Skip to main content
Log in

Molecular Identification and Phylogenetic Analysis of the Traditional Chinese Medicinal Plant Kochia scoparia Using ITS2 Barcoding

  • Original research article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Kochia scoparia has high medicinal and economic value. However, with similar morphological features, adulterants and some closely related species of K. scoparia are increasingly sold in the medicinal markets, leading to potential safety risks. In this study, 128 internal transcribed spacer 2 (ITS2) sequences were collected to distinguish K. scoparia from its closely related species and adulterants. Then, sequence alignment, sequence characteristics analysis, and genetic distance calculations were performed using MEGA 6.06 software, and the phylogenetic trees were reconstructed using both MEGA 6.06 and IQ-Tree software. Finally, the secondary structure of ITS2 was modeled using the prediction tool in the ITS2 database. The results showed that ITS2 sequences of K. scoparia ranged in length from 226 to 227 bp, with a mean GC content of 55.3%. The maximum intraspecific distance was zero, while the minimum interspecific distance from closely related species and adulterants was 0.009 and 0.242, respectively. Kochia scoparia formed an independent clade in the phylogenetic trees, and its secondary structure exhibited enough variation to be separated from that of other species. In summary, ITS2 can be used as a mini-barcode for distinguishing K. scoparia from closely related species and adulterants. Its phylogenetic trees could illustrate the evolutionary process of K. scoparia in the Camphorosmeae. The phylogenetic results using ITS2 barcode further supported the internationally recognized revised classifications of Kochia and Bassia genera as a combined Bassia genus, together with the establishment of new genera Grubovia and Sedobassia, which we suggest is accepted by the Flora of China.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Plant material was collected from the samples of the dried fruits of K. scoparia in China. Two sequences of K. scoparia were sequenced in our study and other sequences were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank).

References

  1. Moubasher HA, Hegazy AK, Mohamed NH, Moustafa YM, Kabiel HF, Hamad AA (2015) Phytoremediation of soils polluted with crude petroleum oil using Bassia scoparia and its associated rhizosphere microorganisms. Int Biodeterior Biodegrad 98:113–120. https://doi.org/10.1016/j.ibiod.2014.11.019

    Article  CAS  Google Scholar 

  2. Ou J, Thompson CR, Stahlman PW, Bloedow N, Jugulam M (2018) Reduced translocation of glyphosate and dicamba in combination contributes to poor control of Kochia scoparia: evidence of herbicide antagonism. Sci Rep 8(1):5330. https://doi.org/10.1038/s41598-018-23742-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shao RJ, Shao SH (2015) Progress in study on medicinal value of medicinal parts of Kochia scoparia. Chin Tradit Herb Drugs 46(23):3605–3610

    CAS  Google Scholar 

  4. Han LK, Nose R, Li W, Gong XJ, Zheng YN, Yoshikawa M, Koike K, Nikaido T, Okuda H, Kimura Y (2010) Reduction of fat storage in mice fed a high-fat diet long term by treatment with saponins prepared from Kochia scoparia fruit. Phytother Res 20(10):877–882. https://doi.org/10.1002/ptr.1981

    Article  CAS  Google Scholar 

  5. Han HY, Lee HE, Kim HJ, Jeong SH, Kim JH, Kim H, Ryu MH (2016) Kochia scoparia induces apoptosis of oral cancer cells in vitro and in heterotopic tumors. J Ethnopharmacol 192:431–441. https://doi.org/10.1016/j.jep.2016.09.019

    Article  PubMed  Google Scholar 

  6. Wang J, Yuan L, Xiao H, Wang C, Xiao C, Wang Y, Liu X (2014) A novel mechanism for momordin Ic-induced HepG2 apoptosis: involvement of PI3K- and MAPK-dependent PPARgamma activation. Food Funct 5(5):859–868. https://doi.org/10.1039/c3fo60558b

