Skip to main content
Log in

Eupolyploidy As a Mode in Plant Speciation

  • REVIEW AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

When discussing phenomena of whole genome duplication, the terms “neopolyploid,” “mesopolyploid,” and “paleopolyploid” are used in their modern “postgenomic” interpretation. In our opinion, in long chain of gradual changes of polyploid genome during the transition from neopolyploids to paleopolyploids, it makes sense to single out the eupolyploid stage—a state of a polyploid in which its polyploid nature is beyond doubt, but the genome (karyotype) of the eupolyploid, unlike the neopolyploid, is already relatively stable. Most so-called “polypoid species” are actually eupolyplids, the polyploid nature of their karyotype is beyond doubt among researchers—geneticists, karyologists, and florists. Optionally, eupolyploids take part in new rounds of interspecific hybridization either maintaining the level of ploidy of the parents or with the emergence of an allopolyploid of a higher level of ploidy. Eupolyploidization of the genome is a mechanism of radical and rapid plant speciation. In this way, tens of thousands of species of modern plants arose. Successful combinations of alleles of eupolyploid subgenomes, large sizes characteristic of high polyploids, and frequent transition to asexual reproduction can contribute to the successful development of new areas by eupolyploids, adaptation to extreme conditions of existence at the edge of areas, but not to the acquisition of new aromorphoses—this is speciation, but speciation on an already achieved level of evolutionary complexity, a step that does not in itself lead to progressive evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Notes

  1. Alstroemeriaceae, Fagaceae, Grossulariaceae, Nepenthaceae, Nothofagaceae, Schisandraceae, Smilacaceae, and Tamaricaceae.

REFERENCES

  1. Grant, V., Plant Speciation, New York: Columbia Univ. Press, 1971.

    Google Scholar 

  2. Wood, T.E., Takebayashi, N., Barker, M.S., et al., The frequency of polyploid speciation in vascular plants, Proc. Natl Acad. Sci. U.S.A., 2009, vol. 106, pp. 13875—13879. https://doi.org/10.1073/pnas.0811575106

    Article  PubMed  PubMed Central  Google Scholar 

  3. Van de Peer, Y., Mizrachi, E., and Marchal, K., The evolutionary significance of polyploidy, Nat. Rev. Genet., 2017, vol. 18, pp. 411—424. https://doi.org/10.1038/nrg.2017.26

    Article  CAS  PubMed  Google Scholar 

  4. Liu, H., Wang, X., Wang, G., et al., The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution, Nat. Plants, 2021, vol. 7, pp. 748—756. https://doi.org/10.1038/s41477-021-00933-x

    Article  CAS  PubMed  Google Scholar 

  5. Liu, Y., Wang, S., Li, L., et al., The Cycas genome and the early evolution of seed plants, Nat. Plants, 2022, vol. 8, pp. 389—401. https://doi.org/10.1038/s41477-022-01129-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishiyama, T., Sakayama, H., De Vries, J., et al., The Chara genome: secondary complexity and implications for plant terrestrialization, Cell, 2018, vol. 174, pp. 448—464. https://doi.org/10.1016/j.cell.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  7. Banks, J.A., Nishiyama, T., Hasebe, M., et al., The Selaginella genome identifies genetic changes associated with the evolution of vascular plants, Science, 2011, vol. 332, pp. 960—963. https://doi.org/10.1126/science.1203810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, J., Fu, X.X., Li, R.Q., et al., The hornwort genome and early land plant evolution, Nat. Plants, 2020, vol. 6, pp. 107—118. https://doi.org/10.1038/s41477-019-0588-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bowman, J.L., Kohchi, T., Yamato, K.T., et al., Insights into land plant evolution garnered from the Marchantia polymorpha genome, Cell, 2017, vol. 171, pp. 287—304. https://doi.org/10.1016/j.cell.2017.09.030

    Article  CAS  PubMed  Google Scholar 

  10. Szövényi, P., Gunadi, A., and Li, F.W., Charting the genomic landscape of seed-free plants, Nat. Plants, 2021, vol. 7, pp. 554—565. https://doi.org/10.1038/s41477-021-00888-z

    Article  PubMed  Google Scholar 

  11. Benton, M.J., Wilf, P., and Sauquet, H., The Angiosperm terrestrial revolution and the origins of modern biodiversity, New Phytol., 2022, vol. 233, pp. 2017—2035. https://doi.org/10.1111/nph.17822

    Article  PubMed  Google Scholar 

  12. Barker, M.S., Arrigo, N., Baniaga, A.E., et al., On the relative abundance of autopolyploids and allopolyploids, New Phytol., 2016, vol. 210, pp. 391—398.

