Skip to main content

Pteridophyte spores viability

  • Chapter
  • First Online:
Working with Ferns

Abstract

Spore viability is defined as the time that spores retain their capacity to germinate. It is a factor of primary importance in the establishment of fern species and populations in a new habitat after spore dispersal. Viability is typically maintained for a long period in pteridophytes, but there are great variations in both interspecific and intraspecific levels.

Factors affecting viability are either intrinsic, such as genotype, age and dormancy, or extrinsic, such as the conditions of physical environment or presence of competitors. One of the main features that affect fern spores viability is the presence of chlorophyll in the cell. Green spores have chloroplasts and their germination ability does not persist long after harvest, showing a viability that is in the range of few weeks. Most pteridophytes have non-chlorophyllous spores whose viability is much higher, of about 3 years on average. For a long time, fern spores viability has been measured by means of germination percentage. This is a very simple method but requires a certain time to ensure that all or most viable spores germinate. Ultimately, some other detection techniques have been proposed, based on the capacity of living cells to enzymatically react with some chemicals giving colour or fluorescence. These methods allow estimating viability in a shorter time. Since spore viability is important for ex-situ conservation purposes, a relatively high amount of studies concerning germination and loss of viability of spores have been carried out in the last 2 decades. Several methods have been assayed to preserve spores of a number of species. Viability of most pteridophyte spores was believed to be retained when stored in dry and cold conditions. However, several exceptions have been found. Also of interest is the cryopreservation technique, very useful when dealing with economical interesting plants, as an important component in plant biotechnology programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aragon, C. F., and Pangua, E. 2004. Spore viability under different storage conditions in four rupicolous Asplenium L. taxa. Amer. Fern J. 94:28–38.

    Article  Google Scholar 

  • Ashcroft, C. J., and Sheffield, E. 2000. The effect of spore density on germination and development in Pteridium, monitored using a novel culture technique. Amer. Fern J. 90:91–99.

    Article  Google Scholar 

  • Ballesteros, D., Estrelles, E., and Ibars, A. M. 2006. Responses of pteridophyte spores to ultrafreezing temperatures for long-term conservation in germplasm banks. Fern Gaz. 17:293–302.

    Google Scholar 

  • Beri, A., and Bir, S. S. 1993. Germination of stored spores of Pteris vittata L. Amer. Fern J. 83:73–78.

    Article  Google Scholar 

  • Bhardwaja, T. N., and Sen, S. 1966. Effect of temperature on the viability of spores of the water fern Marsilea. Sci. Cult. 32:47–48.

    Google Scholar 

  • Catalá, M., Esteban, M., Rodríguez-Gil, J., and Quintanilla, L. 2009. Development of a naturally miniaturised testing method based on the mitochondrial activity of fern spores: a new higher plant bioassay. Chemosphere 77:983–988.

    Article  CAS  PubMed  Google Scholar 

  • Clarke, J. M., Gillings, M. R., Altavilla, N., and Beattie, A. J. 2001. Potential problems with fluorescein diacetate assays of cell viability when testing natural products for antimicrobial activity.J. Microbiol. Methods 46:261–267.

    Article  CAS  PubMed  Google Scholar 

  • Conway, E. 1949. The autecology of bracken (Pteridium aquilinum (L.) Kuhn). The germination of the spore, and the development of the prothallus and the young sporophyte. Proc. Roy. Soc. Edinburgh 63 B:325–342.

    Google Scholar 

  • Courbet, H. 1963. Fern spores. Their ability to germinate. Duration of their germinative capacity. A test for the rapid determination of their viability. Their sugar and amino acid content. Bull. Acad. Soc. Lorraines. Sci. 3:53–65.

    Google Scholar 

  • Dyer, A. F. 1994. Natural soil spore banks: can they be used to retrieve lost ferns? Biodiversity Conserv. 3:160–175.

    Article  Google Scholar 

  • Dyer, A. F., and Lindsay, S. 1992. Soil spore banks of temperate ferns. Amer. Fern J. 82:89–122.

    Article  Google Scholar 

  • Gullvag, B. M. 1968. On the fine structure of the spores of Equisetum fluviatile var. verticillatum studied in the quiescent, germinated and non-viable state. Grana 8:23–69.

    Article  Google Scholar 

  • Gullvag, B. M. 1969. Primary storage products of some pteridophyte spores – a fine structural study. Phytomorphol.19:82–92.

    Google Scholar 

  • Hauke, R. L. 1978. Taxonomic monograph of Equisetum subgenus Equisetum. Nova Hedwigia 30:385–455.

    Google Scholar 

  • Haupt, W. 1992. Phytochrome-mediated fern-spore germination – a temperature-sensitive phase in the transduction chain after the action of PFR. J. Plant Physiol. 140:575–581.

    CAS  Google Scholar 

  • Herrero, A., Prada, C., and Pajaron, S. 2002. Gametophyte morphology and gametangial ontogeny of Asplenium foreziense and related taxa (Aspleniaceae : Pteridophyta). Bot. J. Linnean Soc. 139:87–98.

