Skip to main content
Log in

In vitro Evaluation of Selective Cytotoxic Activity of Chaerophyllum macropodum Boiss. on Cultured Human SH-SY5Y Neuroblastoma Cells

  • Research Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Neuroblastoma is the most common solid tumor in children. New treatment approaches are needed because of the harmful side effects and costs of the methods used in the treatment of neuroblastoma. Medicinal and aromatic plants are important for new treatment approaches due to their minimal side effects and economic advantages. Therefore, the present study was carried out to examine the cytotoxic effect of Chaerophyllum macropodum extract on human neuroblastoma (SH-SY5Y) and fibroblast (HDFa) cell lines. 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase release (LDH) assays were used to determine the cytotoxic effect of C. macropodum. The extracts were analyzed for their phenolic content by HPLC–PDA. Major components were determined as 63.600% o-coumaric acid, 15.606% catechine hydrate, 8.713% rosmarinic acid, 4.376% clorogenic acid, and 3.972% salicylic acid. The obtained results from cytotoxicity testing revealed that C. macropodum exerted a significant cytotoxic effect on human neuroblastoma cells at all tested concentrations (p < 0.05). But it did not lead to any cytotoxic potential on human fibroblasts. As a result, the obtained data clearly revealed C. macropodum exerted a selective cytotoxic action on neuroblastoma cells for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

References

  • Ahn K (2017) The worldwide trend of using botanical drugs and strategies for developing global drugs. BMB Rep 50:111–116

    Article  CAS  Google Scholar 

  • Akihisa T, Kikuchi T, Nagai H, Ishii K, Tabata K, Suzuki T (2011) 4-Hydroxyderricin from Angelica keiskei roots induces caspase-dependent apoptotic cell death in HL60 human leukemia cells. J Oleo Sci 60(2):71–77

    Article  CAS  Google Scholar 

  • Akindele AJ, Wani ZA, Sharma S, Mahajan G, Satti NK, Adeyemi OO, Mondhe DM, Saxena AK (2015) In vitro and in vivo anticancer activity of root extracts of Sansevieria liberica Gerome and Labroy (Agavaceae). Evid Based Complement Alternat Med. https://doi.org/10.1155/2015/560404

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Rimawi F, Rishmawi S, Ariqat SH, Khalid MF, Warad I, Salah Z (2016) Anticancer activity, antioxidant activity, and phenolic and flavonoids content of wild Tragopogon porrifolius plant extracts. Evid Based Complement Alternat Med. https://doi.org/10.1155/2016/9612490

    Article  PubMed  PubMed Central  Google Scholar 

  • Aydın E, Türkez H, Keleş MS (2013) Potential anticancer activity of carvone in N2a neuroblastoma cell line. Toxicol Ind Health 1–9.

  • Aydoğmuş-Özturk F, Jahan H, Beyazit N, Günaydın K, Choudhary MI (2019) The anticancer activity of visnagin, isolated from Ammi visnaga L., against the human malignant melanoma cell lines, HT 144. Mol Biol Rep 46:1709–1714

    Article  Google Scholar 

  • Bagnyukova TV, Serebriiskii IG, Zhou Y, Hopper-Borge EA, Golemis EA, Astsaturov I (2010) Chemotherapy and signaling: how can targeted therapies supercharge cytotoxic agents. Cancer Biol Ther 10(9):839–853. https://doi.org/10.4161/cbt.10.9.13738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellion P, Digles J, Will F, Dietrich H, Baum M, Eisenbrand G, Janzowski C (2010) Polyphenolic apple extracts: effects of raw material and production method on antioxidant effectiveness and reduction of DNA damage in Caco-2 cells. J Agric Food Chem 9:6636–6642

    Article  Google Scholar 

  • Blagosklonny MV (2004) Analysis of FDA approved anticancer drugs reveals the future of cancer therapy. Cell Cycle 3:1033–1040