    Article  PubMed  Google Scholar 

  13. Doyle, J.J. and Sherman-Broyles, S., Double trouble: taxonomy and definitions of polyploidy, New Phytol., 2017, vol. 213, pp. 487—493. https://doi.org/10.1111/nph.14276

    Article  PubMed  Google Scholar 

  14. Mayr, E., The biological species concept, Species Concepts and Phylogenetic Theory: A Debate, Wheeler, Q.D. and Meier, R., Eds., New York: Columbia Univ. Press, 2000, pp. 17—29.

    Google Scholar 

  15. Ladizinsky, G., Studies in Oat Evolution: a Man’s Life with Avena, Berlin: Springer-Verlag, 2012.

    Book  Google Scholar 

  16. Komarov, V.L., Uchenie o vide u rastenii (stranitsa iz istorii biologii) (The Doctrine of the Species in Plants (a Page from the History of Biology)), Moscow: Akad. Nauk SSSR, 1940.

  17. Tsvelev, N.N., The species as one of the taxa, Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 1995, vol. 100, no. 5, pp. 62—68.

    Google Scholar 

  18. Levin, D.A., The long wait for hybrid sterility in flowering plants, New Phytol., 2012, vol. 196, pp. 666—670.

    Article  PubMed  Google Scholar 

  19. Stebbins, G.L., Polyploidy and the distribution of the arctic-alpine flora: new evidence and a new approach, Bot. Helv., 1984, vol. 94, pp. 1—13.

    Google Scholar 

  20. Stebbins, G.L., The origin and success of polyploids in the boreal circumpolar flora: a new analysis, Trans. Bot. Sci. Edinburgh, 1986, vol. 45, pp. 17—31.

    Article  Google Scholar 

  21. Liu, J., Moeller, M., Gao, L.-M., et al., DNA barcoding for the discrimination of Eurasian yews (Taxus L, Taxaceae) and the discovery of cryptic species, Mol. Ecol. Resour., 2011, vol. 11, pp. 89—100. https://doi.org/10.1111/j.1755-0998.2010.02907.x

    Article  CAS  PubMed  Google Scholar 

  22. Bell, D., Long, D.G., Forrest, A.D., et al., DNA barcoding of European Herbertus (Marchantiopsida, Herbertaceae) and the discovery and description of a new species, Mol. Ecol. Resour., 2012, vol. 12, pp. 36—47. https://doi.org/10.1111/j.1755-0998.2011.03053.x

    Article  CAS  PubMed  Google Scholar 

  23. Gill, F.B., Species taxonomy of birds: which null hypothesis? Auk, 2014, vol. 131, pp. 150—161. https://doi.org/10.1642/AUK-13-206.1

    Article  Google Scholar 

  24. Riesberg, L.H., Wood, T.E., and Baack, E.J., The nature of plant species, Nature, 2006, vol. 440, pp. 524—527. https://doi.org/10.1038/nature04402

    Article  CAS  Google Scholar 

  25. Shneyer, V.S. and Kotseruba, V.V., Cryptic species in plants and their detection by genetic differentiation between populations, Ekol. Genet., 2014, vol. 12, no. 3, pp. 12—26.

    Article  Google Scholar 

  26. Soltis, D.E., Soltis, P.S., Schemske, D.W., et al., Autopolyploidy in angiosperms: have we grossly underestimated the number of species? Taxon, 2007, vol. 56, pp. 13—30. https://doi.org/10.2307/25065732

    Article  Google Scholar 

  27. Shneyer, V.S., Punina, E.O., and Rodionov, A.V., Intraspecific differences in ploidy and their taxonomic interpretation, Bot. Zh., 2018, vol. 103, no. 5, pp. 555—585. https://doi.org/10.1134/S0006813618050010

    Article  Google Scholar 

  28. Tsvelev, N.N., Genomic criteria for genera in higher plants, Bot. Zh., 1991, vol. 76, no. 5, pp. 669—676.

    Google Scholar 

  29. Ramsey, J. and Schemske, D.W., Neopolyploidy in flowering plants, Annu. Rev. Ecol. Syst., 2002, vol. 33, pp. 589—639.

