Skip to main content

Advertisement

Log in

Eocene sediments and a fresh to brackish water biota from the early rifting stage of the Upper Rhine Graben (west of oil field Landau, southwest Germany): implications for biostratigraphy, palaeoecology and source rock potential

  • Original Paper
  • Published:
Palaeobiodiversity and Palaeoenvironments Aims and scope Submit manuscript

Abstract

The Eocene biota from the pre-rifting stage of the Upper Rhine Graben (southwest Germany) is, with exception of the world-famous fossil sites Messel and Bouxwiller, poorly known. While from these localities exclusively terrestrial and freshwater fossils were recovered, here we present floral and faunal assemblages from the middle Upper Rhine Graben which clearly indicate a temporarily brackish water environment and consist of a diverse palynomorph association, calcareous nannoplankton, foraminifers, ostracods and some fish and reptile remains. Based on the occurrence of Trochastrites hohnensis, a Lutetian age is assumed. Organic-walled dinoflagellate cysts, in particular Phthanoperidinium comatum, Phthanoperidinium echinatum, Apectodinium homomorphum and Apectodinium quinquelatum, suggest a late Ypresian to Lutetian age. The pollen and spores assemblage includes typical mid Eocene species, such as Tegumentisporis villosoides, Tricolporopollenites crassostriatus and representatives of Bombacaceae, but a late Ypresian to Priabonian age cannot be excluded. Foraminifers and ostracods do not further refine the biostratigraphical assignment. Hence, a Lutetian age is most probable. The mass occurrence of Neocyprideis, various foraminifer taxa and an organic-walled dinoflagellate cyst assemblage of very low diversity are indicative of a brackish water environment. Disarticulated vertebrate remains include fish teeth of Lepisosteidae, turtle plates and alligatoroid teeth of Diplocynodon and Hassiacosuchus. The present palaeogeographical scenarios do not consider a connection from the Upper Rhine Graben to the North Sea Basin, Alpine Sea/Paratethys or Paris Basin during the mid Eocene. Provided that the middle Upper Rhine Graben was land-locked and definitely not reached by a marine ingression during this time interval, we tentatively suggest that the brackish water taxa may have been accidentally introduced into a brackish inland sea by wind (anemochory), rain, highly mobile insects or vertebrates such as fish, birds and mammals (endozoochory/ectozoochory). The presumably freshwater calcareous nannoplankton species Nannoserratolithus minutus Martini is newly described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

Fossil material, sediment samples, thin sections and polished epoxy-mounted samples are stored in various collections open to the public on reasonable request (for details see Material). All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Agha, M., Ennen, J. R., Bower, D. S., Nowakowski, A. J., Sweat, S. C., & Todd, B. D. (2018). Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise. Biological Reviews, 93(3), 1634–1648.

    Article  PubMed  Google Scholar 

  • Agha, M., Yanagitsuru, Y. R., Fangue, N. A., Nowakowski, A. J., Kojima, L. V., Cech Jr., J. J., Riley, M. K., Freeman, J., Cocherell, D. E., & Todd, B. D. (2019). Physiological consequences of rising water salinity for a declining freshwater turtle. Conservation Physiology, 7(1). https://doi.org/10.1093/conphys/coz054.

  • Akkiraz, M. S., Akgün, F., Orcen, S., Bruch, A. A., & Mosbrugger, V. (2006). Stratigraphic and palaeoenvironmental significance of Bartonian, Priabonian (Middle, Late Eocene) microfossils from the Bascesme Formation, Denizli Province, western Anatolia. Turkish Journal of Earth Sciences, 15(2), 155–180.

    Google Scholar 

  • Allenbach, R. P., & Wetzel, A. (2006). Spatial patterns of Mesozoic facies relationships and the age of the Rhenish Lineament: a compilation. International Journal of Earth Sciences, 95(5), 803–813.

    Article  ADS  Google Scholar 

  • Ashraf, A. R., & Hartkopf-Fröder, C. (1996). Die Siebverfahren bei der Aufbereitung palynologischer Proben. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 200(1–2), 221–235.

    Article  Google Scholar 

  • Aubry, M.-P. (1986). Paleogene calcareous nannoplankton biostratigraphy of northwestern Europe. Palaeogeography, Palaeoclimatology, Palaeoecology, 55(2–4), 267–334.

    Article  ADS  Google Scholar 

  • Baillieux, P., Schill, E., Edel, J.-B., & Mauri, G. (2013). Localization of temperature anomalies in the Upper Rhine Graben: insights from geophysics and neotectonic activity. International Geology Review, 55(14), 1744–1762.

    Article  ADS  Google Scholar 

  • Banerjee, A., Sharma, R., Chisti, Y., & Banerjee, U. C. (2002). Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology, 22(3), 245–279.

    Article  CAS  PubMed  Google Scholar 

  • Behrmann, J. H., Hermann, O., Horstmann, M., Tanner, D. C., & Bertrand, G. (2003). Anatomy and kinematics of oblique continental rifting revealed: A three-dimensional case study of the southeast Upper Rhine graben (Germany). AAPG Bulletin, 87(7), 1105–1121.

    Article  Google Scholar 

  • Berger, J.-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., Storni, A., Pirkenseer, C., & Schäfer, A. (2005a). Eocene–Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). International Journal of Earth Sciences, 94(4), 711–731.

    Article  ADS  CAS  Google Scholar 

  • Berger, J.-P., Reichenbacher, B., Becker, D., Grimm, M., Grimm, K., Picot, L., Storni, A., Pirkenseer, C., Derer, C., & Schäfer, A. (2005b). Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. International Journal of Earth Sciences, 94(4), 697–710.

    Article  ADS  CAS  Google Scholar 

  • Bilton, D. T., Freeland, J. R., & Okamura, B. (2001). Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics, 32, 159–181.

    Article  Google Scholar 

  • Blumenstengel, H. (1993). Die Pollenzone 16 des Paläogens Mitteldeutschlands – Probleme der Definition und Abgrenzung. In Pflanzen der geologischen Vergangenheit. Festschrift Prof. W. Krutzsch (pp. 105–111). Berlin: Museum für Naturkunde der Humboldt-Universität, Paläontologisches Museum.

  • Blumenstengel, H., Krutzsch, W., & Volland, L., with contributions by Knoth, W., & Knuth, G. (1996). Revidierte Stratigraphie tertiärer Ablagerungen im südlichen Sachsen-Anhalt. Teil 1: Raum Halle-Merseburg. Hallesches Jahrbuch für Geowissenschaften, Reihe B, Beiheft, 1, 1–101.

  • Böcker, J., & Littke, R. (2014). Source rock characterisation and thermal maturity of the Rupelian Fish Shale (Bodenheim Fm./Hochberg Subfm.) in the central Upper Rhine Graben. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 165(2), 247–274.

    Article  Google Scholar 

  • Böcker, J., & Littke, R. (2016). Thermal maturity and petroleum kitchen areas of Liassic Black Shales (Lower Jurassic) in the central Upper Rhine Graben, Germany. International Journal of Earth Sciences, 105(2), 611–636.

    Article  ADS  Google Scholar 

  • Böcker, J., Littke, R., & Forster, A. (2017). An overview on source rocks and the petroleum system of the central Upper Rhine Graben. International Journal of Earth Sciences, 106(2), 707–742.

    Article  ADS  Google Scholar 

  • Bouché, P. M. (1962). Nannofossiles calcaires du Lutétien du Bassin de Paris. Revue de Micropaléontologie, 5(2), 75–103.

    ADS  Google Scholar 

  • Bourgeois, O., Ford, M., Diraison, M., Le Carlier de Veslud, C., Gerbault, M., Pik, R., Ruby, N., & Bonnet, S. (2007). Separation of rifting and lithospheric folding signatures in the NW-Alpine foreland. International Journal of Earth Sciences, 96(6), 1003–1031.

    Article  ADS  CAS  Google Scholar 

  • Bower, D. S., Scheltinga, D. M., Clulow, S., Clulow, J., Franklin, C. E., & Georges, A. (2016). Salinity tolerances of two Australian freshwater turtles, Chelodina expansa and Emydura macquarii (Testudinata: Chelidae). Conservation Physiology, 4(1). https://doi.org/10.1093/conphys/cow042.

  • Boy, J. A., Haneke, J., Kowalczyk, G., Lorenz, V., Schindler, T., Stollhofen, H., & Thum, H. (2012). Rotliegend im Saar-Nahe-Becken, am Taunus-Südrand und im nördlichen Oberrheingraben. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 61, 254–377.