    Article  Google Scholar 

  • Heslop-Harrison, J., and Heslop-Harrison, Y. 1970. Evaluation of pollen viability by enzymatically induced fluorescence – intracellular hydrolysis of fluorescein diacetate. Stain Technol. 45:115–120.

    CAS  PubMed  Google Scholar 

  • Johnson, D. M. 1985. New records for longevity of Marsilea sporocarps. Amer. Fern J. 75:30–31.

    Article  Google Scholar 

  • Khare, P. B., and Kaur, S. 1983. Gametophyte differentiation of pentaploid Pteris vittata L. Proc. Indian Natn. Sci. Acad. B49:740–742.

    Google Scholar 

  • Kiss, H. G., and Kiss, J. Z. 1998. Spore germination in populations of Schizaea pusilla from New Jersey and Nova Scotia. International J. Plant Sci. 159:848–852.

    Article  Google Scholar 

  • Kott, L. S., and Britton, D. M. 1982. A comparative study of spore germination of some Isoetes species of northeastern North America. Can. J. Bot. 60:1679–1687.

    Article  Google Scholar 

  • Kott, L. S., and Peterson, R. L. 1974. Comparative study of gametophyte development of diploid and tetraploid races of Polypodium virginianum. Can. J.Bot. 52:91–96.

    Article  Google Scholar 

  • Lebkuecher, J. G. 1997. Desiccation-time limits of photosynthetic recovery in Equisetum hyemale (Equisetaceae) spores. Amer. J. Bot. 84:792–797.

    Article  Google Scholar 

  • Lin, C. H., Chen, B. S., Yu, C. W., and Chiang, S. W. 2001. A water-based triphenyltetrazolium chloride method for the evaluation of green plant tissue viability. Phytochem. Anal. 12:211–213.

    Article  CAS  PubMed  Google Scholar 

  • Lindsay, S., and Dyer, A. 1990. Fern spore banks: implications for gametophyte establishment. In Taxonomía, biogeografía y conservación de pteridófitos, ed. J. Rita, pp. 243–253. Palma de Mallorca: Sociedad de Historia Nartural de las Islas Baleares.

    Google Scholar 

  • Lloyd, R., and Klekowski, E. J. 1970. Spore germination and viability in pteridophyta: evolutionary significance of chlorophyllous spores. Biotropica 2:129–137.

    Article  Google Scholar 

  • Nauyalis, I. I. 1989. Factors of the formation of fern gametophytes in nature. Botanicheskii Zhurnal 74:844–852.

    Google Scholar 

  • Norton, J. D. 1966. Testing of Plum Pollen Viability with Tetrazolium Salts. Proc. Am. Soc. Hortic. Sci. 89:132–134.

    Google Scholar 

  • Okada, Y. 1929. Notes on the germination of the spores of some Pteridophytes with special regard to their viability. Sci. Rept. Tdhoku Imp. Univ. Biol. 4:127–182.

    Google Scholar 

  • Olsen, L. T., and Gullvag, B. M. 1974. A fine structural and cytochemical study of mature and germinating spores of Equisetum arvense. Grana 13:113–118.

    Article  Google Scholar 

  • Pangua, E., Lindsay, S., and Dyer, A. 1994. Spore germination and gametophyte development in three species of Asplenium. Ann. Bot. 73:587–593.

    Article  Google Scholar 

  • Pangua, E., Quintanilla, L. G., Sancho, A., and Pajaron, S. 2003. A comparative study of the gametophytic generation in the Polystichum aculeatum group (Pteridophyta). Int. J. Plant Sci. 164:295–303.

    Article  Google Scholar 

  • Pence, V. C. 2000. Survival of chlorophyllous and nonchlorophyllous fern spores through exposure to liquid nitrogen. Amer. Fern J. 90:119–126.

    Article  Google Scholar 

  • Pence, V. C. 2008. Ex situ conservation of ferns and lycophytes – approaches and techniques. In Biology and evolution of ferns and lycophytes, ed. T. A. Ranker, and C. H. Hauffler, pp. 284–300. Cambridge: University Press.

    Google Scholar 

  • Penrod, K. A., and McCormick, L. H. 1996. Abundance of viable hay-scented fern spores germinated from hardwood forest soils at various distances from a source. Amer. Fern J. 86:69–79.

    Article  Google Scholar 

  • Perez-Garcia, B., Mendoza-Ruiz, A., Sanchez-Coronado, M. E., and Orozco-Segovia, A. 2007. Effect of light and temperature on germination of spores of four tropical fern species. Acta Oecol. Int. J. Ecol. 32:172–179.

    Article  Google Scholar 

  • Prada, C., Pangua, E., Pajaron, S., Herrero, A., Escudero, A., and Rubio, A. 1995. A comparative-study of gametophyte morphology, gametangial ontogeny and sex expression in the Asplenium adiantum-nigrum complex (Aspleniaceae, Pteridophyta). Ann. Bot. Fenn. 32:107–115.

    Google Scholar 

  • Quintanilla, L. G., and Escudero, A. 2006. Spore fitness components do not differ between diploid and allotetraploid species of Dryopteris (Dryopteridaceae). Ann. Bot. 98:609–618.