    Article  Google Scholar 

  30. Li, Z., McKibben, M.T., Finch, G.S., et al., Patterns and processes of diploidization in land plants, Annu. Rev. Plant Biol., 2021, vol. 72, pp. 387—410. https://doi.org/10.1146/annurev-arplant-050718-100344

    Article  CAS  PubMed  Google Scholar 

  31. Levin, D.A., Plant speciation in the age of climate change, Ann. Bot., 2019, vol. 124, pp. 769—775. https://doi.org/10.1093/aob/mcz108

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yu, Z., Haberer, G., Matthes, M., et al., Impact of natural genetic variation on the transcriptome of autotetraploid Arabidopsis thaliana, Proc. Natl Acad. Sci. U. S. A., 2010, vol. 107, pp. 17809—17814. https://doi.org/10.1073/pnas.1000852107

    Article  PubMed  PubMed Central  Google Scholar 

  33. Liu, B. and Sun, G., Transcriptome and miRNAs analyses enhance our understanding of the evolutionary advantages of polyploidy, Crit. Rev. Biotechnol., 2019, vol. 39, pp. 173—180. https://doi.org/10.1080/07388551.2018.1524824

    Article  CAS  PubMed  Google Scholar 

  34. Soltis, D.E., Misra, B.B., Shan, S., et al., Polyploidy and the proteome, Biochim. Biophys. Acta, Proteins Proteomics, 2016, vol. 1864, pp. 896—907. https://doi.org/10.1016/j.bbapap.2016.03.010

    Article  CAS  Google Scholar 

  35. Soltis, D.E., Visger, C.J., Marchant, D.B., and Soltis, P.S., Polyploidy: pitfalls and paths to a paradigm, Am. J. Bot., 2016, vol. 103, pp. 1146—1166. https://doi.org/10.3732/ajb.1500501

    Article  PubMed  Google Scholar 

  36. Rodionov, A.V., Shneyer, V.S., Gnutikov, A.A., et al., The dialectic of species: from initial uniformity, through the greatest possible diversity to final uniformity, Bot. Zh., 2020, vol. 105, no. 9, pp. 835—853. https://doi.org/10.31857/S0006813620070091

    Article  Google Scholar 

  37. Favarger, C., Sur l’emploi des nombres chromosomiques en géographie botanique historique, Ber. Geobot. Inst. Rübel, 1961, vol. 32, pp. 119—146.

    Google Scholar 

  38. Mandáková, T., Joly, S., Krzywinski, M., et al., Fast diploidization in close mesopolyploid relatives of Arabidopsis, Plant Cell, 2010, vol. 22, pp. 2277—2290.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rodionov, A.V., Nosov, N.N., Kim, E.S., et al., The origin of polyploid genomes of bluegrasses Poa L. and gene flow between northern pacific and sub-Antarctic islands, Russ. J. Genet., 2010, vol. 46, no. 12, pp. 1407—1416. https://doi.org/10.1134/S1022795410120021

    Article  CAS  Google Scholar 

  40. Rodionov, A.V., Amosova, A.V., Belyakov, E.A., et al., Genetic consequences of interspecific hybridization, its role in speciation and phenotypic diversity of plants, Russ. J. Genet., 2019, vol. 55, no. 3, pp. 278—294. https://doi.org/10.1134/S1022795419030141

    Article  CAS  Google Scholar 

  41. Zhan, S.H., Otto, S.P., and Barker, M.S., Broad variation in rates of polyploidy and dysploidy across flowering plants is correlated with lineage diversification, bioRxiv, 2021. https://doi.org/10.1101/2021.03.30.436382

  42. Navashin, M.S., Change in the number and morphological characteristics of chromosomes in interspecific hybrids, Tr. Prikl. Bot., Genet. Sel., 1927, vol. 17, no. 3, pp. 121—150.

