Skip to main content
Log in

Growth dynamics of Centrolobium robustum (Vell.) Mart. ex Benth. (Leguminosae-Papilionoideae) in the Atlantic Forest

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

Knowledge about growth rhythm and longevity of tropical trees is essential to understand life strategies of native species, and consequently, of forest remnants. This study aims to investigate the growth dynamics of Centrolobium robustum, a representative species from Atlantic Forest. For this purpose, radial growth was examined through tree rings and cambium analysis, from macroscopical, anatomical, and ultrastructural perspectives. The apical and radial stem growth was evaluated through leaf and cambium phenology, respectively. Leaf and cambium behaviors were associated with environmental seasonality. The results showed that the period of cell production and cambial development occurred in association with leaf expansion and during the wet, warm, and long-day season. Seasonality of cambial and leaf phenology in response to the environment determined the annual formation of tree rings, and it allowed to evaluate C. robustum growth rates and longevity. Species seasonality also responded to abnormal climatic events during the study period, which shows its sensitivity to environmental changes and represents a factor to be considered in the forest management programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Figs. 2–9
Figs. 10–15

Similar content being viewed by others

References

  • Aloni R (2007) Phytohormonal mechanisms that control wood quality formation in young and mature trees. In: Entwistle K, Harris P, Walker L (eds) The Compromised Wood Workshop, 1st edn. The Wood Technology Research Centre, University of Canterbury, Christchurch, pp 1–22

    Google Scholar 

  • Ashraf MA (2012) Waterlogging stress in plants: a review. Afr J Agric Res 7:1976–1981. doi:10.5897/AJARX11.084

    Google Scholar 

  • Augspurger CK (1983) Phenology, flowering synchrony and fruit set of six neotropical shrubs. Biotropica 15:257–267

    Article  Google Scholar 

  • Barros CF, Miguens FC (1998) Ultrastructure of the epidermal cells of Beilschmiedia rigida (Mez) Kosterm. (Lauraceae). Acta Microsc 6:451–461

    Google Scholar 

  • Bencke CSC and Morellato LPC (2002) Comparação de dois métodos de avaliação da fenologia de plantas, sua interpretação e representação. Rev Bras Bot 25:269–275

    Article  Google Scholar 

  • Bianchini E, Pimenta JA, Santos FAM (2006) Fenologia de Chrysophyllum gonocarpum (Mart. and Eichler) Engl. (Sapotaceae) em floresta semidecíduado Sul do Brasil. Rev Bras Bot 29:595–602

    Article  Google Scholar 

  • Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247. doi:10.1163/22941932-90000687

    Article  Google Scholar 

  • Borchert R, Rivera G (2001) Photoperiodic control of seasonal development and dormancy in tropical stem succulent trees. Tree Physiol 21:213–221. doi:10.1093/treephys/21.4.213

    Article  CAS  PubMed  Google Scholar 

  • Borchert R, Renner SS, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, Von Hildebrand P (2005) Photoperiodic induction of synchronous flowering near the Equator. Nature 433:627–629. doi:10.1038/nature03259

    Article  CAS  PubMed  Google Scholar 

  • Brandes AFN, Lisi CSL, Silva LDSAB, Rajput KS, Barros CF (2015) Seasonal cambial activity and wood formation in trees and lianas of Leguminosae growing in the Atlantic Forest: a comparative study. Botany 93:211–220. doi:10.1139/cjb-2014-0198

    Article  Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12. doi:10.1007/s00442-005-0160-y

    Article  PubMed  Google Scholar 

  • Brienen RJW, Zuidema PA (2006) Lifetime growth patterns and ages of Bolivian rain forest trees obtained by tree ring analysis. J Ecol 94:481–493. doi:10.1111/j.1365-2745.2005.01080.x

    Article  Google Scholar 

  • Callado CH (2010) Os anéis de crescimento no estudo da dinâmica populacional na Floresta Atlântica. In: Absy ML, Matos FDA, Amaral IL (eds) Diversidade Vegetal Brasileira: conhecimento, conservação e uso, 1st edn. Sociedade Botânica do Brasil, Manaus, pp 227–231