    Article  Google Scholar 

  • Brasero, N., Nel, A., & Michez, D. (2009). Insects from the Early Eocene amber of Oise (France): diversity and palaeontological significance. Denisia, 26, 41–52.

    Google Scholar 

  • Breuer, R., & Feist, M. (1986). Biostratigraphisch bedeutsame Charophyten aus dem Alttertiär von Erdölfeldern des Oberrheingrabens. Newsletters on Stratigraphy, 16(3), 139–147.

    Article  Google Scholar 

  • Brochu, C., & Miller-Camp, J. (2018). Crocodyliforms – large-bodied carnivores. In K. T. Smith, S. F. K. Schaal, & J. Habersetzer (Eds.), Messel – An ancient greenhouse ecosystem (pp. 158–167). Stuttgart: Schweizerbart.

    Google Scholar 

  • Bruss, D. (2000). Zur Herkunft der Erdöle im mittleren Oberrheingraben und ihre Bedeutung für die Rekonstruktion der Migrationsgeschichte und der Speichergesteinsdiagenese. Berichte des Forschungszentrums Jülich, 3831, I–XII + 1–222.

  • Bucher, W. (1914). Beitrag zur geologischen und paläontologischen Kenntnis des jüngeren Tertiärs der Rheinpfalz. Geognostische Jahreshefte, 26, 1–103.

    Google Scholar 

  • Bujak, J. P., & Brinkhuis, H. (1998). Global warming and dinocyst changes across the Paleocene/Eocene Epoch boundary. In M.-P. Aubry, S. G. Lucas, & W. A. Berggren (Eds.), Late Paleocene – early Eocene climatic and biotic events in the marine and terrestrial records (pp. 277–295). New York: Columbia University Press.

    Google Scholar 

  • Bujak, J. P., Downie, C., Eaton, G. L., & Williams, G. L. (1980). Dinoflagellate cysts and acritarchs from the Eocene of southern England. Special Papers in Palaeontology, 24, 1–100.

    Google Scholar 

  • Cadena, E., Joyce, W. G., & Smith, K. T. (2018). Turtles – armored survivalists. In K. T. Smith, S. F. K. Schaal, & J. Habersetzer (Eds.), Messel – An ancient greenhouse ecosystem (pp. 148–157). Stuttgart: Schweizerbart.

    Google Scholar 

  • Cendón, D. I., Ayora, C., Pueyo, J. J., Taberner, C., & Blanc-Valleron, M.-M. (2008). The chemical and hydrological evolution of the Mulhouse potash basin (France): Are “marine” ancient evaporites always representative of synchronous seawater chemistry? Chemical Geology, 252(3–4), 109–124.

    Article  ADS  Google Scholar 

  • Châteauneuf, J.-J. (1980). Palynostratigraphie et paléoclimatologie de l’Éocène supérieur et de l’Oligocène du Bassin de Paris. Mémoire du Bureau de Recherches Géologiques et Minières, 116, 1–424.

    Google Scholar 

  • Châteauneuf, J.-J., & Gruas-Cavagnetto, C. (1978). Les zones de Wetzeliellaceae (Dinophyceae) du bassin de Paris. Comparaison et corrélations avec les zones du Paléogène des bassins du nord-ouest de l'Europe. Bulletin du Bureau de Recherches Géologiques et Minières (2. Série), Section IV, 2, 59–93.

    Google Scholar 

  • Châteauneuf, J.-J., & Ménillet, F. (2014). Découverte d’une microflore bartonienne dans le Fossé rhénan supérieur: la formation de Mietesheim (Bas-Rhin, Alsace, France). Géologie de la Fance, 2014(1), 3–20.

    Google Scholar 

  • Costa, L. I., & Downie, C. (1976). The distribution of the dinoflagellate Wetzeliella in the Palaeogene of north-western Europe. Palaeontology, 19(4), 591–614.

    Google Scholar 

  • Costa, L. I., & Downie, C. (1979). The Wetzeliellaceae; Palaeogene dinoflagellates. In D. C. Bharadwaj, H. P. Singh, & R. S. Tiwari (Eds.), Proceedings of the 4th International Palynological Conference, Lucknow (1976–77) Vol. 2 (pp. 34–46). Lucknow: Birbal Sahni Institute of Palaeobotany.

    Google Scholar 

  • Coughlan, N. E., Kelly, T. C., Davenport, J., & Jansen, M. A. K. (2015). Humid microclimates within the plumage of mallard ducks (Anas platyrhynchos) can potentially facilitate long distance dispersal of propagules. Acta Oecologica, 65–66, 17–23.

  • Coughlan, N. E., Stevens, A. L., Kelly, T. C., Dick, J. T. A., & Jansen, M. A. K. (2017). Zoochorous dispersal of freshwater bivalves: an overlooked vector in biological invasions? Knowledge and Management of Aquatic Ecosystems, 418(42). https://doi.org/10.1051/kmae/2017037.

  • Crouch, E. M., Heilmann-Clausen, C., Brinkhuis, H., Morgans, H. E. G., Rogers, K. M., Egger, H., & Schmitz, B. (2001). Global dinoflagellate event associated with the late Paleocene Thermal Maximum. Geology, 29(4), 315–318.

    Article  ADS  CAS  Google Scholar 

  • Dale, B. (1996). Dinoflagellate cyst ecology: Modeling and geological applications. In J. Jansonius, & D. C. McGregor (Eds.), Palynology: Principles and applications Vol. 3 (pp. 1249–1275). Dallas: AASP Foundation.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life (pp. X + 502). London: John Murray.

  • Darwin, C. (1882). On the dispersal of freshwater bivalves. Nature, 25(649), 529–530.

    Article  Google Scholar 

  • Dašková, J., Konzalová, M., & Cílek, V. (2011). Tracing of palynomorphs in the Eastern Slovakian Karst. Acta Musei Nationalis Pragae Series B — Historia Naturalis, 67(1–2), 51–62.

    Google Scholar 

  • De Coninck, J. (1976). Microfossiles à paroi organique de l'Yprésien du Bassin Belge. Service Géologique de Belgique, Professional Paper, 1975(12), 1–151.

    Google Scholar 

  • De Coninck, J. (1977). Organic walled microfossils from the Eocene of the Woensdrecht borehole, southern Netherlands. Mededelingen Rijks Geologische Dienst, Nieuwe Serie, 28(3), 33–64.

    Google Scholar 

  • De Coninck, J. (1985). Microfossiles à paroi organique dans les Sables de Lede (Éocène moyen) du sondage de Mol (Belgique). Bulletin de la Société Belge de Géologie, 94(1), 65–78.

    Google Scholar 

  • De Coninck, J. (1986). Organic walled phytoplankton from the Bartonian and Eo-Oligocene transitional deposits of the Woensdrecht Borehole, southern Netherlands. Mededelingen Rijks Geologische Dienst, 40(2), 1–49.

    Google Scholar 

  • De Coninck, J. (1991). Ypresian organic-walled phytoplankton in the Belgian Basin and adjacent areas. Bulletin de la Société Belge de Géologie, 97(3–4), 287–319.

    Google Scholar 

  • De Coninck, J. (1995). Microfossiles à paroi organique du Bartonien, Priabonien et Rupélien inférieur dans le sondage de Kallo; espèces significatives dans les sondages de Woensdrecht, Kallo et Mol. Mededelingen Rijks Geologische Dienst, 53, 65–105.

    Google Scholar 

  • Deming, D. (1994). Overburden rock, temperature, and heat flow. In L. B. Magoon, & W. G. Dow (Eds.), The petroleum system – from source to trap (pp. 165–186). Tulsa, OK: AAPG.

    Google Scholar 

  • Denison, C. N. (2021). Stratigraphic and sedimentological aspects of the worldwide distribution of Apectodinium in Paleocene/Eocene Thermal Maximum deposits. In F. Marret, J. O’Keefe, P. Osterloff, M. Pound, & L. Shumilovskikh (Eds.), Applications of non-pollen palynomorphs: from palaeoenvironmental reconstructions to biostratigraphy (pp. 269–308). London: Geological Society.

    Google Scholar 

  • Derer, C. E. (2003). Tectono-sedimentary evolution of the northern Upper Rhine Graben (Germany), with special regard to the early syn-rift stage (pp. II + 103). Dissertation Universität Bonn.

    Google Scholar 

  • Dèzes, P., Schmid, S. M., & Ziegler, P. A. (2004). Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics, 389(1–2), 1–33.