    Google Scholar 

  43. Talbert, P.B., Bryson, T.D., and Henikoff, S., Adaptive evolution of centromere proteins in plants and animals, J. Biol., 2004, vol. 3, no. 4, pp. 1—17. https://doi.org/10.1186/jbiol11

    Article  Google Scholar 

  44. Melters, D.P., Bradnam, K.R., Young, H.A., et al., Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution, Genome Biol., 2013, vol. 14, no. 1, pp. 1—20. https://doi.org/10.1186/gb-2013-14-1-r10

    Article  Google Scholar 

  45. Maheshwari, S., Tan, E.H., West, A., et al., Naturally occurring differences in CENH3 affect chromosome segregation in zygotic mitosis of hybrids, PLoS Genet., 2015, vol. 11, no. 1, article number e1004970. https://doi.org/10.1371/journal.pgen.1004970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kotseruba, V., Gernand, D., Meister, A., and Houben, A., Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n = 8), Genome, 2003, vol. 46, pp. 156—163. https://doi.org/10.1139/g02-104

    Article  CAS  PubMed  Google Scholar 

  47. Marimuthu, M.P., Maruthachalam, R., Bondada, R., et al., Epigenetically mismatched parental centromeres trigger genome elimination in hybrids, Sci. Adv., 2021, vol. 7, no. 47. eabk1151. https://doi.org/10.1126/sciadv.abk1151

  48. Mandáková, T. and Lysak, M.A., Post-polyploid diploidization and diversification through dysploid changes, Curr. Opinion Plant Biol., 2018, vol. 42, pp. 55—65. https://doi.org/10.1016/j.pbi.2018.03.001

    Article  Google Scholar 

  49. Soares, N.R., Mollinari, M., Oliveira, G.K., et al., Meiosis in polyploids and implications for genetic mapping: a review, Genes, 2021, vol. 12, p. 1517. https://doi.org/10.3390/genes12101517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, M., Wang, P., Lin, M., et al., Evolutionary dynamics of 3D genome architecture following polyploidization in cotton, Nat. Plants, 2018, vol. 4, pp. 90—97. https://doi.org/10.1038/s41477-017-0096-3

    Article  CAS  PubMed  Google Scholar 

  51. Concia, L., Veluchamy, A., Ramirez-Prado, J.S., et al., Wheat chromatin architecture is organized in genome territories and transcription factories, Genome Biol., 2020, vol. 21, no. 1. https://doi.org/10.1186/s13059-020-01998-1

  52. Barea, L., Redondo-Río, Á., Lucena-Marín, R., et al., Homologous chromosome associations in domains before meiosis could facilitate chromosome recognition and pairing in wheat, Sci. Rep., 2022, vol. 12, no. 1, pp. 1—11. https://doi.org/10.1038/s41598-022-14843-1

    Article  CAS  Google Scholar 

  53. International Wheat Genome Sequencing Consortium, Shifting the limits in wheat research and breeding using a fully annotated reference genome, Science, 2018, vol. 361, article number eaar7191.

    Article  Google Scholar 

  54. Stein, J.C., Yu, Y., Copetti, D., et al., Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza, Nat. Genet., 2018, vol. 50, no. 2, pp. 285—296. https://doi.org/10.1038/s41588-018-0040-0

    Article  CAS  PubMed  Google Scholar 

  55. Nei, M. and Rooney, A.P., Concerted and birth–and–death evolution of multigene families, Annu. Rev. Genet., 2005, vol. 39, pp. 121—152. https://doi.org/10.1146/annurev.genet.39.073003.112240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gonzalo, A., All ways lead to Rome—meiotic stabilization can take many routes in nascent polyploid plants, Genes, 2022, vol. 13, no. 1, p. 147. https://doi.org/10.3390/genes13010147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Viegas, W.S., Mello-Sampayo, T., Feldman, M., and Avivi, L., Reduction of chromosome pairing by a spontaneous mutation on chromosomal arm 5DL of Triticum aestivum, Can. J. Genet. Cytol., 1980, vol. 22, pp. 569—575. https://doi.org/10.1139/g80-062

    Article  Google Scholar 

  58. Svačina, R., Sourdille, P., Kopecký, D., and Bartoš, J., Chromosome pairing in polyploid grasses, Front. Plant Sci., 2020, vol. 11, p. 1056. https://doi.org/10.3389/fpls.2020.01056

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jenczewski, E. and Alix, K., From diploids to allopolyploids: the emergence of efficient pairing control genes in plants, Crit. Rev. Plant Sci., 2004, vol. 23, pp. 21—45. https://doi.org/10.1080/07352680490273239

