Skip to main content
Log in

Natural Extracts from Eugenia brasiliensis Lam Leaves to Improve the Shelf-Life of Fresh Tomatoes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this work, hydroalcoholic extracts were obtained from Eugenia brasiliensis leaves as a source of bioactive compounds of potential application to fresh tomatoes for preservation. Analyzes of total phenolics, flavonoids, antioxidant and antibacterial activity, and toxicity were performed. Tomatoes were treated with the extracts by brief immersion in an aqueous solution at concentrations of 200, 600, and 1000 mg L−1, and evaluated weekly for 28 days for total soluble solids, titratable acidity, maturation index, ascorbic acid content, weight loss, and visual test. The presence of gallic acid, rutin, and quercetin was identified in all extracts. The extracts obtained by water, ethanol at 25% e 50% showed better results regarding the concentration of phenolic compounds, antioxidant and antimicrobial activity. However, the 25 and 50% ethanol extracts were the only ones that showed toxicity. The treatments proposed for the conservation of tomatoes, in concentrations superior to 600 mg L−1, showed the most promising results, mainly in protecting the fruits from water loss and, consequently, visual depreciation due to wrinkles. Thus, most of the proposed treatments demonstrated viability by conserving fresh tomatoes organoleptic properties.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting this study’s funding are available on request from the corresponding author.

References

  1. Fischer, D.C.H., Limberger, R.P., Henriques, A.T., Moreno, P.R.H.: Essential oils from leaves of two eugenia brasiliensis specimens from southeastern Brazil. J. Essent. Oil Res. 17, 499–500 (2005). https://doi.org/10.1080/10412905.2005.9698977

    Article  Google Scholar 

  2. Dametto, A.C., Agustoni, D., Moreira, T.F., Plaza, C.V., Prieto, A.M., Silva, T.G.A., Souza, F.O., Boralle, N., Maria-Sorbo, J., Silva, D.H.S., Soares, C.P.: Chemical composition and in vitro chemoprevention assessment of Eugenia jambolana Lam (Myrtaceae) fruits and leaves. J. Funct. Foods 36, 490–502 (2017). https://doi.org/10.1016/j.jff.2017.07.013

    Article  Google Scholar 

  3. Lima, N.P., Cerqueira, S.H.F., Fávero, O.A., Romoff, P., Lago, J.H.G.: Composition and chemical variation of the essential oil from leaves of eugenia brasiliensis lam. And Eugenia sp. (Myrtaceae). J. Essent. Oil Res. 20, 223–225 (2008). https://doi.org/10.1080/10412905.2008.9699997

    Article  Google Scholar 

  4. Infante, J., Rosalen, P.L., Lazarini, J.G., Franchin, M., De Alencar, S.M.: Antioxidant and anti-inflammatory activities of unexplored Brazilian native fruits. PLoS ONE 11, e0152974 (2016). https://doi.org/10.1371/journal.pone.0152974

    Article  Google Scholar 

  5. Siebert, D.A., Bastos, J., Spudeit, D.A., Micke, G.A., Alberton, M.D.: Determination of phenolic profile by HPLC-ESI-MS/MS and anti-inflammatory activity of crude hydroalcoholic extract and ethyl acetate fraction from leaves of Eugenia brasiliensis. Braz. J. Pharmacogn. 27, 459–465 (2017). https://doi.org/10.1016/j.bjp.2017.01.008

    Article  Google Scholar 

  6. Lima, A.B., Delwing-de Lima, D., Vieira, M.R., Poletto, M.Z., Delwing-Dal Magro, D., Barauna, S.C., Alberton, M.D., Pereira, E.M., Pereira, N.R., Salamaia, E.M., Siebert, D.A.: Hypolipemiant and antioxidant effects of Eugenia brasiliensis in an animal model of coconut oil-induced hypertriglyceridemia. Biomed. Pharmacother. 96, 642–649 (2017). https://doi.org/10.1016/j.biopha.2017.10.047

    Article  Google Scholar 

  7. Simões, R.R., Kraus, S.I., Coelho, I.S., Dal-Secco, D., Siebert, D.A., Micke, G.A., Alberton, M.D., Santos, A.R.S.: Eugenia brasiliensis leaves extract attenuates visceral and somatic inflammatory pain in mice. J. Ethnopharmacol. 217, 178–186 (2018). https://doi.org/10.1016/j.jep.2018.02.026