    Article  ADS  Google Scholar 

  • Doebl, F. (1958). Stratigraphische und paläogeographische Ergebnisse neuerer mikropaläontologischer Untersuchungen im Tertiär des Rheintal-Grabens. Erdöl und Kohle, 11(6), 373–376.

    Google Scholar 

  • Doebl, F. (1962). Foraminifera. In Arbeitskreis deutscher Mikropaläontologen (Ed.), Leitfossilien der Mikropaläontologie (pp. 385–391). Berlin: Borntraeger.

  • Doebl, F. (1970). Die tertiären und quartären Sedimente des südlichen Rheingrabens. In J. H. Illies, & S. Mueller (Eds.), Graben problems (pp. 56–66). Stuttgart: Schweizerbart.

    Google Scholar 

  • Doebl, F., & Bader, M. (1970). Die Geologie des Gebietes der Kleinen Kalmit (westlich Landau/Pfalz) zur Zeit des Tertiärs. Mitteilungen der Pollichia, III. Reihe, 17, 14–23.

    Google Scholar 

  • Doebl, F., Heling, D., Homann, W., Karweil, J., Teichmüller, M., & Welte, D. (1974). Diagenesis of Tertiary clayey sediments and included dispersed organic matter in relationship to geothermics in the Upper Rhine Graben. In J. H. Illies, & K. Fuchs (Eds.), Approaches to taphrogenesis (pp. 192–207). Stuttgart: Schweizerbart.

    Google Scholar 

  • Downie, C., Hussain, M. A., & Williams, G. L. (1971). Dinoflagellate cyst and acritarch associations in the Paleogene of Southeast England. Geoscience and Man, 3, 29–35.

    Article  Google Scholar 

  • Drexler, E. (1958). Foraminiferen und Ostracoden aus dem Lias α von Siebeldingen/Pfalz. Geologisches Jahrbuch, 75, 475–554.

    Google Scholar 

  • Duringer, P. (1995). Dynamik der detritischen Ablagerungen am Rande des Oberrheingrabens (Obereozän–Unteroligozän) (Exkursion G am 21. April 1995). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge, 77, 167–200.

    Article  Google Scholar 

  • Duringer, P., Aichholzer, C., Orciani, S., & Genter, A. (2019). The complete lithostratigraphic section of the geothermal wells in Rittershoffen (Upper Rhine Graben, eastern France): a key for future geothermal wells. BSGF – Earth Sciences Bulletin, 190(1). https://doi.org/10.1051/bsgf/2019012.

  • Duringer, P., & Gall, J.-C. (1994). Morphologie des constructions microbiennes en contexte de fan-delta Oligocène. Exemple du rift rhénan (Europe occidentale). Palaeogeography, Palaeoclimatology, Palaeoecology, 107(1–2), 35–47.

    Article  ADS  Google Scholar 

  • Eaton, G. L. (1976). Dinoflagellate cysts from the Bracklesham Beds (Eocene) of the Isle of Wight, southern England. Bulletin of the British Museum (Natural History) Geology, 26(6), 227–332.

    Google Scholar 

  • Echelle, A. A., & Grande, L. (2014). Lepisosteidae: Gars. In M. L. Warren, Jr., & B. M. Burr (Eds.), Freshwater fishes of North America, Vol. 1, Petromyzontidae to Catostomidae (pp. 243–278). Baltimore: Johns Hopkins University Press.

  • Eldrett, J. S., Harding, I. C., Firth, J. V., & Roberts, A. P. (2004). Magnetostratigraphic calibration of Eocene–Oligocene dinoflagellate cyst biostratigraphy from the Norwegian–Greenland Sea. Marine Geology, 204(1–2), 91–127.

    Article  ADS  Google Scholar 

  • Farrimond, P., Taylor, A., & Telnæs, N. (1998). Biomarker maturity parameters: the role of generation and thermal degradation. Organic Geochemistry, 29(5–7), 1181–1197.

    Article  ADS  CAS  Google Scholar 

  • Faulkner, P. C., Burleson, M. L., Simonitis, L., Marshall, C. D., Hala, D., & Petersen, L. H. (2018). Effects of chronic exposure to 12‰ saltwater on the endocrine physiology of juvenile American alligator (Alligator mississippiensis). Journal of Experimental Biology, 221(14). https://doi.org/10.1242/jeb.181172.

  • Fensome, R. A., Williams, G. L., & MacRae, R. A. (2019). The Lentin and Williams index of fossil dinoflagellates 2019 edition. AASP Contributions Series, 50, 1–1173.

    Google Scholar 

  • Fitzgerald, J. A. (1999). Pollen and spore assemblages from the Oligocene Lough Neagh Group and Dunaghy Formation, Northern Ireland (pp. VIII + 380). Unpublished PhD thesis University of Sheffield.

  • Fontes, J.-C., Filly, A., Gaudant, J., & Duringer, P. (1991). Origine continentale des évaporites paléogènes de Haute Alsace: arguments paléoécologiques, sédimentologiques et isotopiques. Bulletin de la Société Géologique de France, 162(4), 725–737.

    Article  CAS  Google Scholar 

  • Frederiksen, N. O. (1985). Review of Early Tertiary sporomorph palaeoecology. AASP Contributions Series, 15, 1–91.

    Google Scholar 

  • Frey, M., Weinert, S., Bär, K., Vaart, J. van der, Dezayes, C., Calcagno, P., & Sass, I. (2021). Integrated 3D geological modelling of the northern Upper Rhine Graben by joint inversion of gravimetry and magnetic data. Tectonophysics, 813. https://doi.org/10.1016/j.tecto.2021.228927.

  • Frey, M., Bär, K., Stober, I., Reinecker, J., Vaart, J. van der, & Sass, I. (2022). Assessment of deep geothermal research and development in the Upper Rhine Graben. Geothermal Energy, 10(18). https://doi.org/10.1186/s40517-022-00226-2.

  • Frieling, J., Iakovleva, A. I., Reichart, G.-J., Aleksandrova, G. N., Gnibidenko, Z. N., Schouten, S., & Sluijs, A. (2014). Paleocene–Eocene warming and biotic response in the epicontinental West Siberian Sea. Geology, 42(9), 767–770.

    Article  ADS  Google Scholar 

  • Frieling, J., & Sluijs, A. (2018). Towards quantitative environmental reconstructions from ancient non-analogue microfossil assemblages: Ecological preferences of Paleocene–Eocene dinoflagellates. Earth-Science Reviews, 185, 956–973.

    Article  ADS  Google Scholar 

  • Gebhardt, H., Ćorić, S., Darga, R., Briguglio, A., Schenk, B., Werner, W., Andersen, N., & Sames, B. (2013). Middle to Late Eocene paleoenvironmental changes in a marine transgressive sequence from the northern Tethyan margin (Adelholzen, Germany). Austrian Journal of Earth Sciences, 106(2), 45–72.

    PubMed  PubMed Central  Google Scholar 

  • Gély, J.-P. (2008). La stratigraphie et la paléogéographie du Lutétien en France. In D. Merle (Coord.), Stratotype Lutétien (pp. 182–227). Paris: Muséum national d’Histoire naturelle, BRGM.

  • Góczán, F., Groot, J. J., Krutzsch, W., & Pacltová, B. (1967). Die Gattungen des “Stemma Normapolles Pflug 1953b” (Angiospermae). Neubeschreibung und Revision europäischer Formen (Oberkreide bis Eozän). Paläontologische Abhandlungen B, 2(3), 429–539.

    Google Scholar 

  • Gökçen, N. (1973). Age and lateral variations in environmental conditions of the Pinarhisan Formation north-northeastern Turkish Thrace. In Congress of Earth Sciences on the Occasion of the 50th Anniversary of the Turkish Republic (pp. 131–145). Ankara: Mineral Research and Exploration Institute.

  • Grande, L. (2010). An empirical synthetic pattern study of gars (Lepisosteiformes) and closely related species, based mostly on skeletal anatomy. The resurrection of holostei (pp. X + 871). American Society of Ichthyologists and Herpetologists Special Publication, 6.

  • Green, A. J., & Figuerola, J. (2005). Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Diversity and Distributions, 11(2), 149–156.

    Article  Google Scholar 

  • Grimm, E. C. (1993). TILIA: A Pollen Program for Analysis and Display. Springfield: Illinois State Museum.

    Google Scholar 

  • Grimm, E. C. (2004). TGView. Version 2.0.2. Springfield: Illinois State Museum Research Collection Center.

