Skip to main content
Log in

Gas-Hydrothermal Turbation of Soils as a Factor of Microhighs Forming

  • GENESIS AND GEOGRAPHY OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Ridges and tussock-like microhighs of unknown genesis were discovered in the northern part of the Barguzin Depression within the area of Kuchiger hydrotherms along the periphery of mires and within slightly concave surfaces of the alluvial plain. The classical mechanism of the formation of tussocks in herbal mires is replaced by a diapiric heave under the pressure of ascending gas-hydrothermal fluids from seismically active deep faults. The morphology and some properties of the soils in the transitional area from the mire with active hydrothermal griffons (vents) of the Kuchiger Hot Springs to the alluvial plain. In this area, the microtopography of the surface is represented by the chains of microhighs against the background of a network of microvalleys. Empirical statistical cumulative distributions of the morphometric characteristics of this microtopography have been obtained. The studied microhighs form a genetic series of gas-hydrothermally turbated soils: from organic soils with minimum intrusions of sandy material along the periphery of the mire to predominantly mineral variants represented by the extruded upwards gley horizon of different oxidation degrees on the alluvial plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Agrochemical Methods of Soil Study (Nauka, Moscow, 1975) [in Russian].

  2. E. V. Arinushkina, Manual on the Chemical Analysis of Soils (Moscow State Univ., Moscow, 1970) [in Russian].

    Google Scholar 

  3. E. A. Baskov and S. N. Surikov, Hot Springs of the World (Nedra, Leningrad, 1989) [in Russian].

    Google Scholar 

  4. N. V. Vilor, L. D. Adrulaitius, O. V. Zarubina, and B. S. Danilov, “Geochemistry of seismoactive regional faults: Baikal Rift zone, East Siberia,” Geochem. Int. 53, 60–77 (2015). https://doi.org/10.1134/S001670291411010X

    Article  Google Scholar 

  5. A. N. Gennadiev, A. R. Geptner, A. P. Zhidkin, S. S. Chernyanskii, and Yu. I. Pikovskii, “Exothermic and endothermic soils of Iceland,” Eurasian Soil Sci. 40, 595–607 (2007).

    Article  Google Scholar 

  6. M. I. Gerasimova, “Russian soil classification system: towards the next approximation,” Eurasian Soil Sci. 52, 25–33 (2019). https://doi.org/10.1134/S1064229319010022

    Article  Google Scholar 

  7. I. L. Gol’dfarb, “Effect of hydrothermal activity on the conditions of pedogenesis and soil morphology (by the example of Kamchatka),” Eurasian Soil Sci. 29, 1319– 1324 (1996).

    Google Scholar 

  8. I. L. Gol’dfarb, Candidate’s Dissertation in Geography (Moscow, 2005).

  9. S. V. Goryachkin, N. S. Mergelov, and V. O. Targulian, “Extreme pedology: elements of theory and methodological approaches,” Eurasian Soil Sci. 52, 1–13 (2019). https://doi.org/10.1134/S1064229319010046

    Article  Google Scholar 

  10. A. D. Zhambalova, Candidate’s Dissertation in Biology (Ulan-Ude, 2018).

  11. A. V. Zavadskaya, I. N. Semenkov, V. V. Krupskaya, S. V. Zakusin, and D. M. Panicheva, “Transformation of soil and vegetation covers of thermal ecosystems affected by temperature in the Valley of Geysers (Kronotsky Nature Reserve),” Tr. Kronotskogo Gos. Prirod. Zapoved. 5, 26–39 (2017).

    Google Scholar 

  12. L. V. Zamana, Permafrost-Hydrogeological and Meliorative Conditions in the Barguzin Depression (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  13. V. P. Isaev, Natural Gases in the Barguzin Depression (Irkutsk State Univ., Irkutsk, 2006) [in Russian].

    Google Scholar 

  14. N. S. Kasimov, Geochemistry of Landscapes in Fault Zones of Kazakhstan (Moscow State Univ., Moscow, 1980) [in Russian].

    Google Scholar 

  15. E. A. Kleshcheva, “Indicator properties of southern Siberian plants with respect to soil moisture,” Russ. J. Ecol. 41, 480–485 (2010).

