Skip to main content

Advertisement

Log in

The effect of chitosan-modified gold nanoparticles in Lemna valdiviana and Daphnia pulex

  • Original Paper
  • Published:
Gold Bulletin Aims and scope Submit manuscript

Abstract

Gold nanoparticles (AuNPs) are nowadays used in many areas of science, particularly in medicine as drug release and gene carriers. The extensive use of these materials makes imperative the study of their effects on the environment after their disposal, that mostly affects the aquatic media. The present work explores the bioaccumulation and toxicity of chitosan-functionalized and non-functionalized gold nanoparticles, with primary producers (Lemna valdiviana) and primary consumers (Daphnia pulex) aquatic organisms. Bioaccumulation of 27.4 nm AuNPs and 43.1 nm chitosan-gold nanoparticles (CO-AuNPs) was evaluated in both microorganisms, finding accumulation of AuNPs and inhomogeneous aggregation of CO-AuNPs in Daphnia pulex gut, and internalization of both types of nanoparticles in Lemna valdiviana cell walls. The effective concentration of nanomaterial for 50% survival (LC50) of Daphnia pulex organisms was 1.13 mg/L for AuNPs and 0.96 mg/L for CO-AuNPs in the acute test. In Lemna valdiviana 7-day test, the EC50 for area and frond number were 1.19 mg/L and 1.26 mg/L, respectively, for AuNPs, 1.53 mg/L and 1.44 mg/L, respectively, for CO-AuNPs, finding higher toxicity of CO-AuNPs to Daphnia pulex, and AuNPs to Lemna valdiviana. The obtained results suggest that the effects of nanomaterials on the growth and survival of key organisms deserve further study, as this may lead to the development of appropriate environmental regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Raw data and materials are available if required by the reviewers.

Code availability

Not applicable.

References

  1. Luoma SN, Rainbow PS (2005) Why is metal bioaccumulation so variable? Biodynamics as a unifying concept. Environ Sci Technol 39:1921–1931. https://doi.org/10.1021/es048947e

    Article  CAS  Google Scholar 

  2. Park S, Woodhall J, Ma G et al (2014) Regulatory ecotoxicity testing of engineered nanoparticles: are the results relevant to the natural environment? Nanotoxicology 8:583–592. https://doi.org/10.3109/17435390.2013.818173

    Article  CAS  Google Scholar 

  3. Yuan L, Richardson CJ, Ho M et al (2018) Stress responses of aquatic plants to silver nanoparticles. Environ Sci Technol 52:2558–2565. https://doi.org/10.1021/acs.est.7b05837

    Article  CAS  Google Scholar 

  4. Klaine SJ, Alvarez PJJ, Batley GE et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825. https://doi.org/10.1897/08-090.1

    Article  CAS  Google Scholar 

  5. Hochella MF, Mogk DW, Ranville J, et al. (2019) Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363:eaau8299. https://doi.org/10.1126/science.aau8299

  6. Griffin S, Masood MI, Nasim MJ et al (2018) Natural nanoparticles: a particular matter inspired by nature. Antioxidants 7:3. https://doi.org/10.3390/antiox7010003

    Article  CAS  Google Scholar 

  7. Gonzalez L, Lison D, Kirsch-Volders M (2008) Genotoxicity of engineered nanomaterials: a critical review. Nanotoxicology 2:252–273. https://doi.org/10.1080/17435390802464986

    Article  Google Scholar 

  8. Vance ME, Kuiken T, Vejerano EP et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780. https://doi.org/10.3762/bjnano.6.181

    Article  CAS  Google Scholar 

  9. Abrica-González P, Zamora-Justo JA, Sotelo-López A et al (2019) Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers 14:258. Nanoscale Res Lett. https://doi.org/10.1186/s11671-019-3083-y

    Article  Google Scholar 

  10. Zamora-Justo JA, Abrica-González P, Vázquez-Martínez GR et al (2019) Polyethylene glycol-coated gold nanoparticles as DNA and atorvastatin delivery systems and cytotoxicity evaluation. J Nanomater 2019:1–11. https://doi.org/10.1155/2019/5982047

    Article  CAS  Google Scholar 

  11. Remant Bahadur KC, Thapa B, Bhattarai N (2014) Gold nanoparticle-based gene delivery: promises and challenges. Nanotechnol Rev 3:269–280. https://doi.org/10.1515/ntrev-2013-0026