    Article  PubMed  Google Scholar 

  • Quintanilla, L. G., Amigo, J., Pangua, E., and Pajaron, S. 2002. Effect of storage method on spore viability in five globally threatened fern species. Ann. Bot. 90:461–467.

    Article  PubMed  Google Scholar 

  • Raghavan, V. 1989. Developmental biology of fern gametophytes. Cambridge: University Press.

    Book  Google Scholar 

  • Schmitz, G., Randi, G. A. M., Puchalskil, A., Santos, D. D. S., and Dos Reis, M. S. 2006. Variability in the germination of spores among and within natural populations of the endangered tree fern Dicksonia sellowiana hook. (Xaxim). Braz. Arch. Biol. Technol. 49:1–10.

    Google Scholar 

  • Schneller, J. J. 1998. How much genetic variation in fern populations is stored in the spore banks? A study of Athyrium filix-femina (L) Roth. Bot. J. Linnean Soc. 127:195–206.

    Google Scholar 

  • Schneller, J. 2008. Antheridiogens. In Biology and evolution of ferns and lycophytes, ed. T. A. Ranker, and C. H. Hauffler, pp. 134–158. Cambridge: University Press.

    Google Scholar 

  • Sheffield, E. 1996. From pteridophyte spore to sporophyte in the natural environment. In Pteridology in Perspective, ed. M. G. J. M. Camus, R. Johns, pp. 541–549. Royal Botanic Gardens, Kew

    Google Scholar 

  • Shorina, N. I. 2001. Population biology of gametophytes in homosporous polypodiophyta. Russ. J. Ecol. 32:164–169.

    Article  Google Scholar 

  • Smith, D. L., and Robinson, P. M. 1975. Effects of spore age on germination and gametophyte development in Polypodium vulgare L. New Phytol. 74:101–108.

    Article  Google Scholar 

  • Steward, N., Martin, R., Engasser, J. M., and Goergen, J. L. 1999. A new methodology for plant cell viability assessment using intracellular esterase activity. Plant Cell Rep. 19:171–176.

    Article  CAS  Google Scholar 

  • Stokey, A. G. 1940. Spore germination and vegetative stages of the gametophytes of Hymenophyllum and Trichomanes. Bot. Gaz. 101:759–790.

    Article  Google Scholar 

  • Stokey, A. G. 1951. Duration of viability of spores of the Osmundaceae. Amer. Fern J. 41:111–115.

    Article  Google Scholar 

  • Stokey, A. G., and Atkinson, L. R. 1958. The gametophyte of the Grammitidaceae. Phytomorphology 8:391–403.

    Google Scholar 

  • Vizintin, L., and Bohanec, B. 2004. In vitro manipuilation of cucumber (Cucumis sativus L.) pollen and microspores: Isolation procedures, viability tessits, germination, maturation. Acta Biol. Cracov. Ser. Bot. 46:177–183.

    Google Scholar 

  • Wada, M. 2008. Photoresponses in fern gametophytes. In Biology and evolution of ferns and lycophytes, ed. T. A. Ranker, and C. H. Hauffler, pp. 3–48. Cambridge: University Press.

    Google Scholar 

  • Weinberg, E. S., and Voeller, B. R. 1969. Induction of fern spore germination. Proc. Natl. Acad. Sci. USA 64:835–842.

    Article  CAS  PubMed  Google Scholar 

  • Whittier, D. P. 1970. Rate of gametophyte maturation in sexual and apogamous species of ferns. Phytomorphol. 20:30–35.

    Google Scholar 

  • Whittier, D. P. 1990. Factors affecting the viability of Psilotum spores. Amer. Fern J. 80:90–96.

    Article  Google Scholar 

  • Whittier, D. P. 1996. Extending the viability of Equisetum hyemale spores. Amer. Fern J. 86:114–118.

    Article  Google Scholar 

  • Whittier, D. P. 1998. Germination of spores of the Lycopodiaceae in axenic culture. Amer. Fern J. 88:106–113.

    Article  Google Scholar 

  • Whittier, D. P., and Moyroud, R. 1993. The promotion of spore germination and gametophyte development in Ophioglossum palmatum by low pH. Amer. Fern J. 83:41–46.

    Article  Google Scholar 

  • Windham, M., Wolf, P., and Ranker, T. 1986. Factors affecting prolonged spore viability in herbarium collections of three species of Pellaea. Amer. Fern J. 76:141–148.

    Article  Google Scholar 

  • Wollersheim, M. 1957. Untersuchungen über die keimungsphysiologie der sporen von Equisetum arvense and Equisetum limosum. Z. Bot. 45:145–149.

    Google Scholar 

  • Yamori, W., Kogami, H., Yoshimura, Y., Tsuji, T., and Masuzawa, T. 2006. A new application of the SFDA-staining method to assessment of the freezing tolerance in leaves of alpine plants. Polar Biosci. 20:82–91.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose María Gabriel y Galán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Galán, J.M.G.y., Prada, C. (2011). Pteridophyte spores viability. In: Kumar, A., Fernández, H., Revilla, M. (eds) Working with Ferns. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7162-3_14

Download citation

Publish with us

Policies and ethics