    Article  Google Scholar 

  8. Colla, A.R.S., MacHado, D.G., Bettio, L.E.B., Colla, G., Magina, M.D.A., Brighente, I.M.C., Rodrigues, A.L.S.: Involvement of monoaminergic systems in the antidepressant-like effect of Eugenia brasiliensis Lam. (Myrtaceae) in the tail suspension test in mice. J. Ethnopharmacol. 143, 720–731 (2012). https://doi.org/10.1016/j.jep.2012.07.038

    Article  Google Scholar 

  9. de Sardi, J.C.O., Freires, I.A., Lazarini, J.G., Infante, J., de Alencar, S.M., Rosalen, P.L.: Unexplored endemic fruit species from Brazil: Antibiofilm properties, insights into mode of action, and systemic toxicity of four Eugenia spp. Microb. Pathog. 105, 280–287 (2017). https://doi.org/10.1016/j.micpath.2017.02.044

    Article  Google Scholar 

  10. Benfatti, C.S., de Cordova, S.M., Guedes, A., Magina, M.D.A., de Cordova, C.M.M.: Atividade antibacteriana in vitro de extratos brutos de espécies de Eugenia sp frente a cepas de molicutes. Rev. Pan-Amazônica Saúde. 3, 33–39 (2010). https://doi.org/10.5123/S2176-62232010000200003

    Article  Google Scholar 

  11. Martillanes, S., Rocha-Pimienta, J., Cabrera-Bañegil, M., Martín-Vertedor, D., Delgado-Adámez, J.: Application of Phenolic Compounds for Food Preservation: Food Additive and Active Packaging. In: Phenolic Compounds - Biological Activity. pp. 116–124. InTech (2017)

  12. Banu, A.T., Ramani, P.S., Murugan, A.: Effect of seaweed coating on quality characteristics and shelf life of tomato (Lycopersicon esculentum mill). Food Sci. Hum. Wellness 9, 176–183 (2020). https://doi.org/10.1016/j.fshw.2020.03.002

    Article  Google Scholar 

  13. Fan, X.J., Zhang, B., Yan, H., Feng, J.T., Ma, Z.Q., Zhang, X.: Effect of lotus leaf extract incorporated composite coating on the postharvest quality of fresh goji (Lycium barbarum L.) fruit. Postharvest Biol. Technol. 148, 132–140 (2019). https://doi.org/10.1016/j.postharvbio.2018.10.020

    Article  Google Scholar 

  14. Islam, T., Afrin, N., Parvin, S., Dana, N.H., Rahman, K.S., Zzaman, W., Islam, M.N.: The impact of chitosan and guava leaf extract as preservative to extend the shelf-life of fruits. Int. Food Res. J. 25, 2056–2062 (2018)

    Google Scholar 

  15. Khaliq, G., Ramzan, M., Baloch, A.H.: Effect of Aloe vera gel coating enriched with Fagonia indica plant extract on physicochemical and antioxidant activity of sapodilla fruit during postharvest storage. Food Chem. 286, 346–353 (2019). https://doi.org/10.1016/j.foodchem.2019.01.135

    Article  Google Scholar 

  16. Moshari-Nasirkandi, A., Alirezalu, A., Hachesu, M.A.: Effect of lemon verbena bio-extract on phytochemical and antioxidant capacity of strawberry (Fragaria×ananassa Duch. Cv. Sabrina) fruit during cold storage. Biocatal. Agric. Biotechnol. 25, 101613 (2020). https://doi.org/10.1016/j.bcab.2020.101613

    Article  Google Scholar 

  17. Zhang, Q.W., Lin, L.G., Ye, W.C.: Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med. (UK) 13, 1–26 (2018). https://doi.org/10.1186/s13020-018-0177-x

    Article  Google Scholar 

  18. Chemat, F., Abert Vian, M., Ravi, H.K., Khadhraoui, B., Hilali, S., Perino, S., Fabiano Tixier, A.S.: Review of alternative solvents for green extraction of food and natural products: panorama, principles applications and prospects. Molecules 24, 3007 (2019). https://doi.org/10.3390/molecules24163007