    Article  CAS  Google Scholar 

  12. Aied A, Greiser U, Pandit A, Wang W (2013) Polymer gene delivery: overcoming the obstacles. Drug Discovery Today 18:1090–1098. https://doi.org/10.1016/j.drudis.2013.06.014

    Article  CAS  Google Scholar 

  13. Zou P, Yang X, Wang J et al (2016) Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190:1174–1181. https://doi.org/10.1016/j.foodchem.2015.06.076

    Article  CAS  Google Scholar 

  14. Robinson KJ, Corrie SR, Thurecht KJ et al (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33:2373–2387. https://doi.org/10.1007/s11095-016-1958-5

    Article  CAS  Google Scholar 

  15. Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. P& T: a peer-reviewed. J Formul Manag 42:742–755. https://doi.org/10.1016/j.psychres.2007.07.030

    Article  Google Scholar 

  16. Hüffer T, Praetorius A, Wagner S et al (2017) Microplastic exposure assessment in aquatic environments: learning from similarities and differences to engineered nanoparticles. Environ Sci Technol 51:2499–2507. https://doi.org/10.1021/acs.est.6b04054

    Article  CAS  Google Scholar 

  17. Hashmi ASK, Hutchings GJ (2006) Gold catalysis. Angew Chem Int Ed 45:7896–7936. https://doi.org/10.1002/anie.200602454

    Article  Google Scholar 

  18. Hendrich CM, Sekine K, Koshikawa T et al (2021) Homogeneous and heterogeneous gold catalysis for materials science. Chem Rev 121:9113–9163. https://doi.org/10.1021/acs.chemrev.0c00824

    Article  CAS  Google Scholar 

  19. Kim EY, Kumar D, Khang G, Lim D-K (2015) Recent advances in gold nanoparticle-based bioengineering applications. J Mater Chem B 3:8433–8444. https://doi.org/10.1039/C5TB01292A

    Article  CAS  Google Scholar 

  20. Yang X, Yang M, Pang B et al (2015) Gold nanomaterials at work in biomedicine. Chem Rev 115:10410–10488. https://doi.org/10.1021/acs.chemrev.5b00193

    Article  CAS  Google Scholar 

  21. Schmitz C, Gökce B, Jakobi J et al (2016) Integration of gold nanoparticles into NIR-radiation curable powder resin. Chem Select 1:5574–5578. https://doi.org/10.1002/slct.201601288

    Article  CAS  Google Scholar 

  22. Bhagawati M, You C, Piehler J (2013) Quantitative real-time imaging of protein–protein interactions by LSPR detection with micropatterned gold nanoparticles. Anal Chem 85:9564–9571. https://doi.org/10.1021/ac401673e

    Article  CAS  Google Scholar 

  23. Russo CJ, Passmore LA (2014) Ultrastable gold substrates for electron cryomicroscopy. Science 346:1377–1380. https://doi.org/10.1126/science.1259530

    Article  CAS  Google Scholar 

  24. Pan D, Pramanik M, Senpan A et al (2011) Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J 25:875–882. https://doi.org/10.1096/fj.10-171728

    Article  CAS  Google Scholar 

  25. Perry HL, Botnar RM, Wilton-Ely JDET (2020) Gold nanomaterials functionalised with gadolinium chelates and their application in multimodal imaging and therapy. Chem Commun 56:4037–4046. https://doi.org/10.1039/D0CC00196A

    Article  CAS  Google Scholar 

  26. Bansal SA, Kumar V, Karimi J et al (2020) Role of gold nanoparticles in advanced biomedical applications. Nanoscale Adv 2:3764–3787. https://doi.org/10.1039/D0NA00472C

    Article  Google Scholar 

  27. Kauffman GB (1985) The role of gold in alchemy. Part II. Gold Bull 18:69–78. https://doi.org/10.1007/BF03214689

    Article  CAS  Google Scholar 

  28. Pal D, Sahu CK, Haldar A (2014) Bhasma : the ancient Indian nanomedicine. J Adv Pharm Technol Res 5:4–12. https://doi.org/10.4103/2231-4040.126980

    Article  Google Scholar 

  29. Cobley CM, Chen J, Cho EC et al (2011) Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 40:44–56. https://doi.org/10.1039/B821763G

    Article  CAS  Google Scholar 

  30. Sasidharan A, Monteiro-Riviere NA (2015) Biomedical applications of gold nanomaterials: opportunities and challenges. Wiley Interdiscip Rev: Nanomed Nanobiotechnol 7:779–796. https://doi.org/10.1002/wnan.1341