    Google Scholar 

  • Grimm, K. I., Radtke, G., Köthe, A., Reichenbacher, B., Schwarz, J., Martini, E., Kadolsky, D., Hottenrott, M., & Franzen, J. L. (2011a). Regionale Biostratigraphie. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 75, 43–56.

    Article  Google Scholar 

  • Grimm, M. C., Wielandt-Schuster, U., Hottenrott, M., Grimm, K. I., & Radke, G., with contributions by Berger, J.-P., Ellwanger, D., Harms, F.-J., Hoselmann, C., Picot, L., & Weidenfeller, M. (2011b). Oberrheingraben. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften, 75, 57–132.

  • Guy-Haim, T., Hyams-Kaphzan, O., Yeruham, E., Almogi-Labin, A., & Carlton, J. T. (2017). A novel marine bioinvasion vector: Ichthyochory, live passage through fish. Limnology and Oceanography Letters, 2(3), 80–89.

    Article  Google Scholar 

  • Guy-Ohlson, D. (1992). Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Review of Palaeobotany and Palynology, 71(1–4), 1–15.

    Article  Google Scholar 

  • Harland, R. (1979). The Wetzeliella (Apectodinium) homomorpha plexus from the Palaeogene/earliest Eocene of North-west Europe. In D. C. Bharadwaj, H. P. Singh, & R. S. Tiwari (Eds.), Proceedings of the 4th International Palynological Conference, Lucknow (1976–77) Vol. 2 (pp. 59–70). Lucknow: Birbal Sahni Institute of Palaeobotany.

    Google Scholar 

  • Hartkopf, C. (1981). Ein Beitrag zur Geologie und Tektonik in der Umgebung von Albersweiler/Pfalz (pp. IV + 82). Unpublished Diplomkartierung Johannes Gutenberg-Universität Mainz.

  • Hartkopf-Fröder, C., Kloppisch, M., Mann, U., Neumann-Mahlkau, P., Schaefer, R. G., & Wilkes, H. (2007). The end-Frasnian mass extinction in the Eifelian Mountains, Germany: new insights from organic matter composition and preservation. In R. T. Becker, & W. T. Kirchgasser (Eds.), Devonian events and correlation (pp. 173–196). London: Geological Society.

    Google Scholar 

  • Hartkopf-Fröder, C., Königshof, P., Littke, R., & Schwarzbauer, J. (2015). Optical thermal maturity parameters and organic geochemical alteration at low grade diagenesis to anchimetamorphism: A review. International Journal of Coal Geology, 150–151, 74–119.

    Article  Google Scholar 

  • Haubold, H. (1989). Die Referenzfauna des Geiseltalium, MP levels 11 bis 13 (Mitteleozän, Lutetium). Palaeovertebrata, 19(3), 81–93.

    Google Scholar 

  • Heidtke, U. H. J. (2006). Fossilien aus dem Lias von Siebeldingen (Pfalz). Pollichia-Kurier, 22(2), 19–22.

    Google Scholar 

  • Heilmann-Clausen, C. (1985). Dinoflagellate stratigraphy of the uppermost Danian to Ypresian in the Viborg 1 borehole, central Jylland, Denmark. Danmarks Geologiske Undersøgelse, Serie A, 7, 1–69.

    Article  Google Scholar 

  • Heilmann-Clausen, C. (2020). Observations of the dinoflagellate Wetzeliella in Sparnacian facies (Eocene) near Epernay, France, and a note on tricky acmes of Apectodinium. Proceedings of the Geologists’ Association, 131(5), 450–457.

    Article  Google Scholar 

  • Heilmann-Clausen, C., & Costa, L. I. (1989). Dinoflagellate zonation of the uppermost Paleocene? to Lower Miocene in the Wursterheide Research Well, NW Germany. Geologisches Jahrbuch A, 111, 431–521.

    Google Scholar 

  • Heilmann-Clausen, C., & Simaeys, S. van (2005). Dinoflagellate cysts from the Middle Eocene to ?lowermost Oligocene succession in the Kysing Research Borehole, central Danish Basin. Palynology, 29, 143–204.

    Article  Google Scholar 

  • Hinsken, S., Ustaszewski, K., & Wetzel, A. (2007). Graben width controlling syn-rift sedimentation: the Palaeogene southern Upper Rhine Graben as an example. International Journal of Earth Sciences, 96(6), 979–1002.

    Article  ADS  CAS  Google Scholar 

  • Hochuli, P. A. (1984). Correlation of Middle and Late Tertiary sporomorph assemblages. Paléobiologie Continentale, 14(2), 301–314.

    Google Scholar 

  • Hottenrott, M. (1998). Eine eozäne Mikroflora aus dem Eisenberger Becken (Nordpfalz, Deutschland). Mainzer Naturwissenschaftliches Archiv, Beiheft, 21, 65–69.

    Google Scholar 

  • Hottenrott, M. (2000). Palynologische Altersdatierungen im Tertiär des Eisenberger Beckens (Nordpfalz). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge, 82, 261–277.

    Article  Google Scholar 

  • Hottenrott, M. (2002). Neue palynologische Daten zur stratigraphischen Einstufung der älteren Tonserie (Unteres Tonlager, Mittel-Eozän) im Westerwald. Courier Forschungsinstitut Senckenberg, 237, 69–75.

    Google Scholar 

  • Huyghe, D., Lartaud, F., Emmanuel, L., Merle, D., & Renard, M. (2015). Palaeogene climate evolution in the Paris Basin from oxygen stable isotope (δ18O) compositions of marine molluscs. Journal of the Geological Society, 172(5), 576–587.

    Article  ADS  Google Scholar 

  • Illies, H. (1963). Der Westrand des Rheingrabens zwischen Edenkoben (Pfalz) und Niederbronn (Elsaß). Oberrheinische Geologische Abhandlungen, 12, 1–23.

    Google Scholar 

  • Islam, M. A. (1982). Dinoflagellate age of the boundary between Ieper and Panisel Formations (Early Eocene) at Egem, Belgium, and its significance. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 1982(8), 485–490.

    Article  Google Scholar 

  • Islam, M. A. (1983a). Dinoflagellate cyst taxonomy and biostratigraphy of the Eocene Bracklesham Group in southern England. Micropaleontology, 29(3), 328–353.

    Article  MathSciNet  Google Scholar 

  • Islam, M. A. (1983b). Dinoflagellate cysts from the Eocene of the London and the Hampshire basins, southern England. Palynology, 7, 71–92.

    Article  Google Scholar 

  • Jan du Chêne, R. (1977). Nouvelles données sur la palynostratigraphie des Flyschs des Préalpes externes (Suisse). Archives des Sciences Genève, 30(1), 53–63.

    Google Scholar 

  • Jan du Chêne, R., Gorin, G., & van Stuijvenberg, J. (1975). Étude géologique et stratigraphique (palynologie et nannoflore calcaire) des Grès des Voirons (Paléogène de Haute-Savoie, France). Géologie Alpine, 51, 51–78.

    Google Scholar 

  • Jüngst, H. (1938). Der Pfälzer Lias und seine paläogeographische Bedeutung. Mitteilung des Saarpfälzischen Vereins für Naturkunde und Naturschutz, Pollichia, Neue Folge, 7, 145–168.

    Google Scholar 

  • Kadolsky, D. (2015). Lutetiella, a new genus of hydrobioids from the Middle Eocene (Lutetian) of the Upper Rhine Graben and Paris Basin (Mollusca: Gastropoda: Rissooidea s. lat.). Geologica Saxonica, 61(1), 35–51.

    Google Scholar 

  • Kamptner, E. (1930). Die Kalkflagellaten des Süßwassers und ihre Beziehungen zu jenen des Brackwassers und des Meeres. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 24(1–2), 147–163.

    Article  Google Scholar 

  • Keen, M. (1977). Ostracod assemblages and the depositional environments of the Headen, Osborne and Bembridge Beds (Upper Eocene) of the Hampshire Basin. Palaeontology, 20(2), 405–445.

    Google Scholar 

  • Keen, M. (1990). The ecology and evolution of the Palaeogene ostracod Neocyprideis. Courier Forschungsinstitut Senckenberg, 123, 217–228.

    Google Scholar 

  • Keller, T., & Schaal, S. (1988). Krokodile – urtümliche Großechsen. In S. Schaal, & W. Ziegler (Eds.), Messel – Ein Schaufenster in die Geschichte der Erde und des Lebens (pp. 109–118). Frankfurt a. M.: Kramer.

    Google Scholar 

  • King, C., Gale, A. S., & Barry, T. L. (2016). A revised correlation of Tertiary rocks in the British Isles and adjacent areas of NW Europe. Geological Society, London, Special Reports, 27, 1–724.