    Google Scholar 

  • Callado CH, Silva Neto SJ, Scarano FR, Costa CG (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15:492–497. doi:10.1007/s00468-001-0128-4

    Google Scholar 

  • Callado CH, Silva Neto SJ, Scarano FR, Costa CG (2004) Radial growth dynamics of Tabebuia umbellata (Sond) Sandwith (Bignoniaceae), a flood-tolerant tree from the Atlantic Forest swamps in Brazil. IAWA J 25:175–183. doi:10.1163/22941932-90000359

    Article  Google Scholar 

  • Callado CH, Roig FA, Tomazello Filho M, Barros CF (2013) Cambial growth periodicity studies of South American woody species—a review. IAWA J 34:213–230. doi:10.1163/22941932-00000019

    Article  Google Scholar 

  • Callado CH, Vasconcellos TJ, Costa MS, Barros CF, Roig FA, Tomazello-Filho M (2014) Studies in cambial activity: advances and challenges in knowledge of brazilian species growth dynamics. An Acad Bras Cienc 86:277–283. doi:10.1590/0001-3765201320130033

    Article  PubMed  Google Scholar 

  • Carvalho PER (2003) Espécies arbóreas brasileiras Brasília. Embrapa Informação Tecnológica, Colombo

    Google Scholar 

  • Costa MS, Vasconcellos TJ, Barros CF, Callado CH (2013) Does growth rhythm of a widespread species change in distinct growth sites? IAWA J. 34:498–509. doi:10.1163/22941932-00000040

    Article  Google Scholar 

  • Costa MS, Ferreira KEB, Botosso PC, Callado CH (2015) Growth analysis of five Leguminosae native tree species from a seasonal semidecidual lowland forest in Brazil. Dendrochronologia 36:23–32. doi:10.1016/j.dendro.2015.08.004

    Article  Google Scholar 

  • Da Cunha M, Gomes VM, Xavier Filho J, Attias M, Souza W, Miguens FC (2000) Laticifer system of Chamaesyce thymifolia: a closed host environment for Trypanosomatids. Biocell (Mendoza) 24:123–132

    Google Scholar 

  • Elo A, Immanen J, Nieminen K, Helariutta Y (2009) Stem cell function during plant vascular development. Semin Cell Dev Biol 20:1097–1106. doi:10.1016/j.semcdb.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  • Estrada GCD, Callado CH, Lisi CS, Soares M (2008) Annual growth rings in the mangrove Laguncularia racemosa (Combretaceae). Trees 22:663–670. doi:10.1007/s00468-008-0224-9

    Article  Google Scholar 

  • Evert RF (2013) Anatomia das plantas de esau: meristemas, célula e tecidos do corpo da planta: sua estrutura e função e desenvolvimento. Blucher, São Paulo

    Google Scholar 

  • Fahn A (1995) Seasonal cambial activity and phytogeographic origin of woody plants: a hypothesis. Isr J Plant Sci 43:69–75

    Article  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142. doi:10.2307/2440500

    Article  Google Scholar 

  • Fournier LA (1974) Un método cuantitativo para la medición de características fenológicas en árboles. Turrialba 24:422–423

    Google Scholar 

  • Gonçalves GV (2007) Dendrocronologia: princípios teóricos, problemas práticos e aplicabilidade. Universidade de Évora, Évora, CIDEHUS

    Google Scholar 

  • Gričar J (2012) Cambial cell production and structure of xylem and phloem as an indicator of tree vitality: a review. In: Diez JJ (ed) Sustainable forest management: current research. InTech, Rijeka, pp 111–134. doi:10.5772/29944

    Google Scholar 

  • Grissino-Mayer HD (2001) Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Res 57:205–221

    Google Scholar 

  • Groover A, Robischon M (2006) Developmental mechanisms regulating secondary growth in woody plants. Curr Opin Plant Biol 9:55–58. doi:10.1016/j.pbi.2005.11.013

    Article  CAS  PubMed  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–95

    Google Scholar 

  • INPE (2009). Condições climáticas observadas no Brasil em 2009. Centro de Previsão de Tempo e Estudos Climáticos - CPTEC. Instituto Nacional de Pesquisas Espaciais – INPE (2009) Available in: http://clima1.cptec.inpe.br/~rclima1/pdf/Sintese_Climatica_2009.pdf