    Article  Google Scholar 

  • Busch C, Burkard M, Leischner C, Lauer UM, Frank J, Venturelli S (2015) Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin Epigenet 7:1–18

    Article  Google Scholar 

  • Caputo L, Souza LF, Alloisio S, Cornara L, De Feo V (2016) Coriandrum sativum and Lavandula angustifolia essential oils: chemical composition and activity on central nervous system. Int J Mol Sci 17 https://doi.org/10.3390/ijms17121999

  • Çayan F, Deveci E, Tel-Çayan G, Duru ME (2020) Identification and quantification of phenolic acid compounds of twenty-six mushrooms by HPLC–DAD. J Food Meas Charact 14(3):1690–1698

    Article  Google Scholar 

  • Çelikezen FÇ, Türkoğlu V, Fırat M, Baş Z (2021) The Effects of Coriandrum sativum L. and Chaerophyllum macropodum Boiss. (Apiaceae) on human plasma angiotensin-converting enzyme (ACE)in vitro. BEU J of Sci 10(3):710–718

  • Cheng T, Ying M (2021) Antitumor effect of saikosaponin A on human neuroblastoma Cells. BioMed Res Inter. https://doi.org/10.1155/2021/5845554

    Article  Google Scholar 

  • Cheung NK, Dyer MA (2013) Neuroblastoma: developmental biology, cancer genomics and immunotherapy. Nat Rev Cancer 13(6):397–411

    Article  CAS  Google Scholar 

  • Çoruh N, Sağdıçoğlu Celep AG, Özgökçe F (2007) Antioxidant properties of Prangos ferulacea (L.) Lindl., Chaerophyllum macropodum Boiss. and Heracleum persicum Desf. from Apiaceae family used as food in Eastern Anatolia and their inhibitory effects on glutathione-S-transferase. Food Chem 100(3):1237–1242

  • Dall’Acqua S, Viola G, Piacente S, Cappelletti EM, Innocenti G (2004) Cytotoxic constituents of roots of Chaerophyllum hirsutum. J Nat Prod 67:1588–1590

  • De Pasquale A (1984) Pharmacognosy: the oldest modern science. J Ethnopharmacol 11:1–16

    Article  Google Scholar 

  • Demirci B, Koşar M, Demirci F, Dinç M, Başer KHC (2007) Antimicrobial and antioxidant activities of the essential oil of Chaerophyllum libanoticum Boiss. et Kotschy. Food Chem 105(4):1512–1517

  • Durmaz H, Sagun E, Tarakci Z, Ozgokçe F (2006) Antibacterial activities of Allium vineale, Chaerophyllum macropodum and Prangos ferulacea. Afr J Biotechnol 5:1795–1798

    Google Scholar 

  • Ebrahimabadi AH, Djafari-Bidgoli Z, Mazoochi A, Kashi JK, Batooli H (2010) Essential oils composition, antioxidant and antimicrobial activity of the leaves and flowers of Chaerophyllum macropodum Boiss. Food Control 21(8):1173–1178

    Article  CAS  Google Scholar 

  • Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109:69–75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fusco P, Esposito MR, Tonini GP (2018) Chromosome Instability in Neuroblastoma Oncol Lett 16:6887–6894

    CAS  PubMed  Google Scholar 

  • Ghagane SC, Puranik SI, Kumbar VM, Nerli RB, Jalalpure SS, Hiremath MB, Neelagund S, Aladakatti R (2017) In vitro antioxidant and anticancer activity of Leea indica leaf extracts on human prostate cancer cell lines. Integr Med Res 6:79–87

    Article  Google Scholar 

  • Gutiérrez Mercado YK, Mateos Díaz JC, Ojeda Hernández DD, López Gonzalez FJ, Reza Zaldivar EE, Hernández Sapiens MA, Gómez Pinedo UA, Estrada RS, Macías Carballo M, Canales Aguirre AA (2022) Ortho-coumaric acid derivatives with therapeutic potential in a three-dimensional culture of the immortalised U-138 MG glioblastoma multiforme cell line. Neuro Persp 2:19–30

