 166:291–303

    CAS  PubMed  Google Scholar 

  • Smith LB, Downs RJ (1964) Notes on the Solanaceae of southern Brazil. Phytologia 10:422–453

    Google Scholar 

  • Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80:283–383

    Google Scholar 

  • Stehmann JR, Semir J, Ippolito A (2002) Nicotiana mutabilis (Solanaceae), a new species from southern Brazil. Kew Bull 57:639–646

    Google Scholar 

  • Symon DE (1984) A new species of Nicotiana (Solanaceae) from Dalhousie Springs (South Australia). J Adelaide Bot Gard 7:117–121

    Google Scholar 

  • Symon DE (1998) A new Nicotiana (Solanaceae) from near Coober Pedy, South Australia. J Adelaide Bot Gard 18:1–4

    Google Scholar 

  • Symon DE (2005) Native tobaccos (Solanaceae: Nicotiana spp.) in Australia and their use by Aboriginal peoples. Beagle 21:1–10

    Google Scholar 

  • Symon DE, Kenneally KF (1994) A new species of Nicotiana (Solanaceae) from near Broome, Western Australia. Nuytsia 9:421–425

    Google Scholar 

  • Symon DE, Lepschi BJ (2007) A new status in Nicotiana (Solanaceae): N. monoschizocarpa (P.Horton) Symon & Lepschi. J Adelaide Bot Gard 21:92

    Google Scholar 

  • Tadmor-Malamed H, Markman S, Arieli A, Distl M, Wink M, Izhaki I (2004) Limited ability of Palestine Sunbirds Nectarinia osea to cope with pyridine alkaloids in nectar of Tree Tobacco Nicotiana glauca. Funct Ecol 18:844–850

    Google Scholar 

  • Thornhill AH, Baldwin BG, Freyman WA, Nosratinia S, Kling MM, Morueta-Holme N, Madsen TP, Ackerly DD, Mischler BD (2017) Spatial phylogenetics of the California flora. BMC Biol 15:96. https://doi.org/10.1186/s12915-017-0435-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner WL, Lorence DH (2002) Flora of the Marquesas Islands website. http://botany.si.edu/pacificislandbiodiversity/marquesasflora/index.htm. Accessed Dec 2018

  • Wen J, Ickert-Bond SM (2009) Evolution of the Madrean-Tethyan disjunctions and the North and South American amphitropical disjunctions in plants. J Syst Evol 47:331–348

    Google Scholar 

  • Wilf P, Carvalho MR, Gandolfo MA, Cúneo NR (2017) Eocene lantern fruits from Gondwanan Patagonia and the early origins of Solanaceae. Science 355:71–75

    CAS  PubMed  Google Scholar 

  • Williams E (1975) A new chromosome number in the Australian species Nicotiana cavicola L. (Burbidge). N Z J Bot 13:811–812

    Google Scholar 

  • Wu J, Hettenhausen C, Schuman MC, Baldwin IT (2008) A comparison of two Nicotiana attenuata accessions reveals large differences in signaling induced by oral secretions of the specialist herbivore Manduca sexta. Plant Physiol 146:927–939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu M, Kostyun JL, Moyle LC (2019) Genome sequence of Jaltomata addresses rapid reproductive trait evolution and enhances comparative genomics in the hyper-diverse Solanaceae. Genome Biol Evol. https://doi.org/10.1093/gbe/evy274

Download references

Acknowledgements

I thank Nikolai Ivanov for inviting me to write this chapter; understanding of Nicotiana taxonomy and biodiversity is based on the foundational work done by Thomas Harper Goodspeed in the 1950s, and his is still the last comprehensive monograph of the genus; Andrew Leitch, Jim Clarkson, Mark Chase, Laura Kelly, Elizabeth McCarthy, Ales Kovarik, the late Anne Kenton, and the late Yoong Lim have all been instrumental in increasing my knowledge and understanding of the genus; funding for work on Nicotiana came from multiple sources—field work in South America was undertaken with permission from the governments of Argentina, Bolivia, Brazil, Paraguay, and Peru; travel for herbarium visits was financed by the SYNTHESYS Project (http://www.synthesys.info/) financed by European Community Research Infrastructure Actions under the FP6 and FP7 “Structuring the European Research Area” Programme, and the Special Funds of the Natural History Museum; field work was financed by the National Geographic Society and the Natural History Museum Enhancement Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Knapp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Knapp, S. (2020). Biodiversity of Nicotiana (Solanaceae). In: Ivanov, N.V., Sierro, N., Peitsch, M.C. (eds) The Tobacco Plant Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-29493-9_2

Download citation

Publish with us

Policies and ethics