    Article  CAS  PubMed  Google Scholar 

  7. Cho HD, Kim JH, Park JK, Hong SM, Kim DH, Seo KI (2019) Kochia scoparia seed extract suppresses VEGF-induced angiogenesis via modulating VEGF receptor 2 and PI3K/AKT/mTOR pathways. Pharm Biol 57(1):684–693. https://doi.org/10.1080/13880209.2019.1672753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cheng F, Zhou Y, Wang M, Guo C, Cao Z, Zhang R, Peng C (2020) A review of pharmacological and pharmacokinetic properties of stachydrine. Pharmacol Res 155:104755. https://doi.org/10.1016/j.phrs.2020.104755

    Article  CAS  PubMed  Google Scholar 

  9. Zago PMW, Branco SJDC, Fecury LDB, Carvalho LT, Rocha CQ, Madeira PLB, de Sousa EM, de Siqueira FSF, Paschoal MAB, Diniz RS, Gonçalves LM (2019) Anti-biofilm action of Chenopodium ambrosioides extract, cytotoxic potential and effects on acrylic denture surface. Front Microbiol 10:1724. https://doi.org/10.3389/fmicb.2019.01724

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23(4):167–172. https://doi.org/10.1016/j.tig.2007.02.00

    Article  CAS  PubMed  Google Scholar 

  11. Schindel DE, Miller SE (2005) DNA barcoding a useful tool for taxonomists. Nature 435(7038):17. https://doi.org/10.1038/435017b

    Article  CAS  PubMed  Google Scholar 

  12. Chen S, Yao H, Han J, Liu C, Song J, Shi L, Zhu Y, Ma X, Gao T, Pang X, Luo K, Li Y, Li X, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5(1):e8613. https://doi.org/10.1371/journal.pone.0008613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen S, Pang X, Song J, Shi L, Yao H, Han J, Leon C (2014) A renaissance in herbal medicine identification: from morphology to DNA. Biotechnol Adv 32(7):1237–1244. https://doi.org/10.1016/j.biotechadv.2014.07.004

    Article  CAS  PubMed  Google Scholar 

  14. Freitag H, Kadereit G (2014) C3 and C4 leaf anatomy types in Camphorosmeae (Camphorosmoideae, Chenopodiaceae). Plant Syst Evol 300(4):665–687. https://doi.org/10.1007/s00606-013-0912-9

    Article  Google Scholar 

  15. Xia Y, Wang Q, Pu Z (2003) Identification of Kochia scoparia and its substitutes by scanning electron microscope and UV spectrum. J Chin Med Mater 26(5):323–326 (in Chinese)

    CAS  Google Scholar 

  16. Yuan J (1987) Identification of Kochia scoparia and Dysphania ambrosioides. J Chin pharm 22(8):456–457 (in Chinese)

    Google Scholar 

  17. Liu Z, Jiu J (2011) Identification of Kochia scoparia and its adulterants. Cap Food Med 18(13):48 (in Chinese)

    CAS  Google Scholar 

  18. van der Valk JMA, Leon CJ, Nesbitt M (2017) Macroscopic authentication of Chinese materia medica (CMM): a UK market study of seeds and fruits. J Herb Med 8:40–51. https://doi.org/10.1016/j.hermed.2017.03.007

    Article  Google Scholar 

  19. Tu Y, Xiong C, Shi Y, Ming M, Hu Z, Huang B (2014) Identification of toxic hyoscyami semen and its adulterants using DNA barcoding. Mod Tradit Chin Med Mater Med-World Sci Technol 16(11):2337–2342 (in Chinese)

    Google Scholar 

  20. Dong W, Zhou H (1999) Identification of the seeds of Sesamum indicum and the dried fruits of Kochia scoparia. Lishizhen Med Mater Med Res 10(11):3–5 (in Chinese)

    Google Scholar 

  21. Guo M, Ren L, Pang X (2017) Inspecting the true identity of herbal materials from cynanchum Using ITS2 barcode. Front Plant Sci 8:1945. https://doi.org/10.3389/fpls.2017.01945