    Google Scholar 

  • Klumpp, B. (1953). Beiträge zur Kenntnis der Mikrofossilien des Mittleren und Oberen Eozän. Palaeontographica A, 103(5–6), 377–406.

    Google Scholar 

  • Köthe, A. (1990). Paleogene dinoflagellates from Northwest Germany – biostratigraphy and paleoenvironment. Geologisches Jahrbuch A, 118, 3–111.

    Google Scholar 

  • Köthe, A., & Piesker, B. (2007). Stratigraphic distribution of Paleogene and Miocene dinocysts in Germany. Revue de Paléobiologie, 26(1), 1–39.

    Google Scholar 

  • Koot, M. B., Cuny, G., Tintori, A., & Twitchett, R. J. (2013). A new diverse shark fauna from the Wordian (middle Permian) Khuff Formation in the interior Haushi-Huqf area, Sultanate of Oman. Palaeontology, 56(2), 303–343.

    Article  Google Scholar 

  • Krutzsch, W. (1959). Mikropaläontologische (sporenpaläontologische) Untersuchungen in der Braunkohle des Geiseltales. I. Die Sporen und die sporenartigen sowie ehemals im Geiseltal zu Sporites gestellten Formeinheiten der Sporae dispersae der mitteleozänen Braunkohle des mittleren Geiseltales (Tagebau Neumark-West i. w. S.), unter Berücksichtigung und Revision weiterer Sporenformen aus der bisherigen Literatur. Geologie, 8, Beiheft, 21/22, 1–425.

  • Krutzsch, W. (1966). Die sporenstratigraphische Gliederung des älteren Tertiär im nördlichen Mitteleuropa (Paleozän-Mitteloligozän). Methodische Grundlagen und gegenwärtiger Stand der Untersuchungen. Abhandlungen des Zentralen Geologischen Instituts, 8, 112–149.

    Google Scholar 

  • Krutzsch, W. (1967). Der Florenwechsel im Alttertiär Mitteleuropas auf Grund von sporenpaläontologischen Untersuchungen. Abhandlungen des Zentralen Geologischen Instituts, 10, 17–37.

    Google Scholar 

  • Krutzsch, W. (1970). Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen- sowie der Mikroplanktonformen des nördlichen Mitteleuropas. Lieferung VII: Monoporate, monocolpate, longicolpate, dicolpate und ephedroide (polyplicate) Pollenformen (pp. 1-175). Berlin: VEB Gustav Fischer Verlag.

    Google Scholar 

  • Krutzsch, W. (1992). Paläobotanische Klimagliederung des Alttertiärs (Mitteleozän bis Oberoligozän) in Mitteldeutschland und das Problem der Verknüpfung mariner und kontinentaler Gliederungen (klassische Biostratigraphien – paläobotanisch-ökologische Klimastratigraphie – Evolutions-Stratigraphie der Vertebraten). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 186(1–2), 137–253.

    Google Scholar 

  • Krutzsch, W. (2008). Die Bedeutung der fossilen Pollengattung Mediocolpopollis Krutzsch 1959 (fam. Santalaceae) für die Gliederung des Obereozän im mitteldeutschen Ästuar. Hallesches Jahrbuch für Geowissenschaften, Beiheft, 25, 1–103.

    Google Scholar 

  • Lavoyer, T. (2013). Paléontologie et stratigraphie de la partie nord du fossé rhénan supérieur moyen au cours du Paléogène: relations entre le système du rift, les transgressions marines et le paléoclimat. GeoFocus, 35, 1–210.

    Google Scholar 

  • Lenz, O. K. (2000). Paläoökologie eines Küstenmoores aus dem Eozän Mitteleuropas am Beispiel der Wulfersdorfer Flöze und deren Begleitschichten (Helmstedter Oberflözgruppe, Tagebau Helmstedt) (pp. II + 230). Dissertation Universität Göttingen.

    Google Scholar 

  • Lenz, O. K. (2005). Palynologie und Paläoökologie eines Küstenmoores aus dem Mittleren Eozän Mitteleuropas – Die Wulfersdorfer Flözgruppe aus dem Tagebau Helmstedt, Niedersachsen. Palaeontographica B, 271(1–6), 1–157.

    Google Scholar 

  • Lenz, O. K., & Riegel, W. (2001). Isopollen maps as a tool for the reconstruction of a coastal swamp from the Middle Eocene at Helmstedt (Northern Germany). Facies, 45(1), 177–194.

    Article  Google Scholar 

  • Lenz, O. K., Riegel, W., & Wilde, V. (2021). Greenhous conditions in lower Eocene coastal wetlands? – Lessons from Schöningen, Northern Germany. PloS One, 16(1). https://doi.org/10.1371/journal.pone.0232861.

  • Lenz, O. K., & Wilde, V. (2018). Changes in Eocene plant diversity and composition of vegetation: the lacustrine archive of Messel (Germany). Paleobiology, 44(4), 709–735.

    Article  Google Scholar 

  • Lenz, O. K., Wilde, V., Mertz, D. F., & Riegel, W. (2015). New palynology-based astronomical and revised 40Ar/39Ar ages for the Eocene maar lake of Messel (Germany). International Journal of Earth Sciences, 104(3), 873–889.

    Article  ADS  CAS  Google Scholar 

  • Lenz, O. K., Wilde, V., & Riegel, W. (2007). Recolonization of a Middle Eocene volcanic site: quantitative palynology of the initial phase of the maar lake of Messel (Germany). Review of Palaeobotany and Palynology, 145(3–4), 217–242.

    Article  Google Scholar 

  • Lenz, O. K., Wilde, V., & Riegel, W. (2011). Short-term fluctuations in vegetation and phytoplankton during the Middle Eocene greenhouse climate: a 640-kyr record from the Messel oil shale (Germany). International Journal of Earth Sciences, 100(8), 1851–1874.

    Article  ADS  Google Scholar 

  • Liengjarern, M., Costa, L., & Downie, C. (1980). Dinoflagellate cysts from the Upper Eocene–Lower Oligocene of the Isle of Wight. Palaeontology, 23(3), 475–499.

    Google Scholar 

  • Löschan, G., Emmerich, K., Reinhold, C., & Reinecker, J. (2017). Clay mineralogy of Tertiary formations in the northern Upper Rhine Graben – New insights from geothermal and hydrocarbon exploration. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 168(2), 233–244.

    Article  Google Scholar 

  • Lopes Cardozo, G. G. O., & Behrmann, J. H. (2006). Kinematic analysis of the Upper Rhine Graben boundary fault system. Journal of Structural Geology, 28(6), 1028–1039.

    Article  ADS  Google Scholar 

  • Lovas-Kiss, Á., Vincze, O., Löki, V., Pallér-Kapusi, F., Halasi-Kovács, B., Kovács, G., Green, A. J., & Lukács, B. A. (2020). Experimental evidence of dispersal of invasive cyprinid eggs inside migratory waterfowl. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15397–15399.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Markwick, P. J. (1998). Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(3–4), 205–271.

    Article  ADS  Google Scholar 

  • Marshall, J. E. A., & Yule, B. L. (1999). Spore colour measurement. In T. P. Jones, & N. P. Rowe (Eds.), Fossil plants and spores: modern techniques (pp. 165–168). London: Geological Society London.

    Google Scholar 

  • Martini, E. (1958). Discoasteriden und verwandte Formen im NW-deutschen Eozän (Coccolithophorida). 1. Taxionomische Untersuchungen. Senckenbergiana lethaea, 39(5–6), 353–388.

    Google Scholar 

  • Martini, E. (1988). Nannoplankton-Massenvorkommen in den Corbicula- (Schichten mit Hydrobia inflata) und Hydrobienschichten des Oberrheingrabens, des Mainzer und des Hanauer Beckens (Miozän). Geologisches Jahrbuch A, 110, 205–227.

    Google Scholar 

  • Martini, E. (1990). The Rhinegraben system, a connection between northern and southern seas in the European Tertiary. Veröffentlichungen Übersee-Museum A, 10, 83–98, 208–211.

    Google Scholar 

  • Martini, E. (1991). Endemische Vertreter der Gattung Trochoaster (kalkiges Nannoplankton) im westdeutschen Unter-Oligozän. Geologisches Jahrbuch A, 128, 167–177.

    Google Scholar 

  • Martini, E., & Reichenbacher, B. (2007). Nannoplankton und Fisch-Otolithen in den Mittleren Pechelbronn-Schichten (Unter-Oligozän, Oberrheingraben/Mainzer Becken). Geologische Abhandlungen Hessen, 116, 235–273.