    Article  CAS  Google Scholar 

  60. Cuñado, N., Blazquez, S., Melchor, L., et al., Understanding the cytological diploidization mechanism of polyploid wild wheats, Cytogenet. Genome Res., 2005, vol. 109, pp. 205—209. https://doi.org/10.1159/000082401

    Article  PubMed  Google Scholar 

  61. Tang, Z.X., Fu, S.L., Yan, B.J., et al., Unequal chromosome division and inter-genomic translocation occurred in somatic cells of wheat—rye allopolyploid, J. Plant. Res., 2012, vol. 125, pp. 283—290. .https://doi.org/10.1007/s10265-011-0432-z

    Article  PubMed  Google Scholar 

  62. Luo, J., Zhao, L., Zheng, J., et al., Karyotype mosaicism in early generation synthetic hexaploid wheats, Genome, 2020, vol. 63, pp. 329—336. https://doi.org/10.1139/gen-2019-0148

    Article  PubMed  Google Scholar 

  63. Gill, B.S. and Chen, P.D., Role of cytoplasm-specific introgression in the evolution of the polyploid wheats, Proc. Natl. Acad. Sci. U. S. A., 1987, vol. 84, no. 19, pp. 6800—6804. https://doi.org/10.1073/pnas.84.19.6800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Badaeva, E.D., Shelukhina, O.Y., Dedkova, O.S., et al., Comparative cytogenetic analysis of hexaploid Avena L. species, Russ. J. Genet., 2011, vol. 47, no. 6, pp. 783—795. https://doi.org/10.1134/S1022795411060068

    Article  CAS  Google Scholar 

  65. Amosova, A.V., Badaeva, E.D., Muravenko, O.V., and Zelenin, A.V., An improved method of genomic in situ hybridization (GISH) for distinguishing closely related genomes of tetraploid and hexaploid wheat species, Russ. J. Dev. Biol., 2009, vol. 40, no. 2, pp. 90—94. https://doi.org/10.1134/S1062360409020040

    Article  CAS  Google Scholar 

  66. Liu, Q., Lin, L., Zhou, X., et al., Unraveling the evolutionary dynamics of ancient and recent polyploidization events in Avena (Poaceae), Sci. Rep., 2017, vol. 7, no. 1, pp. 1—13. https://doi.org/10.1038/srep41944

    Article  CAS  Google Scholar 

  67. Jellen, E.N., Gill, B.S., and Cox, T.S., Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena), Genome, 1994, vol. 37, pp. 613—618.

    Article  CAS  PubMed  Google Scholar 

  68. Lim, K.Y., Kovarik, A., Matyasek, R., et al., Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years, New Phytol., 2007, vol. 175, pp. 756—763. https://doi.org/10.1111/j.1469-8137.2007.02121.x

    Article  CAS  PubMed  Google Scholar 

  69. Winterfeld, G., Schneider, J., Perner, K., and Röser, M. Polyploidy and hybridization as main factors of speciation: complex reticulate evolution within the grass genus Helictochloa, Cytogen. Genome Res., 2014, vol. 142, pp. 204—225. https://doi.org/10.1159/000361002

    Article  CAS  Google Scholar 

  70. Suissa, J.S., Kinosian, S.P., Schafran, P.W., et al., Homoploid hybrids, allopolyploids, and high ploidy levels characterize the evolutionary history of a western North American quillwort (Isoëtes) complex, Mol. Phylogen. Evol., 2022, vol. 166, article number 107332. https://doi.org/10.1016/j.ympev.2021

    Article  CAS  Google Scholar 

  71. Sutherland, B.L. and Galloway, L.F., Postzygotic isolation varies by ploidy level within a polyploid complex, New Phytol., 2017, vol. 213, pp. 404—412.