    Article  Google Scholar 

  16. E. A. Kornblyum, I. S. Mikhailov, N. A. Nogina, and V. O. Targulian, Basic Scales of the Properties of Morphological Elements of Soils (Dokuchaev Soil Science Inst., Moscow, 1982) [in Russian].

    Google Scholar 

  17. D. N. Kostyuk and A. N. Gennadiev, “Soils and the soil cover of the Valley of Geysers,” Eurasian Soil Sci. 47, 529–539 (2014). https://doi.org/10.1134/S1064229314060040

    Article  Google Scholar 

  18. O. V. Lunina, A. S. Gladkov, and N. N. Nevedrova, Rift Depressions in the Trans-Baikal Region: Tectonic Structure and Evolution (Geo, Novosibirsk, 2009) [in Russian].

  19. S. V. Lysak, “Terrestrial heat flux in active fault zones in the south of East Siberia,” Geol. Geofiz. 43, 791– 803 (2002).

    Google Scholar 

  20. S. V. Lysak, Thermal Flux of Continental Rift Zones (Nauka, Novosibirsk, 1988) [in Russian].

    Google Scholar 

  21. L. I. Malyshev, Specific Features and Genesis of Siberian Flora (Cis- and Transbaikal Region) (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  22. Practical Manual for Analysis of Forest Communities (Institute of Chemistry, St. Petersburg State Univ., St. Petersburg, 2002) [in Russian].

  23. B. B. Naidanov, N. K. Badmaeva, O. A. Anenkhonov, and T. D. Pykhalova, “Halophytic vegetation of Western Transbaikalia: flora and syntaxonomy,” Rastit. Mir Aziat. Ross., No. 2 (6), 66–72 (2010).

  24. B. B. Namsaraev, D. D. Barkhutova, E. V. Danilova, A. V. Bryanskaya, S. P. Buryukhaev, E. Zh. Garmaev, V. M. Gorlenko, O. P. Dagurova, V. B. Dambaev, S. V. Zaitseva, L. V. Zamana, V. V. Khakhinov, and A. V. Tatarinov, Geochemical Activity of Microorganisms in the Baikal Rift Zone (Geo, Novosibirsk, 2011) [in Russian].

    Google Scholar 

  25. A. M. Plyusnin, L. V. Zamana, S. L. Shvartsev, O. G. Tokarenko, and M. K. Chernyavskii, “Hydrogeochemical peculiarities of the composition of nitric thermal waters in the Baikal Rift Zone,” Russ. Geol. Geophys. 54, 495–508 (2013).

    Article  Google Scholar 

  26. Field Guide for Classification of Russian Soils (Dokuchaev Soil Science Inst., Moscow, 2008) [in Russian].

  27. Soils of the Barguzin Depression (Nauka, Novosibirsk, 1983) [in Russian].

  28. V. N. Razumova, Ancient Weathering Crusts and Hydrothermal Processes (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  29. T. Yu. Samkova, S. A. Rylova, and E. S. Klyapitskii, “Spatial heterogeneity of thermal field and its reflection in the structure of vegetation cover of the southeastern part of the Bol’she-Bannoe field (Southern Kamchatka),” Vestn. Kamchat. Reg. Assots. Uch.-Nauchn. Tsentr, Nauki Zemle 3 (31), 18–27 (2016).

    Google Scholar 

  30. I. N. Semenkov, A. V. Zavadskaya, V. V. Krupskaya, S. V. Zakusin, G. V. Klink, and D. M. Panicheva, “Transformation of soil and vegetation cover in the areas of hydrothermal water springs in the valley of the Geizernaya River (Kronotsky Nature Reserve),” in Proceedings of the First Open Conference of Young Scientists Dedicated to the 90th Anniversary of the Dokuchaev Soil Science Institute “Soil Science: Future Horizons” (Dokuchaev Soil Science Institute, Moscow, 2017), Vol. 1, pp. 24–28.

  31. I. G. Serebryakov, Ecological Morphology of the Plants. Life Forms of Angiosperms and Conifers (Vysshaya Shkola, Moscow, 1962) [in Russian].