    Article  CAS  Google Scholar 

  31. Obaid G, Chambrier I, Cook MJ, Russell DA (2015) Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem Photobiol Sci 14:737–747. https://doi.org/10.1039/c4pp00312h

    Article  CAS  Google Scholar 

  32. Han G, Ghosh P, de Vincent Rotello MM (2007) Drug and gene delivery using gold nanoparticles. 3:40–45

  33. Her S, Jaffray DA, Allen C (2017) gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101. https://doi.org/10.1016/j.addr.2015.12.012

    Article  CAS  Google Scholar 

  34. Pissuwan D, Niidome T, Cortie MB (2011) The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J Control Release 149:65–71. https://doi.org/10.1016/j.jconrel.2009.12.006

    Article  CAS  Google Scholar 

  35. Kaul S, Gulati N, Verma D et al (2018) Role of nanotechnology in cosmeceuticals: a review of recent advances. J Pharm 2018:1–19. https://doi.org/10.1155/2018/3420204

    Article  CAS  Google Scholar 

  36. Fytianos G, Rahdar A, Kyzas GZ (2020) Nanomaterials in cosmetics: recent updates. Nanomaterials 10:979. https://doi.org/10.3390/nano10050979

  37. Bilal M, Iqbal HMN (2020) New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics 7:24. https://doi.org/10.3390/cosmetics7020024

    Article  CAS  Google Scholar 

  38. Dhawan S, Sharma P, Nanda S (2020) Cosmetic nanoformulations and their intended use. In: Nanocosmetics. Elsevier, pp 141–169

  39. Sani A, Cao C, Cui D (2021) Toxicity of gold nanoparticles (AuNPs): a review. Biochem Biophys Rep 26:100991. https://doi.org/10.1016/j.bbrep.2021.100991

    Article  CAS  Google Scholar 

  40. Ferin J, Oberdörster G, Soderholm SC, Gelein R (1991) Pulmonary tissue access of ultrafine particles. J Aerosol Med 4:57–68. https://doi.org/10.1089/jam.1991.4.57

    Article  Google Scholar 

  41. Ferin J, Oberdörster G, Penney DP et al (1990) Increased pulmonary toxicity of ultrafine particles? I. Particle clearance, translocation, morphology. J Aerosol Sci 21:381–384. https://doi.org/10.1016/0021-8502(90)90064-5

    Article  Google Scholar 

  42. Donaldson K (2004) Nanotoxicology. Occup Environ Med 61:727–728. https://doi.org/10.1136/oem.2004.013243

    Article  CAS  Google Scholar 

  43. Stone V, Miller MR, Clift MJD et al (2017) Nanomaterials versus ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ Health Perspect 125:1–18. https://doi.org/10.1289/EHP424

    Article  Google Scholar 

  44. Perreault F, Oukarroum A, Gerson Matias W et al (2010) Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba. J Bot 2010:1–9. https://doi.org/10.1155/2010/763142

    Article  CAS  Google Scholar 

  45. Song G, Gao Y, Wu H et al (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152. https://doi.org/10.1002/etc.1933

    Article  CAS  Google Scholar 

  46. Glenn JB, White SA, Klaine SJ (2012) Interactions of gold nanoparticles with freshwater aquatic macrophytes are size and species dependent. Environ Toxicol Chem 31:194–201. https://doi.org/10.1002/etc.728

    Article  CAS  Google Scholar 

  47. Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemna gibba. Environ Toxicol Chem 32:902–907. https://doi.org/10.1002/etc.2131

    Article  CAS  Google Scholar 

  48. Reis P, Pereira R, Carvalho FP et al (2018) Life history traits and genotoxic effects on Daphnia magna exposed to waterborne uranium and to a uranium mine effluent - a transgenerational study. Aquat Toxicol 202:16–25. https://doi.org/10.1016/j.aquatox.2018.06.009

    Article  CAS  Google Scholar 

  49. Asghari S, Johari SA, Lee JH et al (2012) toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J Nanobiotechnol 10:1–11. https://doi.org/10.1186/1477-3155-10-14

    Article  CAS  Google Scholar 

  50. Mantecca P, Guazzoni N, Santo N et al (2014) Toxic effects and ultrastructural damages to Daphnia magna of two differently sized ZnO nanoparticles: Does size matter? Water Res 53:339–350. https://doi.org/10.1016/j.watres.2014.01.036