    Article  CAS  PubMed  Google Scholar 

  72. Kamelin, R.V., Speciation in flowering plants, Tr. Zool. Inst. Russ. Akad. Nauk, 2009, suppl. 1, pp. 141—149.

  73. Tsvelev, N.N. and Probatova, N.S., Zlaki Rosii (Grasses of Russia), Moscow: KMK, 2019.

  74. Rice, A., Šmarda, P., Novosolov, M., et al., The global biogeography of polyploid plants, Nat. Ecol. Evol., 2019, vol. 3, pp. 265—273. https://doi.org/10.1038/s41559-018-0787-9

    Article  PubMed  Google Scholar 

  75. Vaezi, J. and Brouillet, L., Origin of Symphyotrichum anticostense (Asteraceae: Astereae), an endemic, high polyploid species of the Gulf of St. Lawrence region, based on morphological and nrDNA evidence, Botany, 2022. https://doi.org/10.1139/cjb-2021-0145

  76. Pellicer, J., Garcia, S., Garnatje, T., et al., Chromosome counts in Asian Artemisia L. (Asteraceae) species: from diploids to the first report of the highest polyploid in the genus, Bot. J. Linn. Soc., 2007, vol. 153, pp. 301—310. https://doi.org/10.1111/j.1095-8339.2007.00611.x

    Article  Google Scholar 

  77. Guggisberg, A., Mansion, G., Kelso, S., and Conti, E., Evolution of biogeographic patterns, ploidy levels, and breeding systems in a diploid–polyploid species complex of Primula, New Phytol., 2006, vol. 171, pp. 617—632. https://doi.org/10.1111/j.1469-8137.2006.01722.x

    Article  CAS  PubMed  Google Scholar 

  78. Kaur, H., Mubarik, N., Kumari, S., and Gupta, R.C., Chromosome numbers and basic chromosome numbers in monocotyledonous genera of the Western Himalayas (India), Acta Biol. Cracov., Ser. Bot., 2014, vol. 56, no. 2, pp. 9—19. https://doi.org/10.2478/abcsb-2014-0016

    Article  CAS  Google Scholar 

  79. Winterfeld, G., Schneider, J., Perner, K., and Röser, M., Origin of highly polyploid species: different pathways of auto- and allopolyploidy in 12–18x species of Avenula (Poaceae), Int. J. Plant Sci., 2012, vol. 173, pp. 399—411. https://doi.org/10.1086/664710

    Article  Google Scholar 

  80. Hardion, L., Verlaque, R., Rosato, M., et al., Impact of polyploidy on fertility variation of Mediterranean Arundo L. (Poaceae), C. R. Biol., 2015, vol. 338, pp. 298—306. https://doi.org/10.1016/j.crvi.2015.03.013

    Article  PubMed  Google Scholar 

  81. Chumová, Z., Krejčíková, J., Mandáková, T., et al., Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae), PLoS One, 2015, vol. 10, no. 7. p. e0133748. https://doi.org/10.1371/journal.pone.0133748

    Article  CAS  Google Scholar 

  82. Gould, F.W., Pollen size as related to polyploidy and speciation in the Andropogon saccharoides—A. barbinodis complex, Brittonia, 1957, vol. 9, no. 2, pp. 71—75.

    Article  Google Scholar 

  83. Hair, J.B. and Beuzenberg, E.J., High polyploidy in a New Zealand Poa, Nature, 1961, vol. 189, pp. 160—160.

    Article  Google Scholar 

  84. Li, L.F., Zhang, Z.B., Wang, Z.H., et al., Genome sequences of the five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome, Mol. Plant, 2022, vol. 15, pp. 488—503. https://doi.org/10.1016/j.molp.2021.12.019

    Article  CAS  PubMed  Google Scholar 

  85. Levy, A.A. and Feldman, M., Evolution and origin of bread wheat, Plant Cell, 2022, article number koac130. https://doi.org/10.1093/plcell/koac130

  86. Eilam, T., Anikster, Y., Millet, E., et al., Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum, Genome, 2008, vol. 51, pp. 616—627. https://doi.org/10.1139/G08-043

    Article  CAS  PubMed  Google Scholar 

  87. Kamal, N., Tsardakas Renhuldt, N., Bentzer, J., et al., The mosaic oat genome gives insights into a uniquely healthy cereal crop, Nature, 2022, vol. 606, pp. 113—119. https://doi.org/10.1038/s41586-022-04732-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Löve, Á., Generic evolution of the wheat grasses, Biol. Zentralbl., 1982, vol. 101, pp. 199—212.

    Google Scholar 

  89. Löve, Á., Conspectus of the Triticeae, Feddes Repert., 1984, vol. 95, pp. 425—521.

    Google Scholar 

  90. Dewey, D.R., The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae, in Gene Manipulation in Plant Improvement, Boston, MA: Springer-Verlag, 1984, pp. 209—279.