    Google Scholar 

  • Martini, E., & Rothe, P. (Eds.) (1998). Die alttertiäre Fossillagerstätte Sieblos an der Wasserkuppe/Rhön. Geologische Abhandlungen Hessen, 104, 1–274.

  • Martini, E., & Schiller, W. (1998). Kalkiges Nannoplankton von Sieblos/Rhön und dem Neuwieder Becken (Unter-Oligozän). Geologische Abhandlungen Hessen, 104, 165–172.

    Google Scholar 

  • Martini, E., & Stradner, H. (1960). Nannotetraster, eine stratigraphisch bedeutsame neue Discoasteridengattung. Erdoel-Zeitschrift, 76(8), 266–270.

    Google Scholar 

  • Marynowski, L., & Zatoń, M. (2010). Organic matter from the Callovian (Middle Jurassic) deposits of Lithuania: Compositions, sources and depositional environments. Applied Geochemistry, 25(7), 933–946.

    Article  ADS  CAS  Google Scholar 

  • Mayr, G. (2017). Avian evolution. The fossil record of birds and its paleobiological significance (pp. XIII + 309). Chichester: Wiley.

  • Mazzotti, F. J., & Dunson, W. A. (1989). Osmoregulation in crocodilians. American Zoologist, 29(3), 903–920.

    Article  Google Scholar 

  • Micklich, N. (2018). Actinopterygians – the fishes of the Messel Lake. In K. T. Smith, S. F. K. Schaal, & J. Habersetzer (Eds.), MesselAn ancient greenhouse ecosystem (pp. 104–111). Stuttgart: Schweizerbart.

    Google Scholar 

  • Moline, P. M., & Linder, H. P. (2005). Molecular phylogeny and generic delimitation in the Elegia group (Restionaceae, South Africa) based on a complete taxon sampling and four chloroplast DNA regions. Systematic Botany, 30(4), 759–772.

    Article  Google Scholar 

  • Moshayedi, M., Lenz, O. K., Wilde, V., & Hinderer, M. (2018). Controls on sedimentation and vegetation in an Eocene pull-apart basin (Prinz von Hessen, Germany): evidence from palynology. Journal of the Geological Society, 175(5), 757–773.

    Article  ADS  Google Scholar 

  • Moshayedi, M., Lenz, O. K., Wilde, V., & Hinderer, M. (2020). The recolonisation of volcanically disturbed Eocene habitats of Central Europe: the maar lakes of Messel and Offenthal (SW Germany) compared. Palaeobiodiversity and Palaeoenvironments, 100(4), 951–973.

    Article  Google Scholar 

  • Moshayedi, M., Lenz, O. K., Wilde, V., & Hinderer, M. (2021). Lake-level fluctuations and allochthonous lignite deposition in the Eocene pull-apart basin “Prinz von Hessen” (Hesse, Germany) – a palynological study. In M. R. Rosen, D. B. Finkelstein, L. Park Boush, & S. Pla-Pueyo (Eds.), Limnogeology: Progress, challenges and opportunities (pp. 69–106). Cham: Springer.

    Chapter  Google Scholar 

  • Mutzl, J., Lenz, O. K., Wilde, V., Krahn, K. J., Moshayedi, M., & Hinderer, M. (2022). Vegetation dynamics in a disturbed lacustrine record: The Eocene maar lake of Groß-Zimmern (Hesse, SW Germany). Palaeobiodiversity and Palaeoenvironments. https://doi.org/10.1007/s12549-022-00543-1.

  • Nottmeyer, D. (1954). Stratigraphische und tektonische Untersuchungen in der rheinischen Vorbergzone bei Siebeldingen–Frankweiler. Mitteilungen der Pollichia, 43, 36–93.

    Google Scholar 

  • Oertli, H. J. (1963). Fossile Ostracoden als Milieuindikatoren. Fortschritte in der Geologie von Rheinland und Westfalen, 10, 53–66.

    CAS  Google Scholar 

  • Ohmert, W. (1993). Eine obereozäne Foraminiferenfauna aus dem südlichen Oberrhein-Graben. Zitteliana, 20, 323–329.

    Google Scholar 

  • Ohmert, W. (2014). Ostracoden aus dem eozänen Lymnäenmergel (Haguenau-Formation) der Bohrung Oberweiler (Gemeinde Badenweiler, südlicher Oberrhein). Berichte der Naturforschenden Gesellschaft zu Freiburg im Breisgau, 104, 131–168.

    Google Scholar 

  • Ohmert, W. (2017). Mikrofaunen der “Versteinerungsreichen Zone” (Mittlere Pechelbronn-Formation, Unter-Oligozän), ihre stratigraphische und regionale Verteilung am östlichen Oberrheingraben-Rand (Südwestdeutschland). Zitteliana, 89, 39–111.

    Google Scholar 

  • Page, C. N. (1990). Key to families of Coniferophytina. In K. U. Kramer, & P. S. Green (Eds.), The families and genera of vascular plants, Vol. 1, Pteridophytes and Gymnosperms (p. 283). Berlin: Springer.

    Google Scholar 

  • Pearson, D. L. (1990). Pollen/spore color “standard“. 2nd Printing of Version #2. Phillips Petroleum Company.

  • Perner, M., Jäger, H., Reinhold, C., Bechstädt, T., & Stinnesbeck, W. (2018). Impact of rift dynamics on palaeoenvironmental conditions and hydrocarbon system development (northern Upper Rhine Graben, SW-Germany). Petroleum Geoscience, 24(4), 425–439.

    Article  Google Scholar 

  • Peters, K. E., & Cassa, M. R. (1994). Applied source rock geochemistry. In L. B. Magoon, & W. G. Dow (Eds.), The petroleum system – from source to trap (pp. 93–120). Tulsa, OK: AAPG.

    Google Scholar 

  • Peters, K. E., Walters, C. C., & Moldowan, J. M. (2005). The biomarker guide, 2nd ed. (pp. XXXVI + 1155). Cambridge: Cambridge University Press.

  • Pirkenseer, C., Rauber, G., & Roussé, S. (2018). A revised Palaeogene lithostratigraphic framework for the northern Swiss Jura and the southern Upper Rhine Graben and its relationship to the North Alpine Foreland Basin. Rivista Italiana di Paleontologia e Stratigrafia, 124(1), 163–246.

    Google Scholar 

  • Pirkenseer, C., Spezzaferri, S., & Berger, J.-P. (2011). Reworked microfossils as a paleogeographic tool. Geology, 39(9), 843–846.

    Article  ADS  Google Scholar 

  • Pross, J., & Brinkhuis, H. (2005). Organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene; a synopsis of concepts. Paläontologische Zeitschrift, 79(1), 53–59.

    Article  Google Scholar 

  • Rauscher, R., & Schuler, M. (1988). Les dinokystes, des témoins d’influences marines dans le Paléogène d’Alsace. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 12(1), 405–425.

    Google Scholar 

  • Rauscher, R., Schuler, M., & Sittler, C. (1988). Les dinokystes dans le Paléogène d’Alsace: le problème de l’origine du sel. Comptes Rendus de l’Académie des Sciences, Série II, 307, 175–178.

    Google Scholar 

  • Reichenbacher, B., & Keller, T. (2002). Neudefinition von stratigraphischen Einheiten im Tertiär des Mainzer und Hanauer Beckens (Deutschland, Oligozän–Miozän), Teil 2: Wiesbaden-Formation (= Untere Hydrobien-Schichten). Mainzer Geowissenschaftliche Mitteilungen, 31, 99–122.

    Google Scholar 

  • Reichenbacher, B., Gaudant, J., & Griessemer, T. W. (2007). A late Burdigalian gobiid fish, Gobius brevis (Agassiz, 1839), in the Upper Hydrobia Beds in the middle Upper Rhine Graben (W-Germany). Paläontologische Zeitschrift, 81(4), 365–375.

    Article  Google Scholar 

  • Reis, O. M. (1923). Kalkalgen und Seesinterkalke aus dem rheinpfälzischen Tertiär. Geognostische Jahreshefte, 36, 103–130.

    Google Scholar 

  • Reischmann, T., & Anthes, G. (1996). Geochronology of the mid-German crystalline rise west of the river Rhine. Geologische Rundschau, 85(4), 761–774.

    Article  ADS  CAS  Google Scholar 

  • Rich, F. J., Kuehn, D., & Davies, T. D. (1982). The paleoecological significance of Ovoidites. Palynology, 6, 19–28.