  • Inoue MT, Roderjan CV, Kuniyoshi YS (1984) Projeto madeira do paraná. Fundação de Pesquisas Florestais do Paraná, Curitiba

    Google Scholar 

  • Jackson MB (1985) Ethylene and responses of plants to soil waterlogging and submergence. Annu Rev Plant Physiol 36:145–174. doi:10.1146/annurev.pp.36.060185.001045

    Article  CAS  Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San Diego

    Google Scholar 

  • Larcher W (2006) Ecofisiologia, Vegetal edn. RiMa, São Carlos

    Google Scholar 

  • Lima HC (1985) Centrolobium Mart Ex Benth (Leg Pap)—Estudo taxonômico das espécies extra-amazônicas. Arquivos do Jardim Botânico do Rio de Janeiro 27:177–191

    Google Scholar 

  • Lipschitz N, Lev-Yadun S (1986) Cambial activity of evergreen and seasonal dimorphics around the Mediterranean. IAWA Bull 7:145–153

    Article  Google Scholar 

  • Lisi CS, Tomazello Filho M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J 29:189–207. doi:10.1163/22941932-90000179

    Article  Google Scholar 

  • Lopes ESS, Namikawa LM, Reis JBC (2011) Risco de escorregamentos: Monitoramento e alerta de áreas urbanas nos municípios no entorno de Angra dos Reis - Rio de Janeiro. Anais do 13 Congresso Brasileiro de Geologia de Engenharia e Ambiental, 1st edn. Sociedade Brasileira de Geologia e Engenharia Ambiental, São Paulo, pp 1–9

    Google Scholar 

  • López L, Villalba R (2010) Climate influences on the radial growth of Centrolobium microchaete, a valuable timber species from the Tropical Dry Forests in Bolivia. Biotropica 2:1–9. doi:10.1111/j.1744-7429.2010.00653.x

    Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414. doi:10.2307/1603658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcati CR, Angyalossy V, Evert RF (2006) Seasonal variation in wood formation of Cedrela fissilis (Meliaceae). IAWA J 27:199–211

    Article  Google Scholar 

  • Marcati CR, Milanez CRD, Machado SR (2008) Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell) Blake Leguminosae: Caesalpinoidae). Trees 22:3–12. doi:10.1007/s00468-007-0173-8

    Article  Google Scholar 

  • Mérida T, Schönherr J, Schmidt HW (1981) Fine structure of plant cuticles in relation to water permeability: the fine structure of the cuticle of Clivia miniata Reg leaves. Planta 151:259–267. doi:10.1007/BF00385154

    Article  Google Scholar 

  • Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000) Phenology of Atlantic rain forest trees: a comparative study. Biotropica 2:811–823. doi:10.1111/j.1744-7429.2000.tb00620.x

    Article  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630. doi:10.1111/j.1399-3054.1997.tb03068.x

    Article  CAS  Google Scholar 

  • Pires-O’Brien MJ, O’Brien CM (1995) Ecologia e modelamento de florestas tropicais. Faculdade de Ciências Agrárias do Pará, Serviço de informação e documentação

    Google Scholar 

  • Pirie MD, Klitgaard BB, Pennington RT (2009) Revision and biogeography of Centrolobium (Leguminosae - Papilionoideae). Syst Bot 34:345–359. doi:10.1600/036364409788606262

    Article  Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Bio 17:208–212. doi:10.1083/jcb.17.1.208

    Article  CAS  Google Scholar 

  • Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, King GM, Krause C, Morin H, Oberhuber W, Prislan P, Rathgeber CBK (2013) A meta-analysis of cambium phenologyand growth: linear and non-linear patterns in conifers of the northern hemisphere. Ann Bot 112:1911–1920. doi:10.1093/aob/mct243

    Article  PubMed  PubMed Central  Google Scholar 

  • Rozendaal DMA, Zuidema PA (2011) Dendroecology in the tropics: a review. Trees 25:3–16. doi:10.1007/s00468-010-0480-3