    Google Scholar 

  91. Delaunay, L.N., Comparative karyological study of Muscari Mill. and Bellevalia Lapeyr. species, Vestn. Tifliss. Bot. Sada, 1922, vol. 2, no. 1, pp. 1—32.

    Google Scholar 

  92. Wang, R.R.-C., von Bothmer, R., Dvorak, J., et al., Genome symbols in the Triticeae (Poaceae), in Herbarium Publications, Logan, Uta: Uta State Publ., 1994, paper 20. https://digitalcommons.usu.edu/herbarium_pubs/20.

  93. Blattner, F.R., Taxonomy of the genus Hordeum and barley (Hordeum vulgare), in The Barley Genome, Cham: Springer-Verlag, 2018, pp. 11—23.

    Google Scholar 

  94. Baum, B.R., Estes, J.R., and Gupta, P.K., Assessment of the genomic system of classification in the Triticeae, Am. J. Bot., 1987, vol. 74, pp. 1388—1395.

    Article  Google Scholar 

  95. Barkworth, M.E., Taxonomy of the Triticeae: a historical perspective, Hereditas, 1992, vol. 116, pp. 1—14.

    Article  Google Scholar 

  96. Kamelin, R.V., Lektsii po sistematike rastenii: glavy teoreticheskoi sistematiki rastenii (Lectures on Plant Systematics: Chapters in Theoretical Plant Systematics), Barnaul: Azbuka, 2004.

  97. Yen, C., Yang, J.-L., Yen, Y., and Kihara, H., Áskell Löve and the modern genetic concept of the genera in the tribe Triticeae (Poaceae), J. Syst. Evol., 2005, vol. 43, pp. 82—93.

    Article  Google Scholar 

  98. Vavilov, N.I., The law of homologous series in variation, J. Genet., 1922, vol. 12, pp. 47—89.

    Article  Google Scholar 

  99. Vavilov, N.I., Zakon gomologicheskikh ryadov v nasledstvennoi izmenchivosti (The Law of Homological Series in Hereditary Variation), Moscow: Selkhozgiz, 1935.

  100. Tsvelev, N.N., On the possibility of despecialization by hybridogenesis on the example of the evolution of the tribe Triticeae of the grass family (Poaceae), Zh. Obshch. Biol., 1975, vol. 36, no. 1, pp. 90—99.

    Google Scholar 

  101. Kihara, H., Genom Analyse bei Triticum und Aegilops, Cytologia, 1930, vol. 1, no. 3, pp. 263—284.

    Article  Google Scholar 

  102. Tsvelev, N.N., Hybridization as one of the factors for increasing biological diversity and a genomic criterion for genera in higher plants, in Biologicheskoe raznoobrazie: podkhody k izucheniyu i sokhraneniyu (Biodiversity: Approaches to Study and Conservation), St. Petersburg, 1992, pp. 193—201.

  103. Simpson, G.G., Tempo and Mode in Evolution, New York: Columbia Univ. Press, 1944.

    Google Scholar 

  104. Saarela, J.M., Bull, R.D., Paradis, M.J., et al., Molecular phylogenetics of cool-season grasses in the subtribes Agrostidinae, Anthoxanthinae, Aveninae, Brizinae, Calothecinae, Koeleriinae and Phalaridinae (Poaceae, Pooideae, Poeae, Poeae chloroplast group 1), PhytoKeys, 2017, vol. 87, pp. 1—139. https://doi.org/10.3897/phytokeys.87.12774

    Article  Google Scholar 

  105. Dauphin, B., Grant, J.R., Farrar, D.R., and Rothfels, C.J., Rapid allopolyploid radiation of moonwort ferns (Botrychium; Ophioglossaceae) revealed by PacBio sequencing of homologous and homeologous nuclear regions, Mol. Phylogenet. Evol., 2018, vol. 120, pp. 342—353. https://doi.org/10.1016/j.ympev.2017.11.025

    Article  PubMed  Google Scholar 

  106. Schinkel, C.C., Kirchheimer, B., Dellinger, A.S., et al., Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant, AoB Plants, 2016, vol. 8, pp. 1—16. https://doi.org/10.1093/aobpla/plw064