    Google Scholar 

  • Hou N, Liu N, Han J, Yan Y, Li J (2017) Chlorogenic acid induces reactive oxygen species generation and inhibits the viability of human colon cancer cells. Anticancer Drugs 28:59–65

    Article  CAS  Google Scholar 

  • Jabari M, Asghari G, Ghanadian M, Jafari A, Yousefi H, Jafari R, Sharafi SM, Darani HY (2015) Effect of Chaerophyllum macropodum extracts on Trichomonas vaginalis in vitro. J HerbMed Pharmacol 4(2):61–64

    CAS  Google Scholar 

  • Jeong Y-J, Kang KJ (2011) Effect of Angelica keiskei extract on apoptosis of MDA-MB-231 human breast cancer cells. J Korean Soc Food Sci Nutr 40:1654–1661

    Article  CAS  Google Scholar 

  • Khajehie N, Golmakani MT, Eblaghi M, Eskandari MH (2017) Evaluating the effects of microwave-assisted hydrodistillation on antifungal and radical scavenging activities of Oliveria decumbens and Chaerophyllum macropodum essential oils. J Food Prot 80(5):783–879

    Article  CAS  Google Scholar 

  • Kimura Y, Baba K (2003) Antitumor and antimetastatic activities of Angelica keiskei roots, part 1: isolation of an active substance, xanthoangelol. Int J Cancer 106(3):429–437

    Article  CAS  Google Scholar 

  • Kimura Y, Taniguchi M, Baba K (2004) Antitumor and antimetastatic activities of 4-hydroxyderricin isolated from Angelica keiskei roots. Planta Med 70:211–219

    Article  CAS  Google Scholar 

  • Köse Ş, Ocak E (2018) Antimicrobial and antioxidant properties of sirmo (Allium vineale L.), mendi (Chaerophyllum macropodum Boiss.) and siyabo (Ferula rigidula DC.). Gıda 43(2):294–302

  • Lee HO, Joh HJ, Kim K, Lee S-C, Kim N-H, Park JY, Park H-S, Park M-S, Kim S, Kwak M, Kim K-y, Lee WK, Yang T-J (2019) Dynamic chloroplast genome rearrangement and DNA barcoding for three apiaceae species known as the medicinal herb “bang-poong.” Int J Mol Sci 20(9):2196. https://doi.org/10.3390/ijms20092196

    Article  CAS  PubMed Central  Google Scholar 

  • Lee SMY, Li MLY, Tse YC, Leung SCL, Lee MMS, Tsui SKW, Fung KP, Lee CY, Waye MMY (2002) Paeoniae Radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway. Life Sci 71:2267–2277

    Article  CAS  Google Scholar 

  • Li F, Song L, Yang X, Huang Z, Mou X, Syed A, Bahkali AH, Zheng L (2020) Anticancer and genotoxicity effect of (Clausena lansium (Lour.) Skeels) Peel ZnONPs on neuroblastoma (SH-SY5Y) cells through the modulation of autophagy mechanism. J Photochem Photobiol B 203:111748. https://doi.org/10.1016/j.jphotobiol.2019.111748.

  • Lichota A, Gwozdzinski K (2018) Anticancer activity of natural compounds from plant and marine environment. Int J Mol 19:3533

    Article  Google Scholar 

  • Louis CU, Shohet JM (2015) Neuroblastoma: molecular pathogenesis and therapy. Ann Rev Med 66:49–63

    Article  CAS  Google Scholar 

  • Luo YB, Cui XC, Yang L, Zhang D, Wang JX (2018) Advances in the surgical treatment of neuroblastoma. Chin Med J 131(19):2332–2337

    Article  Google Scholar 

  • Ma Z, Yang J, Yang Y, Wang X, Chen G, Shi A, Lu Y, Jia S, Kang X, Lu L (2020) Rosmarinic acid exerts an anticancer effect on osteosarcoma cells by inhibiting DJ-1 via regulation of the PTEN-PI3K-Akt signaling pathway. Phytomed 68:153186