    Article  Google Scholar 

  19. Singleton, V.L., Rossi, J.A.J.: Colorimetry to total phenolics with phosphomolybdic acid reagents. Am. J. Enol. Vinic. 16, 144–158 (1965)

    Google Scholar 

  20. Prommuak, C., De-Eknamkul, W., Shotipruk, A.: Extraction of flavonoids and carotenoids from Thai silk waste and antioxidant activity of extracts. Sep. Purif. Technol. 62, 444–448 (2008). https://doi.org/10.1016/j.seppur.2008.02.020

    Article  Google Scholar 

  21. Brand-Williams, W., Cuvelier, M.E., Berset, C.: Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci. Technol. 28, 25–30 (1995). https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  Google Scholar 

  22. Rufino, M. do S.M., Alves, R.E., Sousa De Brito, E., Maia De Morais, S., De Goes Sampaio, C., Pérez-Jiménez, J., Saura-Calixto, F.D., Maria, F.:, Rufino, S.M.: Metodologia Científica: determinação da atividade antioxidantes total em frutas pelo método de redução do ferro (FRAP) (2006)

  23. Belmiro, T.M.C., Pereira, C.F., Paim, A.P.S.: Red wines from South America: content of phenolic compounds and chemometric distinction by origin. Microchem. J. 133, 114–120 (2017). https://doi.org/10.1016/j.microc.2017.03.018

    Article  Google Scholar 

  24. Bauer, A.W., Kirby, W.M.M., Sherris, J.C., Turck, A.M., Graevenitz, A.V.: Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966). https://doi.org/10.1016/S0305-4179(78)80006-0

    Article  Google Scholar 

  25. Fonseca, R.C., de Souza, N.A., Correa, T.C.L., Garcia, L.F., dos Reis, L.G.V., Rodriguez, A.G.: Assessment of toxic potential of cerrado fruit seeds using Artemia salina bioassay. Food Sci. Technol. 33, 251–256 (2013). https://doi.org/10.1590/S0101-20612013005000032

    Article  Google Scholar 

  26. Lutz, I.A.: 1a Edição Digital. In: Métodos físicos-quimicos para análise de Alimentos. pp. 83–158 (2008)

  27. Kamel, H.M.: Impact of garlic oil, seaweed extract and imazalil on keeping quality of valencia orange fruits during cold storage. J. Hortic. Sci. Ornam. Plants. 6, 116–125 (2014). https://doi.org/10.5829/idosi.jhsop.2014.6.3.1145

    Article  Google Scholar 

  28. Rahmanzadeh Ishkeh, S., Asghari, M., Shirzad, H., Alirezalu, A., Ghasemi, G.: Lemon verbena (Lippia citrodora) essential oil effects on antioxidant capacity and phytochemical content of raspberry (Rubus ulmifolius subsp sanctus). Sci. Hortic. (Amsterdam) 248, 297–304 (2019). https://doi.org/10.1016/j.scienta.2018.12.040

    Article  Google Scholar 

  29. Rothwell, J.A., Day, A.J., Morgan, M.R.A.: Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids. J. Agric. Food Chem. 53, 4355–4360 (2005). https://doi.org/10.1021/jf0483669

    Article  Google Scholar 

  30. Pedriali, C.A., Fernandes, A.U., Bernusso, L.D.C., Polakiewicz, B.: The synthesis of a water-soluble derivative of rutin as an antiradical agent. Quim. Nova. 31, 2147–2151 (2008). https://doi.org/10.1590/S0100-40422008000800039

    Article  Google Scholar 

  31. Rotili, M.C.C., Villa, F., Braga, G.C., de França, D.L.B., Rosanelli, S., Laureth, J.C.U., da Silva, D.F.: Compostos bioativos, atioxidante e características físico-químicas de frutos de doviális. Acta Sci. Agron. (2018). https://doi.org/10.4025/actasciagron.v40i2.35465

    Article  Google Scholar 

  32. de Oliveira, F.C., Marques, T.R., Machado, G.H.A., de Carvalho, T.C.L., Caetano, A.A., Batista, L.R., Corrêa, A.D.: Jabuticaba skin extracts: phenolic compounds and antibacterial activity. Braz. J. Food Technol. 21, 1–11 (2018). https://doi.org/10.1590/1981-6723.10817