    Article  Google Scholar 

  • Riegel, W., Wilde, V., & Lenz, O. K. (2012). The Early Eocene of Schöningen (N-Germany) – an interim report. Austrian Journal of Earth Sciences, 105(1), 88109.

    Google Scholar 

  • Rivas Jr., J. A., Schröder, T., Gill, T. E., Wallace, R. L., & Walsh, E. J. (2019). Anemochory of diapausing stages of microinvertebrates in North American drylands. Freshwater Biology, 64(7), 1303–1314.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schad, A. (1962). Das Erdölfeld Landau. Abhandlungen des Geologischen Landesamtes in Baden-Württemberg, 4, 81–101.

    Google Scholar 

  • Schäfer, P. (2000). Zur Stratigraphie und Genese der tertiären Sedimente zwischen Eisenberg und Lautersheim im südwestlichsten Teil des Mainzer Beckens. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge, 82, 175–222.

    Article  Google Scholar 

  • Schäfer, P. (2012). Mainzer Becken. Stratigraphie – Paläontologie – Exkursionen (pp. VIII + 333). Sammlung geologischer Führer, 79.

  • Schäfer, P. (2013). Grabenbildung – Tertiäre Tektonik in der Pfalz. In J. Haneke, & K. Kremb (Eds.), Beiträge zur Geologie der Pfalz (pp. 35–48). Speyer: Verlag der Pfälzischen Gesellschaft zur Förderung der Wissenschaften.

    Google Scholar 

  • Schröder, G. (1984). Ingenieurgeologische Untersuchungen an rezenten und fossilen Rutschungen im Raum Albersweiler/Birkweiler (Ostpfalz) (pp. IV + 41). Unpublished Diplomarbeit Johannes Gutenberg-Universität Mainz.

  • Schuler, M. (1983). Pollens et spores des Séries salifères (Éocène/Oligocène) du bassin potassique de Mulhouse (France). Relations entre la microflore et les dépôts évaporitiques. Sciences Géologiques Bulletin, 36(4), 255–265.

    Article  ADS  Google Scholar 

  • Schuler, M. (1990). Environnements et paléoclimats paléogènes. Palynologie et biostratigraphie de l’Éocène et de l’Oligocène inférieur dans les fossés rhénan, rhodanien et de Hesse. Document du BRGM, 190, 1–503.

    Google Scholar 

  • Schuler, M., & Ollivier-Pierre, M.-F. (1981). Étude palynologique (pollen et spores) du Lutétien continental de Bouxwiller (Bas-Rhin, France). Sciences Géologiques Bulletin, 34(4), 219–238.

    Article  Google Scholar 

  • Schwarz, J., & Griessemer, T. W. (1998). Eine neue Charophyten-Art aus dem Lutetium (Mitteleozän) des Oberrheingrabens bei Albersweiler (Rheinland-Pfalz, SW-Deutschland): Chara rothauseni sp. n. Mainzer Naturwissenschaftliches Archiv, Beiheft, 21, 57–63.

    Google Scholar 

  • Sherwood, R. W., & Levin, H. L. (1972). A closer look at Trochoaster simplex Klumpp. Journal of Paleontology, 46(4), 591–594.

    Google Scholar 

  • Silva, G. G., Weber, V., Green, A. J., Hoffmann, P., Silva, V. S., Volcan, M. V., Lanés, L. E. K., Stenert, C., Reichard, M., & Maltchik, L. (2019). Killifish eggs can disperse via gut passage through waterfowl. Ecology, 100(11). https://doi.org/10.1002/ecy.2774.

  • Sissingh, W. (1998). Comparative Tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin: correlation of Alpine foreland events. Tectonophysics, 300(1–4), 249–284.

    Article  ADS  Google Scholar 

  • Sissingh, W. (2003). Tertiary paleogeographic and tectonostratigraphic evolution of the Rhenish Triple Junction. Palaeogeography, Palaeoclimatology, Palaeoecology, 196(1–2), 229–263.

    Article  ADS  Google Scholar 

  • Sissingh, W. (2006). Syn-kinematic palaeogeographic evolution of the West European Platform: correlation with Alpine plate collision and foreland deformation. Netherlands Journal of Geosciences, 85(2), 131–180.

    Article  Google Scholar 

  • Sittler, C. (1965). Le Paléogène des fossés rhénan et rhodanien. Études sédimentologiques et paléoclimatiques. Mémoires du Service de la Carte Géologique d’Alsace et de Lorraine, 24, 1–392.

    Google Scholar 

  • Sittler, C. (1968a). L‘analyse pollinique dans l’est de la France. Étude des formations éocènes ou rapportées à l’Éocène et des stratotypes palynologiques de Borken et de Messel. Mémoires du Bureau de Recherches Géologiques et Minières, 58, 165–171.

    Google Scholar 

  • Sittler, C. (1968b). Les indications stratigraphiques fournies par les minéraux argileux des différentes formations éocènes du fossé rhénan. Comparaison avec les régions voisines. Mémoires du Bureau de Recherches Géologiques et Minières, 58, 495–503.

    Google Scholar 

  • Sittler, C. (1969). L’Éocène dans le fossé rhénan. Mémoires du Bureau de Recherches Géologiques et Minières, 69, 371–383.

    Google Scholar 

  • Sittler, C. (1970). Die Korrelationsmöglichkeiten der ältesten tertiären Ablagerungen des Rheingrabensystems unter Berücksichtigung ihres Tonmineralbestandes. In J. H. Illies, & S. Mueller (Eds.), Graben problems (pp. 69–75). Stuttgart: Schweizerbart.

    Google Scholar 

  • Sittler, C. (1972). Le pétrole dans le département du Haut-Rhin. Bilan d’un siècle et demi de recherches et d’exploitations. Sciences Géologiques Bulletin, 25(2–3), 151–161, 189–200.

    Article  CAS  Google Scholar 

  • Sittler, C. (1992). Illustration de l’histoire géologique du Fossé rhénan et de l’Alsace. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 186(3), 255–282.

    Google Scholar 

  • Sittler, C., & Ollivier-Pierre, M.-F. (1994). Palynology and palynofacies analyses: some essential clues to assess and identify West-European Tertiary depositional environments in terms of relative high or lowstands. Application to the case of three Eocene and Oligocene sections in France. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 18(2), 475–488.

    Google Scholar 

  • Sluijs, A., & Brinkhuis, H. (2009). A dynamic climate and ecosystem state during the Paleocene–Eocene Thermal Maximum: inferences from dinoflagellate cyst assemblages on the New Jersey Shelf. Biogeosciences, 6(8), 1755–1781.

    Article  ADS  Google Scholar 

  • Sluijs, A., Pross, J., & Brinkhuis, H. (2005). From greenhouse to icehouse; organic-walled dinoflagellate cysts as paleoenvironmental indicators in the Paleogene. Earth-Science Reviews, 68(3–4), 281–315.

    Article  ADS  Google Scholar 

  • Sluijs, A., Bowen, G. J., Brinkhuis, H., Lourens, L. J., & Thomas, E. (2007). The Palaeocene – Eocene Thermal Maximum super greenhouse: biotic and geochemical signatures, age models and mechanisms of global change. In M. Williams, A. M. Haywood, F. J. Gregory, & D. N. Schmidt (Eds.), Deep-time perspectives on climate change: Marrying the signal from computer models and biological proxies (pp. 323–349). London: The Micropalaeontological Society.

    Chapter  Google Scholar 

  • Sluijs, A., Brinkhuis, H., Williams, G. L., & Fensome, R. A. (2009): Taxonomic revision of some Cretaceous–Cenozoic spiny organic-walled peridiniacean dinoflagellate cysts. Review of Palaeobotany and Palynology, 154(1–4), 34–53.

    Article  Google Scholar 

  • Sluijs, A., Roij, L. van, Harrington, G. J., Schouten, S., Sessa, J. A., LeVay, L. J., Reichart, G.-J., & Slomp, C. P. (2014). Warming, euxinia and sea level rise during the Paleocene–Eocene Thermal Maximum on the Gulf Coastal Plain: implications for ocean oxygenation and nutrient cycling. Climate of the Past, 10(4), 1421–1439.

    Article  ADS  Google Scholar 

  • Smith, K. T., Schaal, S. F. K., & Habersetzer, J. (Eds.) (2018). Messel – An ancient greenhouse ecosystem (pp. XVI + 355). Stuttgart: Schweizerbart.