    Google Scholar 

  32. I. G. Serebryakov, “Life forms of the higher plants and their study,” Polevaya Geobot. 3, 146–205 (1964).

    Google Scholar 

  33. N. P. Solntseva and I. L. Gol’dfarb, “Geochemistry of landscapes of modern gas-hydrothermal fields of Kamchatka by the example of Pauzhetskoe field,” Vestn. Mosk. Univ., Ser. 5: Geogr., No. 2, 65–73 (1994).

  34. A. V. Tatarinov, L. I. Yalovik, and S. V. Kanakin, “Origin and mineral associations of rock assemblages at mud volcanoes: Southeastern Siberia,” J. Volcanol. Seismol. 10, 248–262 (2016). https://doi.org/10.1134/S0742046316030052

    Article  Google Scholar 

  35. A. I. Tolmachev, Introduction into Geography of the Plants (Leningrad State Univ., Leningrad, 1974) [in Russian].

    Google Scholar 

  36. V. L. Ubugunov, N. B. Khtirov, V. I. Ubugunova, A. D. Zhambalova, Yu. A. Rupyshev, T. A. Ayushina, A. Paramonova, E. G. Tsyrempilov, and Ts. N. Nasatueva, “Endogenic factor and morphogenetic structure of soils in the area of the Kuchiger hot springs (Baikal Rift Zone, the north of Barguzin depression),” Prirod. Vnutr. Azii, No. 4, 54–72 (2018). https://doi.org/10.18101/2542-0623-2018-4-54-72

    Article  Google Scholar 

  37. Activity of Subarctic Hydrothermal Ecosystems in Winter, Ed. by K. G. Bogolitsyn and I. N. Bolotov (Ural Branch, Russian Academy of Sciences, Yekaterinburg, 2011) [in Russian].

  38. N. B. Khitrov, V. L. Ubugunov, V. I. Ubugunova, Yu. A. Rupyshev, T. A. Ayushina, A. D. Zhambalova, E. G. Tsyrempilov, A. E. Paramonova, and Ts. N. Nasatueva, “Morphology of soils in the impact zone of Kuchiger hot springs, the Barguzin depression,” Eurasian Soil Sci. 52, 1477–1498 (2019).

    Article  Google Scholar 

  39. M. K. Chernyavskii, Candidate’s Dissertation in Geography (Ulan-Ude, 2006).

  40. M. K. Chernyavskii, A. M. Plyusnin, S. G. Doroshkevich, and R. Ts. Budaev, “Recreational-balneological features of the northeastern part of the Barguzin Basin,” Geogr. Prirod. Resur., No. 2, 63–72 (2018). https://doi.org/10.21782/GIPR0206-1619-2018-2

  41. Yu. R. Shelyag-Sosonko, “Flora and vegetation of Yalta Mountain-Forest Nature Reserve: a review,” Bot. Zh. 63 (10), 1430–1439 (1978).

    Google Scholar 

  42. A. J. Ellis, “Chemistry of explored geothermal systems,” in Geochemistry of Hydrothermal Ore Deposits, Ed. by H. L. Barnes (Holt, Rinehart and Winston, New York, 1967; Mir, Moscow, 1982), pp. 466–514.

  43. B. A. Yurtsev, Flora of the Suntar Hayat Ridge: The History of High-Altitude Landscapes of the Northeastern Siberia (Nauka, Leningrad, 1968) [in Russian].

    Google Scholar 

  44. D. C. Armstrong, “Acid sulphate alteration in a magmatic hydrothermal environment, Barton Peninsula, King George Island, Antarctica,” Miner. Mag. 59, 429–441 (1995).

    Article  Google Scholar 

  45. J. G. Bockheim and T. M. Ballard, “Hydrothermal soils of the crater of Mt. Baker,” Soil Sci. Soc. Am. Proc. 39, 997–1001 (1975).