  • Martínez MA, Rodríguez JL, Lopez-Torres B, Martínez M, Martínez-Larrañaga MR, Maximiliano JE, Anadón A, Ares I (2020) Use of human neuroblastoma SH-SY5Y cells to evaluate glyphosate-induced effects on oxidative stress, neuronal development and cell death signaling pathways. Environ Int 135:105414

    Article  Google Scholar 

  • Nasr Bouzaiene N, Kilani Jaziri S, Kovacic H, Chekir-Ghedira L, Ghedira K, Luis J (2015) The effects of caffeic, coumaric and ferulic acids on proliferation, superoxide production, adhesion and migration of human tumor cells in vitro. Eur J Pharmacol 5:99–105

    Article  Google Scholar 

  • Nishimura R, Tabata K, Arakawa M, Ito Y, Kimura Y, Akihisa T, Nagai H, Sakuma A, Kohno H, Suzuki T (2007) Isobavachalcone, a chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma. Biol Pharm Bull 30(10):1878–1883

    Article  CAS  Google Scholar 

  • Özhatay N, Akalın E, Özhatay E, Ünlü S (2009) Rare and endemic taxa of Apiaceae in Turkey and their conservation significance. Istanbul J Pharm 40:1–9

    Google Scholar 

  • Pakfetrat H, Nemati N, Shiravi A (2015) Cytotoxicity effects of Ammi visnaga extract on Hela and MCF7 cancer cell lines. J Anim Biol 7:25–33

    Google Scholar 

  • Prokopiou L, Halahlah A, Grigorakis S, Fournaraki C, Kokkalou E, Karioti A (2021) Threatened Cretan species Chaerophyllum creticum Boiss. & Heldr.: phenolic profile by HPLC-PDA-MS and in vitro antioxidant capacity. Nat Pro Res. https://doi.org/10.1080/14786419.2021.1889545

  • Rahman MA, Bishayee K, Huh SO (2016) Angelica polymorpha Maxim induces apoptosis of human SH-SY5Y neuroblastoma cells by regulating an intrinsic caspase pathway. Mol Cells 39(2):119–128

    Article  CAS  Google Scholar 

  • Rao GV, Kumar S, Islam M, Mansour SE (2008) Folk medicines for anticancer therapy-a current status. Cancer Ther 6:913–922

    CAS  Google Scholar 

  • Ríos-Malváez ZG, Cano-Herrera MA, Dávila-Becerril JC, Mondragón-Solórzano G, Ramírez-Apan MT, Morales-Morales D, Barroso-Flores J, Santillán-Benítez JG, Unnamatla MVB, García-Eleno MA, González-Rivas N, Cuevas-Yañez E (2021) Synthesis, characterization and cytotoxic activity evaluation of 4-(1,2,3-triazol-1-yl) salicylic acid derivatives. J of Mol Struc 1225

  • Russo A, Cardile V, Graziano ACE, Avola R, Montenegro I, Cuellar M, Villena J, Madrid A (2019) Antigrowth activity and induction of apoptosis in human melanoma cells by Drymis winteri forst extract and its active components. Chem-Biol Interact 305:79–85

    Article  CAS  Google Scholar 

  • Serra AT, Matias AA, Frade RFM, Duarte RO, Feliciano RP, Bronze MR, Figueira ME, Carvalho A, Duarte CMM (2010) Characterization of traditional and exotic apple varieties from Portugal. Part 2 – Antioxidant and antiproliferative activities. J Funct Foods. 2(1):46–53

  • Siegel RL, Miller KD, Jemal A (2015) Cancer statistics, 2015. CA Cancer J Clin 65:5–29

    Article  Google Scholar 

  • Smith V, Foster J (2018) High-risk neuroblastoma treatment review. Children (basel, Switzerland) 5(9):114