    Article  Google Scholar 

  • Ruzin SE (1999) Plant microtechnique and microscopy. Oxford University Press, Cambridge

    Google Scholar 

  • Salisbury FB, Ross CW (2012) Fisiologia das plantas Cengage Learning. Wadsworth, Belmont

    Google Scholar 

  • Sass JE (1958) Elements of botanical microtechnique, vol 2. McGraw-Hill Book Company, New York

    Google Scholar 

  • Savidge RA (2001) Instrinsic regulation of cambial growth. J Plant Growth Regul 20:52–77. doi:10.1007/s003440010002

    Article  CAS  Google Scholar 

  • Shimamoto CY, Botosso PC, Marques MCM (2014) How much carbon is sequestered during the restoration of tropical forests? Estimates from tree species in the Brazilian Atlantic forest. For Ecol Manag 329:1–9. doi:10.1016/j.foreco.2014.06.002

    Article  Google Scholar 

  • Sokpon N, Biaou SH (2002) The use of diameter distributions in sustained-use management of remnant forests in Benin: case of Bassila forest reserve in North Benin. For Ecol Manag 161:13–25. doi:10.1016/S0378-1127(01)00488-1

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Taiz L, Zeiger E (2013) Fisiologia vegetal. Artmed, Porto Alegre

    Google Scholar 

  • Tomazello Filho M, Lisi CS, Hansen N, Cury G (2004) Anatomical features of increment zones in different tree species in the state of São Paulo, Brazil. Sci For 66:46–55

    Google Scholar 

  • Venegas González A, Von Arx G, Chagas MP, Tomazello Filho M (2015) Plasticity in xylem anatomical traits of two tropical species in response to intra-seasonal climate variability. Trees 29:423–435. doi:10.1007/s00468-014-1121-z

    Article  Google Scholar 

  • Verheyden A, Kairo JG, Beeckman H, Koedam N (2004) Growth rings, growth ring formation and age determination in the mangrove Rhizophora mucronata. Ann Bot 94:59–66. doi:10.1093/aob/mch115

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlam M, Baker PJ, Bunyavejchewin S, Mohren GMJ, Zuidema PA (2014) Understanding recruitment failure in tropical tree species: insights from a tree-ring study. For Ecol Manag 312:108–116. doi:10.1016/j.foreco.2013.10.016

    Article  Google Scholar 

  • Walter H, Harnickell E, Müeller-Dombois D (1975) Climate diagram maps. Springer, Berlin

    Book  Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA Bull 10:109–122. doi:10.1163/22941932-90000479

    Article  Google Scholar 

  • Worbes M (1995) How to measure growth dynamics in tropical trees—a review. IAWA J 16:337–351. doi:10.1163/22941932-90001424

    Article  Google Scholar 

  • Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserv in Venezuela. J Ecol 87:391–403. doi:10.1046/j.1365-2745.1999.00361.x

    Article  Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20:217–231. doi:10.1078/1125-7865-00018

    Article  Google Scholar 

  • Zar JH (1999) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

  • Zuidema PA, Baker PJ, Groenendijk P, Schippers P, Van Der Sleen P, Vlam M, Sterck F (2013) Tropical forests and global change: filling knowledge gaps. Trends Plant Sci 18:413–419. doi:10.1016/j.tplants.2013.05.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Universidade do Estado do Rio de Janeiro (UERJ), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowships, funding, and research grants; Walter da Silva, João Ferreira Alves Junior, and Eduardo Gama Mendes de Moraes for support in field works; Maxmira de Souza Arêdes and Camilla Ribeiro Alexandrino for support in samples processing; and Dr. Cláudio Sergio Lisi for support with dendrochronology analysis. This paper was derived from the master dissertation of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cátia Henriques Callado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Vasconcellos, T.J., Costa, M.S., Barros, C.F. et al. Growth dynamics of Centrolobium robustum (Vell.) Mart. ex Benth. (Leguminosae-Papilionoideae) in the Atlantic Forest. Braz. J. Bot 39, 925–934 (2016). https://doi.org/10.1007/s40415-016-0292-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0292-9

Keywords

Navigation