    Article  Google Scholar 

  107. Herben, T., Suda, J., and Klimešová, J., Polyploid species rely on vegetative reproduction more than diploids: a re-examination of the old hypothesis, Ann. Bot., 2017, vol. 120, pp. 341—349. https://doi.org/10.1093/aob/mcx009

    Article  PubMed  PubMed Central  Google Scholar 

  108. Meudt, H.M., Albach, D.C., Tanentzap, A.J., et al., Polyploidy on islands: its emergence and importance for diversification, Front. Plant Sci., 2021, vol. 12, p. 637214. https://doi.org/10.3389/fpls.2021.637214

    Article  PubMed  PubMed Central  Google Scholar 

  109. Villa, S., Montagna, M., and Pierce, S., Endemism in recently diverged angiosperms is associated with polyploidy, Plant Ecol., 2022, vol. 223, pp. 479—492. https://doi.org/10.1007/s11258-022-01223-y

    Article  Google Scholar 

  110. Pécrix, Y., Rallo, G., Folzer, H., et al., Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp., J. Exp. Bot., 2011, vol. 62, pp. 3587—3597. https://doi.org/10.1093/jxb/err052

    Article  CAS  PubMed  Google Scholar 

  111. Klatt, S., Schinkel, C.C., Kirchheimer, B., et al., Effects of cold treatments on fitness and mode of reproduction in the diploid and polyploid alpine plant Ranunculus kuepferi (Ranunculaceae), Ann. Bot., 2018, vol. 121, pp. 1287—1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fox, D.T., Soltis, D.E., Soltis, P.S., et al., Polyploidy: a biological force from cells to ecosystems, Trends Cell Biol., 2020, vol. 30, pp. 688—694. https://doi.org/10.1016/j.tcb.2020.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Prentis, P.J., Wilson, J.R., Dormontt, E.E., et al., Adaptive evolution in invasive species, Trends Plant Sci., 2008, vol. 13, pp. 288—294.

    Article  CAS  PubMed  Google Scholar 

  114. Brochmann, C., Brysting, A.K., Alsos, I.G., et al., Polyploidy in arctic plants, Biol. J. Linn. Soc., 2004, vol. 82, pp. 521—536. https://doi.org/10.1111/j.1095-8312.2004.00337.x

    Article  Google Scholar 

  115. Probatova, N.S., Annotated list of chromosome numbers in species of the Poaceae family from the Russian Far East, in Komarovskie chteniya (Komarov Readings), Vladivostok, 2007, issue 55, pp. 9—103.

  116. Clausen, J., Introgression facilitated by apomixis in polyploid Poa, Euphytica, 1961, vol. 10, pp. 87—94. https://doi.org/10.1007/BF00037208

    Article  Google Scholar 

  117. Soltis, D.E., Visger, C.J., and Soltis, P.S., The polyploidy revolution then… and now: Stebbins revisited, Am. J. Bot., 2014, vol. 101, pp. 1057—1078. https://doi.org/10.3732/ajb.1400178

    Article  PubMed  Google Scholar 

  118. Mayrose, I., Zhan, S.H., Rothfels, C.J., et al., Recently formed polyploid plants diversify at lower rates, Science, 2011, vol. 333, p. 1257. https://doi.org/10.1126/science.1207205

    Article  CAS  PubMed  Google Scholar 

  119. Schranz, M.E., Mohammadin, S., and Edger, P.P., Ancient whole genome duplications, novelty and diversification: the WGD Radiation Lag-Time Model, Curr. Opin. Plant Biol., 2012, vol. 15, pp. 147—153. https://doi.org/10.1016/j.pbi.2012.03.011

    Article  PubMed  Google Scholar 

  120. Wang, X., Morton, J.A., Pellicer, J., et al., Genome downsizing after polyploidy: mechanisms, rates and selection pressures, Plant J., 2021, vol. 107, pp. 1003—1015. https://doi.org/10.1111/tpj.15363

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out within the framework of Russian Science Foundation project no. 22-24-01117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rodionov.

Ethics declarations

The author declares that he has no conflicts of interest.

This article does not contain the results of any studies using animal or human subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodionov, A.V. Eupolyploidy As a Mode in Plant Speciation. Russ J Genet 59, 419–431 (2023). https://doi.org/10.1134/S1022795423050113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795423050113

Keywords:

Navigation