    Article  Google Scholar 

  33. Rabêlo, S.V., da Costa, M.M., Libório, R.C., Almeida, J.R.G.D.S.: Antioxidant and antimicrobial activity of extracts from atemoia (Annona cherimola Mill x A. squamosa L.). Rev. Bras. Frutic. 36, 265–271 (2014). https://doi.org/10.1590/S0100-29452014000500031

    Article  Google Scholar 

  34. Al-Habib, A., Al-Saleh, E., Safer, A.M., Afzal, M.: Bactericidal effect of grape seed extract on methicillin-resistant Staphylococcus aureus (MRSA). J. Toxicol. Sci. 35, 357–364 (2010). https://doi.org/10.2131/jts.35.357

    Article  Google Scholar 

  35. Narayani, M., Subanthini, A., Jayakumar, M.: Antimicrobial activity and phytochemical analysis of citrus fruit peels -utilization of fruit waste. Ann. Phytomed. 3, 5414–5421 (2011)

    Google Scholar 

  36. Bouarab-Chibane, L., Forquet, V., Lantéri, P., Clément, Y., Léonard-Akkari, L., Oulahal, N., Degraeve, P., Bordes, C.: Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models. Front. Microbiol. (2019). https://doi.org/10.3389/fmicb.2019.00829

    Article  Google Scholar 

  37. Das, Q., Lepp, D., Yin, X., Ross, K., McCallum, J.L., Warriner, K., Marcone, M.F., Diarra, M.S.: Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PLoS ONE 14, 1–20 (2019). https://doi.org/10.1371/journal.pone.0219163

    Article  Google Scholar 

  38. Braguini, W.L., Pires, N.V., Alves, B.B.: Phytochemical analysis, antioxidant properties and Brine Shrimp lethality of unripe fruits of Solanum viarum. J. Young Pharm. 10, 159–163 (2018). https://doi.org/10.5530/jyp.2018.10.36

    Article  Google Scholar 

  39. Clarkson, C., Maharaj, V.J., Crouch, N.R., Grace, O.M., Pillay, P., Matsabisa, M.G., Bhagwandin, N., Smith, P.J., Folb, P.I.: In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J. Ethnopharmacol. 92, 177–191 (2004). https://doi.org/10.1016/j.jep.2004.02.011

    Article  Google Scholar 

  40. Luengwilai, K., Fiehn, O.E., Beckles, D.M.: Comparison of leaf and fruit metabolism in two tomato (Solanum lycopersicum L.) genotypes varying in total soluble solids. J. Agric. Food Chem. 58, 11790–11800 (2010). https://doi.org/10.1021/jf102562n

    Article  Google Scholar 

  41. Nair, M.S., Saxena, A., Kaur, C.: Effect of chitosan and alginate based coatings enriched with pomegranate peel extract to extend the postharvest quality of guava (Psidium guajava L.). Food Chem. 240, 245–252 (2018). https://doi.org/10.1016/j.foodchem.2017.07.122

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Laboratory of Thermodynamics and Separation Operations (LATOS), the Graduation Program of Food Engineering (PPGEAL—UFPR), and the Federal University of Paraná (UFPR). P. G. de Souza is grateful for the scholarship provided by CAPES (Coordination for the Improvement of Higher Education Personnel—Finance Code 001). M. R. Mafra and L. Igarashi-Mafra are grateful to the Brazilian National Council for Scientific and Technological Development (CNPq—Grant 315667/2021-4 and 316815/2021-7, respectively).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection, analysis, and the first draft of the manuscript were performed by PGS. AT conducted further investigations. Supervision and funding acquisition performed by MRM and LIM. Reviewing was performed by FOF and LIM. PGS wrote it, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Luciana Igarashi-Mafra.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2544 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, P.G., Toci, A.T., Mafra, M.R. et al. Natural Extracts from Eugenia brasiliensis Lam Leaves to Improve the Shelf-Life of Fresh Tomatoes. Waste Biomass Valor 14, 1293–1304 (2023). https://doi.org/10.1007/s12649-022-01941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01941-4

Keywords

Navigation