  • Spuhler, L. (1937). Die Marnheimer Bucht. Mitteilungen des Saarpfälzischen Vereins für Naturkunde und Naturschutz Pollichia, Neue Folge, 6, 3–59.

    Google Scholar 

  • Stancliffe, R. P. W. (1996). Microforaminiferal linings. In J. Jansonius, & D. C. McGregor (Eds.), Palynology: Principles and applications Vol. 1 (pp. 373–379). Dallas: AASP Foundation.

    Google Scholar 

  • Stapf, K. R. G. (1988). Zur Tektonik des westlichen Rheingrabenrandes zwischen Nierstein am Rhein und Wissembourg (Elsaß). Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge, 70, 399–410.

    Article  Google Scholar 

  • Stellrecht, R. (1971). Geologisch-tektonische Entwicklung im Raum Albersweiler/Pfalz. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge, 53, 239–262.

    Article  Google Scholar 

  • Steurbaut, E., King, C., Matthijs, J., Noiret, C., Yans, J., & van Simaeys, S. (2015). The Zemst borehole, first record of the EECO in the North Sea Basin and implications for Belgian Ypresian–Lutetian stratigraphy. Geologica Belgica, 18(2–4), 147–159.

    Google Scholar 

  • Stradner, H. (1959). Die fossilen Discoasteriden Österreichs. 2. Teil. Erdoel-Zeitschrift, 75(12), 472–488.

    Google Scholar 

  • Straub, E. W. (1955). Über einen Fund von fraglichem Mitteleozän im Erdölfeld Stockstadt bei Darmstadt. Notizblatt des Hessischen Landesamtes für Bodenforschung zu Wiesbaden, 83, 220–227.

    Google Scholar 

  • Taplin, L. E., & Grigg, G. C. (1989). Historical zoogeography of the eusuchian crocodilians: a physiological perspective. American Zoologist, 29(3), 885–901.

    Article  Google Scholar 

  • Teichmüller, M. (1970). Bestimmung des Inkohlungsgrades von kohligen Einschlüssen in Sedimenten des Oberrheingrabens – ein Hilfsmittel bei der Klärung geothermischer Fragen. In J. H. Illies, & S. Mueller (Eds.), Graben problems (pp. 124–142). Stuttgart: Schweizerbart.

    Google Scholar 

  • Teichmüller, M. (1979). Die Diagenese der kohligen Substanzen in den Gesteinen des Tertiärs und Mesozoikums des mittleren Oberrheingrabens. Fortschritte in der Geologie von Rheinland und Westfalen, 27, 19–49.

    Google Scholar 

  • Teichmüller, M., & Teichmüller, R. (1981). The significance of coalification studies to geology – a review. Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine, 5(2), 491–534.

    Google Scholar 

  • Thiele-Pfeiffer, H. (1988). Die Mikroflora aus dem mitteleozänen Ölschiefer von Messel bei Darmstadt. Palaeontographica B, 211(1–3), 1–86.

    Google Scholar 

  • Thomsen, E., Abrahamsen, N., Heilmann-Clausen, C., King, C., & Nielsen, O. B. (2012). Middle Eocene to earliest Oligocene development in the eastern North Sea Basin: Biostratigraphy, magnetostratigraphy and palaeoenvironment of the Kysing-4 borehole, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 350–352, 212–235.

    Article  ADS  Google Scholar 

  • Thomson, P. W., & Pflug, H. (1953). Pollen und Sporen des mitteleuropäischen Tertiärs. Gesamtübersicht über die stratigraphisch und paläontologisch wichtigen Formen. Palaeontographica B, 94(1–4), 1–138.

    Google Scholar 

  • Trauth, N., Cavelier, C., Sommer, F., Tourencq, J., Pomerol, C., & Thiry, M. (1977). Aperçu sur la sédimentation paléogène du synclinal de Bouxwiller, comprise entre les marnes à Rhynchonelles (Bathonien) et le conglomérat du Bastberg (Oligocène). Sciences Géologiques Bulletin, 30(2), 91–100.

    Article  Google Scholar 

  • Tway, L. E., Harrison, W. E., & Zidek, J. (1986). Thermal alteration of microscopic fish remains – an initial study. Palaios, 1(1), 75–79.

    Article  ADS  Google Scholar 

  • Vanschoenwinkel, B., Waterkeyn, A., Nhiwatiwa, T., Pinceel, T., Spooren, E., Geerts, A., Clegg, B., & Brendonck, L. (2011). Passive external transport of freshwater invertebrates by elephant and other mud-wallowing mammals in an African savannah habitat. Freshwater Biology, 56(8), 1606–1619.

    Article  Google Scholar 

  • Weigelt, J. (1927). Rezente Wirbeltierleichen und ihre paläobiologische Bedeutung (pp. XVI + 227). Leipzig: Verlag Max Weg.

  • Weiler, W. (1961). Die Fischfauna des unteroligozänen Melanientons und des Rupeltons in der Hessischen Senke. Notizblatt des Hessischen Landesamtes für Bodenforschung zu Wiesbaden, 89, 44–65.

    Google Scholar 

  • Weiler, W. (1963). Die Fischfauna des Tertiärs im oberrheinischen Graben, des Mainzer Beckens, des unteren Maintals und der Wetterau, unter besonderer Berücksichtigung des Untermiozäns. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 504, 1–75.

    Google Scholar 

  • Wichter, L., Krauter, E., & Meiniger, W. (1988). Landslide stabilization using drainage wells, concrete dowels and anchored bore pile walls. In C. Bonnard (Ed.), Landslides. Proceedings of the Fifth International Symposium on Landslides (pp. 1023–1028). Rotterdam: Balkema.

    Google Scholar 

  • Wilkinson, G. C., Bazley, R. A. B., & Boulter, M. C. (1980). The geology and palynology of the Oligocene Lough Neagh Clays, Northern Ireland. Journal of the Geological Society, 137(1), 65–75.

    Article  ADS  CAS  Google Scholar 

  • Wirth, E. (1969). Die Probleme des Eozäns im deutschen Anteil der Oberrheinebene und ihrer Randzonen. Mémoires du Bureau de Recherches Géologiques et Minières, 69, 287–306.

    Google Scholar 

  • Worobiec, E. (2009). Middle Miocene palynoflora of the Legnica lignite deposit complex, Lower Silesia, Poland. Acta Palaeobotanica, 49(1), 5–133.

    Google Scholar 

  • Yu-Fei Wang, Cheng-Sen Li, Collinson, M. E., Jian Lin, & Qi-Gao Sun (2003). Eucommia (Eucommiaceae), a potential biothermometer for the reconstruction of paleoenvironments. American Journal of Botany, 90(1), 1–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was initiated by the late Karl R. G. Stapf who introduced C. Hartkopf-Fröder to the geology of the Haardt during a university course. Günter Schweigert is thanked for discussions on Lower Jurassic biostratigraphy. Dietrich Kadolsky kindly commented on an earlier version of the manuscript. Oliver Hampe and Bettina Reichenbacher gave advice on the fish teeth structure and otolith fauna, respectively. Ralf Littke provided access to a Zeiss Axio Imager.M2m incident light microscope and Donka Macherey assisted with the photographs of the fish teeth cross-sections. The help of Ursula Amend, Ulrike Lux and Jörg Schardinel in producing the figures is gratefully acknowledged. The manuscript considerably benefitted from perceptive advice and constructive comments by Kirsten I. Grimm and Olaf K. Lenz. We thank Anna-Kristin Stössel and Sinje Weber for technical editing of the manuscript. We dedicate this publication to our friend and colleague Martin Hottenrott who was involved in the initial stage of this project but passed away on September 29, 2013. German palynology has suffered a sad loss by his untimely death. He is greatly missed by all of us.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Author notes

  1. Martin Hottenrott is deceased. This paper is dedicated to his memory.

    • Martin Hottenrott
Authors

Corresponding author

Correspondence to Christoph Hartkopf-Fröder.

Ethics declarations

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 33 kb)

ESM 2

(XLSX 16 kb)

ESM 3

(PDF 1959 kb)

ESM 4

(PNG 1224 kb)

High resolution image (TIF 29256 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hartkopf-Fröder, C., Martini, E., Heilmann-Clausen, C. et al. Eocene sediments and a fresh to brackish water biota from the early rifting stage of the Upper Rhine Graben (west of oil field Landau, southwest Germany): implications for biostratigraphy, palaeoecology and source rock potential. Palaeobio Palaeoenv 104, 53–102 (2024). https://doi.org/10.1007/s12549-023-00577-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12549-023-00577-z

Keywords

Navigation