    Article  Google Scholar 

  46. B. Burns, “Vegetation change along a geothermal stress gradient at the Te Kopia steamfield,” J. R. Soc. N. Z. 27, 279–293 (1997). https://doi.org/10.1080/03014223.1997.9517539

    Article  Google Scholar 

  47. S. Byrdina, H. Grandis, P. Sumintadireja, C. Caudron, D. K. Syahbana, E. Naffrechoux, H. Gunawan, G. Suantika, and J. Vandemeulebrouck, “Structure of the acid hydrothermal system of Papandayan volcano, Indonesia, investigated by geophysical methods,” J. Volcanol. Geotherm. Res. 358, 77–86 (2018). https://doi.org/10.1016/j.jvolgeores.2018.06.008

    Article  Google Scholar 

  48. D. Cross, “Soils and geology of some hydrothermal eruptions in the Waiotapu district,” N. Z. J. Geol. Geophys. 6 (1), 70–87 (1963).

    Article  Google Scholar 

  49. Guidelines for Soil Description (Food and Agriculture Organization, Rome, 2006).

  50. M. Gwynn, R. Allis, C. Hardwick, J. Hill, and J. Moore, “A new look at the thermal regime around Roosevelt Hot Springs, Utah,” GRC Trans. 40, 551–558 (2016).

    Google Scholar 

  51. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

  52. E. F. Lloyd, “The hot springs and hydrothermal eruptions of Waiotapu,” N. Z. J. Geol. Geophys. 2, 141–176 (1959).

    Article  Google Scholar 

  53. K. Maussen, E. Villacorte, R. R. Rebadulla, R. P. Maximo, V. Debaille, Ma. A. Bornas, and A. Bernard, “Geochemical characterization of Taal volcano-hydrothermal system and temporal evolution during continued phases of unrest (1991–2017),” J. Volcanol. Geotherm. Res. 352, 38–54 (2018). https://doi.org/10.1016/j.jvolgeores.2018.01.007

    Article  Google Scholar 

  54. C. M. U. Neale, C. Jaworowski, H. Heasler, S. Sivarajan, and A. Masih, “Hydrothermal monitoring in Yellowstone National Park using airborne thermal infrared remote sensing,” Remote Sens. Environ. 184, 628–644 (2016). https://doi.org/10.1016/j.rse.2016.04.016

    Article  Google Scholar 

  55. A. W. Rodman, H. F. Shovic, and D. Thoma, Soils of Yellowstone National Park (Yellowstone Center for Resources, Yellowstone National Park, Wyoming, 1996), No. YCR-NRSR-96-2.

  56. R. Schoen, D. E. White, and J. J. Hemley, “Argillization by descending acid at Steamboat Springs, Nevada,” Clays Clay Miner. 22, 1–22 (1974).

    Article  Google Scholar 

  57. R. Stoffregen, “Genesis of acid-sulfate alteration and Au–Cu–Ag mineralization at Summitville, Colorado,” Econ. Geol. 82, 1575–1591 (1987). https://doi.org/0361-0128/87/726/1575-17$2.50

    Article  Google Scholar 

  58. C. C. Trettin and L. J. Bartelli, “Characterization of soils in Yellowstone National Park,” in University of Wyoming National Park Service Research Center Annual Report (University of Wyoming the National Park Service, Moran, WY, 1982), Vol. 6, No. 25, pp. 133–136. http:// r-epository.uwyo.edu/uwnpsrc_reports/vol6/iss1/25.

  59. C. G. Vucetich and N. Wells, Soils, Agriculture, and Forestry of Waiotapu Region, Central North Island, New Zealand (Guthrie, Waiotapu, Rerewhakaaitu, Atiamuri, Reporoa Districts) (New Zealand Department of Scientific and Industrial Research, Wellington, 1978), Vol. 31.

    Google Scholar 

  60. G. W. Wilson, D. G. Fredlund, and S. L. Barbour, “The effect of soil suction on evaporative fluxes from soil surfaces,” Can. Geotech. J. 34, 145–155 (1997).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no 18-04-00454-a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Khitrov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Supplementary materials are available for this article at DOI: 10.1134/S1064229320020064 and are accessible for authorized users.

Supplementary materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khitrov, N.B., Ubugunov, V.L., Ubugunova, V.I. et al. Gas-Hydrothermal Turbation of Soils as a Factor of Microhighs Forming. Eurasian Soil Sc. 53, 137–154 (2020). https://doi.org/10.1134/S1064229320020064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320020064

Keywords:

Navigation