    Google Scholar 

  • Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, Hesseling P, Shin HY, Stiller CA (2017). IICC-3 contributors. International incidence of childhood cancer, 2001–10: a population-based registry study. Lancet Oncol 18(6):719–731. https://doi.org/10.1016/S1470-2045(17)30186-9

  • Tabata K, Motani K, Takayanagi N, Nishimura R, ASAMI S, Kimura Y, Ukiya M, Hasegawa D, Akıhısa T, Suzuki T, (2005) Xanthoangelol, a major chalcone constituent of Angelica keiskei, induces apoptosis in neuroblastoma and leukemia cells. Biol Pharm Bull 28(8):1404–1407

    Article  CAS  Google Scholar 

  • Tarakcı Z, Sagun E, Durmaz H (2006) The effect of mendi (Chaerophyllum sp.) on ripening of vacuum-packed herby cheese. Int J Dairy Technol 59:35–39

    Article  Google Scholar 

  • Tibullo D, Giallongo C, Puglisi F, Tomassoni D, Camiolo G, Cristaldi M, Brundo MV, Anfuso CD, Lupo G, Stampone T, Li Volti G, Amenta F, Avola R, Bramanti V (2018) Effect of lipoic acid on the biochemical mechanisms of resistance to bortezomib in sh-sy5y neuroblastoma cells. Mol Neurobiol 55(4):3344–3350

    Article  CAS  Google Scholar 

  • Tilaoui M, Jaafari A, Ait Mouse H, Zyad A (2018) studies on the dual cytotoxicity and antioxidant properties of Berberis vulgaris extracts and its main constituent berberine. Adv Pharmacol Pharm Sci. https://doi.org/10.1155/2018/3018498

    Article  Google Scholar 

  • Wong FC, Woo CC, Hsu A, Tan BK (2013) The anti-cancer activities of Vernonia amygdalina extract in human breast cancer cell lines are mediated through caspase-dependent and p53-independent pathways. PLoS One 24;8(10):e78021. https://doi.org/10.1371/journal.pone.0078021

  • World Health Organization (WHO) (2018) factsheet. https://www.who.int/news-room/fact-sheets/detail/cancer.

  • World Health Organization (WHO) (2020) World Health Organization Cancer Retrieved May 3, 2021, from https://www.who.int/news-room/fact-sheets/detail/cancer

  • Yang J, Shao X, Jiang J, Sun Y, Wang L, Sun L (2018) Angelica sinensis polysaccharide inhibits proliferation, migration, and invasion by downregulating microRNA-675 in human neuroblastoma cell line SH-SY5Y. Cell Biol Int 42:867–876

    Article  CAS  Google Scholar 

  • Zengin G, Sinan KS, Ak G, Mahomoodally MF, Paksoy MY, Picot-Allain C, Glamocilja J, Sokovic M, Jekő J, Cziáky Z, Rodrigues MJ, Pereira CG, Custodio L (2020) Chemical profile, antioxidant, antimicrobial, enzyme inhibitory, and cytotoxicity of seven Apiaceae species from Turkey: a comparative study. Ind Crops Prod 153. https://doi.org/10.1016/j.indcrop.2020.112572

Download references

Author information

Authors and Affiliations

Authors

Contributions

FÇÇ and HT designed the study, commented on the results, and wrote the manuscript. MF collected plants and made his scientific diagnosis. MEA and SÖ performed the analysis and wrote the manuscript.

Corresponding author

Correspondence to Fatih Çağlar Çelikezen.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çelikezen, F.Ç., Türkez, H., Firat, M. et al. In vitro Evaluation of Selective Cytotoxic Activity of Chaerophyllum macropodum Boiss. on Cultured Human SH-SY5Y Neuroblastoma Cells. Neurotox Res 40, 1360–1368 (2022). https://doi.org/10.1007/s12640-022-00537-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-022-00537-z

Keywords

Navigation