    Article  CAS  Google Scholar 

  51. Wiench K, Wohlleben W, Hisgen V et al (2009) Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere 76:1356–1365. https://doi.org/10.1016/j.chemosphere.2009.06.025

    Article  CAS  Google Scholar 

  52. McClellan-Green P, Zhu S, Haasch ML et al (2005) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120. https://doi.org/10.1016/j.carbon.2005.11.008

    Article  CAS  Google Scholar 

  53. Bacchetta R, Santo N, Marelli M et al (2017) Chronic toxicity effects of ZnSO4 and ZnO nanoparticles in Daphnia magna. Environ Res 152:128–140. https://doi.org/10.1016/j.envres.2016.10.006

    Article  CAS  Google Scholar 

  54. Römer I, White TA, Baalousha M et al (2011) Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J Chromatogr A 1218:4226–4233. https://doi.org/10.1016/j.chroma.2011.03.034

    Article  CAS  Google Scholar 

  55. Jensen LHS, Skjolding LM, Thit A et al (2017) Not all that glitters is gold—electron microscopy study on uptake of gold nanoparticles in Daphnia magna and related artifacts. Environ Toxicol Chem 36:1503–1509. https://doi.org/10.1002/etc.3697

    Article  CAS  Google Scholar 

  56. Pontes MS, Graciano DE, Antunes DR et al (2020) In vitro and in vivo impact assessment of eco-designed CuO nanoparticles on non-target aquatic photoautotrophic organisms. J Hazard Mater 396:122484. https://doi.org/10.1016/j.jhazmat.2020.122484

    Article  CAS  Google Scholar 

  57. Auclair J, Quinn B, Peyrot C et al (2020) Detection, biophysical effects, and toxicity of polystyrene nanoparticles to the cnidarian Hydra attenuata. Environ Sci Pollut Res 27:11772–11781. https://doi.org/10.1007/s11356-020-07728-1

    Article  CAS  Google Scholar 

  58. Nasser F, Constantinou J, Lynch I (2020) Nanomaterials in the environment acquire an “eco-corona” impacting their toxicity to Daphnia magna—a call for updating toxicity testing policies. Proteomics 20:1–15. https://doi.org/10.1002/pmic.201800412

    Article  CAS  Google Scholar 

  59. Nasser F, Davis A, Valsami-Jones E, Lynch I (2016) Shape and charge of gold nanomaterials influence survivorship, oxidative stress and moulting of Daphnia magna. Nanomaterials 6:222. https://doi.org/10.3390/nano6120222

    Article  CAS  Google Scholar 

  60. Kimling J, Maier M, Okenve B et al (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707. https://doi.org/10.1021/jp061667w

    Article  CAS  Google Scholar 

  61. Peter JHJT, Cooper, (1951) A study of the nucleation and growth process in the synthesis of colloidal gold. Discuss Faraday Soc 55:55–75. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  62. Zhou X, Zhang X, Yu X et al (2008) The effect of conjugation to gold nanoparticles on the ability of low molecular weight chitosan to transfer DNA vaccine. Biomaterials 29:111–117. https://doi.org/10.1016/j.biomaterials.2007.09.007

    Article  CAS  Google Scholar 

  63. Thanou M, Verhoef JC, Junginger HE (2001) Oral drug absorption enhancement by chitosan and its derivatives. Adv Drug Deliv Rev 52:117–126. https://doi.org/10.1016/S0169-409X(01)00231-9

    Article  CAS  Google Scholar 

  64. Aiba S (1991) Studies on chitosan: 3. Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosans. Int J Biol Macromol 13:40–44. https://doi.org/10.1016/0141-8130(91)90008-I

    Article  CAS  Google Scholar 

  65. Lim JW, Kang IJ (2013) Chitosan-gold nano composite for dopamine analysis using raman scattering. Bull Korean Chem Soc 34:237–242. https://doi.org/10.5012/bkcs.2013.34.1.237

    Article  CAS  Google Scholar 

  66. Paquet-Mercier F, Babaei Aznaveh N, Safdar M, Greener J (2013) A microfluidic bioreactor with in situ SERS imaging for the study of controlled flow patterns of biofilm precursor materials. Sensors (Switzerland) 13:14714–14727. https://doi.org/10.3390/s131114714