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nishimaki T, Sato K (2019) An Extension of the kimura two-parameter model to the natural evolutionary process. J Mol Evol 87(1):60–67. https://doi.org/10.1007/s00239-018-9885-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu X, Zhang Y, Liu X, Hou D, Gao T (2015) Authentication of commercial processed Glehniae Radix (Beishashen) by DNA barcodes. Chin Med 10:35. https://doi.org/10.1186/s13020-015-0071-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nguyen LT, Schmidt HA, Haeseler AV, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300

    Article  CAS  PubMed  Google Scholar 

  26. Ankenbrand MJ, Keller A, Wolf M, Schultz J, Förster F (2015) ITS2 database V: twice as much. Mol Biol Evol 32(11):3030–3032. https://doi.org/10.1093/molbev/msv174

    Article  CAS  PubMed  Google Scholar 

  27. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31. https://doi.org/10.1007/978-1-60327-429-6_1

    Article  CAS  PubMed  Google Scholar 

  28. Selig C, Wolf M, Müller T, Dandekar T, Schultz J (2008) The ITS2 Database II: homology modelling RNA structure for molecular systematics. Nucleic Acids Res 36:D377-380. https://doi.org/10.1093/nar/gkm827

    Article  CAS  PubMed  Google Scholar 

  29. Jo S, Ryu J, Han HY, Lee G, Ryu MH, Kim H (2016) Anti-inflammatory activity of Kochia scoparia fruit on contact dermatitis in mice. Mol Med Rep 13(2):1695–1700. https://doi.org/10.3892/mmr.2015.4698

    Article  CAS  PubMed  Google Scholar 

  30. Liu ZW, Gao YZ, Zhou J (2019) Molecular authentication of the medicinal species of Ligusticum (Ligustici Rhizoma et Radix, “Gao-ben”) by integrating non-coding internal transcribed spacer 2 (ITS2) and its secondary structure. Front Plant Sci 10:429. https://doi.org/10.3389/fpls.2019.00429

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kadereit G, Freitag H (2011) Molecular phylogeny of Camphorosmeae (Camphorosmoideae, Chenopodiaceae): implications for biogeography, evolution of C4-photosynthesis and taxonomy. Taxon 60(1):51–78. https://doi.org/10.1002/tax.601006

    Article  Google Scholar 

  32. Kadereit G, Lauterbach M, Pirie MD, Arafeh R, Freitag H (2014) When do different C4 leaf anatomies indicate independent C4 origins? Parallel evolution of C4 leaf types in Camphorosmeae (Chenopodiaceae). J Exp Bot 65(13):3499–3511. https://doi.org/10.1093/jxb/eru169

    Article  PubMed  Google Scholar 

  33. Sukhorukov AP, Liu PL, Kushunina M (2019) Taxonomic revision of Chenopodiaceae in Himalaya and Tibet. PhytoKeys 116:1–141. https://doi.org/10.3897/phytokeys.116.27301

    Article  Google Scholar 

  34. Hernándezledesma P, Berendsohn WG, Borsch T, Mering SV, Akhani H, Arias S, Castañedanoa I, Eggli U, Eriksson R, Floresolvera H (2015) A taxonomic backbone for the global synthesis of species diversity in the angiosperm order Caryophyllales. Willdenowia 45(3):281–383. https://doi.org/10.3372/wi.45.45301

    Article  Google Scholar 

Download references

Acknowledgements

We thank Wordvice for their help in revising the English grammar.

Funding

This work was supported by the Traditional Chinese Medicine Bureau Foundation of Guangdong Province, China (20161139), the higher education reform project of Guangdong Province [2019268], the General Program of Guangdong Medical University, China (GDMUM201834), and the National University Students Innovation and Entrepreneurship Training Project, China (201710571056, 201710571096, 201810571042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Liu or Zunnan Huang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, S., Wu, W. et al. Molecular Identification and Phylogenetic Analysis of the Traditional Chinese Medicinal Plant Kochia scoparia Using ITS2 Barcoding. Interdiscip Sci Comput Life Sci 13, 128–139 (2021). https://doi.org/10.1007/s12539-021-00421-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-021-00421-y

Keywords

Navigation