    Article  CAS  Google Scholar 

  67. OECD (2006) Test No. 221: Lemna sp. Growth Inhibition Test. OECD. https://doi.org/10.1787/9789264016194-en

  68. OECD (2004) Test No. 202: Daphnia sp. Acute Immobilisation Test. OECD. https://doi.org/10.1787/9789264069947-en

  69. Garner KL, Qin Y, Cucurachi S et al (2018) Linking exposure and kinetic bioaccumulation models for metallic engineered nanomaterials in freshwater ecosystems. ACS Sustain Chem Eng 6:12684–12694. https://doi.org/10.1021/acssuschemeng.8b01691

    Article  CAS  Google Scholar 

  70. Inskeep WP, Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N, N -dimethylformamide and 80% acetone. Plant Physiol 77:483–485. https://doi.org/10.1104/pp.77.2.483

    Article  CAS  Google Scholar 

  71. Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3606–3619. https://doi.org/10.1021/jp066539m

    Article  CAS  Google Scholar 

  72. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592. https://doi.org/10.1039/b502142c

    Article  CAS  Google Scholar 

  73. Franconetti A, Carnerero JM, Prado-Gotor R et al (2019) Chitosan as a capping agent: insights on the stabilization of gold nanoparticles. Carbohyd Polym 207:806–814. https://doi.org/10.1016/j.carbpol.2018.12.046

    Article  CAS  Google Scholar 

  74. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phyto toxicity, uptake and accumulation. Sci Total Environ 408:3053–3061. https://doi.org/10.1016/j.scitotenv.2010.03.031

    Article  CAS  Google Scholar 

  75. Seitz F, Rosenfeldt RR, Storm K et al (2015) Effects of silver nanoparticle properties, media pH and dissolved organic matter on toxicity to Daphnia magna. Ecotoxicol Environ Saf 111:263–270. https://doi.org/10.1016/j.ecoenv.2014.09.031

    Article  CAS  Google Scholar 

  76. Taylor AF, Rylott EL, Anderson CWN, Bruce NC (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS ONE 9:e93793. https://doi.org/10.1371/journal.pone.0093793

    Article  CAS  Google Scholar 

  77. Khoshnamvand M, Ashtiani S, Liu J (2020) Acute Toxicity of gold nanoparticles synthesized from macroalga Saccharina japonica towards Daphnia magna. Environ Sci Pollut Res 27:22120–22126. https://doi.org/10.1007/s11356-020-08770-9

    Article  CAS  Google Scholar 

  78. Botha TL, James TE, Wepener V (2015) Comparative aquatic Toxicity of gold nanoparticles and ionic gold using a species sensitivity distribution approach. J Nanomater 2015:1–16. https://doi.org/10.1155/2015/986902

    Article  CAS  Google Scholar 

  79. Baumann J, Köser J, Arndt D, Filser J (2014) The coating makes the difference: acute effects of iron oxide nanoparticles on Daphnia magna. Sci Total Environ 484:176–184. https://doi.org/10.1016/j.scitotenv.2014.03.023

    Article  CAS  Google Scholar 

  80. Hou J, Zhou Y, Wang C et al (2017) Toxic effects and molecular mechanism of different types of silver nanoparticles to the aquatic Crustacean Daphnia magna. Environ Sci Technol 51:12868–12878. https://doi.org/10.1021/acs.est.7b03918

    Article  CAS  Google Scholar 

  81. Bozich JS, Lohse SE, Torelli MD et al (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environ Sci Nano 1:260–270. https://doi.org/10.1039/c4en00006d

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the support of the Universidad Austral de Chile through the Instituto de Materiales y Procesos Termomecánicos (Facultad de Ciencias de la Ingeniería), the Instituto de Ciencias Marinas y Limnológicas (Facultad de Ciencias), and Instituto de Ciencias Químicas (Facultad de Ciencias); and the Instituto Politécnico Nacional through the Secretaría de Investigación y Posgrado, both for the resources and facilities granted to carry out this research. PAG acknowledges the Consejo Nacional de Ciencia y Tecnología (CONACYT) for the Ph.D. scholarship (430637). IMV thanks Fondecyt Regular 1181695 and INLARVI network of VIDCA-UACh, Chile.

Author information

Authors and Affiliations

Authors

Contributions

PAG, EZ, and JN conceived and designed the study. PAG and JN carried out the experiments and data collection. All authors analyzed the data and revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Paulina Abrica-González.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrica-González, P., Zumelzu, E., Nimptsch, J. et al. The effect of chitosan-modified gold nanoparticles in Lemna valdiviana and Daphnia pulex. Gold Bull 55, 77–91 (2022). https://doi.org/10.1007/s13404-021-00306-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13404-021-00306-4

Keywords

Navigation