Skip to main content

Advertisement

Log in

Effects of temperature on germination in eight Western Australian herbaceous species

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

Germination is a high-risk phase in a plant’s life cycle and is directly regulated by temperature. Seeds germinate over a range of temperatures within which there is an optimum temperature, with thresholds above and below which no germination occurs. Rapid changes in temperature associated with global warming may cause a disconnect between temperatures a seed experiences and temperatures over which germination can occur. This paper explores the temperature dimension of the germination niche of eight herbaceous species from South West Western Australia as part of a broader assessment of endemic native species at risk of decline under global warming. The data obtained from germination studies on a temperature gradient plate were used to populate models to predict optimum germination responses (mean time to germination, germination timing and success) under current (1950–2000 averages) and future (2070 high greenhouse gas emission) temperature scenarios. The species exhibited a mix of germination responses, often with high tolerance to high diurnal temperatures. A number of species did not reach their full potential within the experimental period, indicating the presence of dormancy not overcome due to temperature alone. Modelling revealed that for some species the opportunity for germination may decline due to rising temperatures, but for others there would be little change, though a shift in germination timing may be expected. This approach to identifying extinction risk contributes tangibly to efforts to predict plant responses to environmental change and can help prioritize species for management actions, direct limited resources towards further investigations and supplement bioclimatic modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Araújo MB, Pearson RG (2005) Equilibrium of species’ distributins with climate. Ecography 28:693–695

  • Baskin CC, Baskin JM (1988) Germination ecophysiology of herbaceous plant species in a temperate region. Amer J Bot 75:286–305

  • Bates BC, Hope P, Ryan B, Smith I, Charles S (2008) Key findings from the Indian Ocean Climate Initiative and their impact on policy development in Australia. Climatic Change 89:339–354

  • Bates B, Frederiksen C, Wormworth J (2012) Western Australia’s weather and climate: a synthesis of Indian Ocean climate initiative Stage 3 research. Indian Ocean Climate Initiative CSIRO and BoM, Australia

  • Bell DT (1999) The process of germination in Australian native species. A review. Austral J Bot 47:475–517

  • Bell DT (2001) Ecological response syndrome in the flora of south-west Western Australia: fire resprouters vs re-seeders. Bot Rev 67:417–440

  • Booth TH (2017) Assessing species climatic requirements beyond the realized niche: some lessons mainly from tree species distribution modelling. Climatic Change 145:259–271

  • Cochrane A (2016) Can sensitivity to temperature during germination help predict global warming vulnerability? Seed Sci Res 26:14–29

  • Cochrane A (2017) Modelling seed germination response to temperature in Eucalyptus L'Her. (Myrtaceae) species in the context of global warming. Seed Sci Res 27:99–109

  • Cochrane A, Daws MI, Hay FR (2011) Seed-based approach for identifying flora at risk from climate warming. Austral Ecol 36:923–935

  • Donohue K (2005) Seeds and seasons: interpreting germination timing in the field. Seed Sci Res 15:175–187

  • Donohue K, Rubio de Casas R, Burghardt L, Kovach K, Willis C (2010) Germination, postgermination adaptation, and species ecological ranges. Annual Rev Ecol Evol Syst 41:293–319

  • Fenner M, Thompson K (2005) The ecology of seeds. Cambridge University Press, Cambridge

  • Fernández-Pascual E, Seal CE, Pritchard HW (2015) Simulating the germination response to diurnally alternating temperatures under climate change scenarios: comparative studies on Carex diandra seeds. Ann Bot (Oxford) 115:201–209

  • Finch-Savage WE, Phelps K (1993) Onion (Allium cepa) seedling emergence patterns can be explained by the influence of soil temperature and water potential on seed germination. J Exp Bot 44:407–414

  • Fitzpatrick MC, Gove AD, Sanders NJ, Dunn RR (2008) Climate change, plant migration, and range collapse in a global biodiversity hotspot: the Banksia (Proteaceae) of Western Australia. Global Change Biol 14:1337–1352

  • Gilliam FS (2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience 57:845–858

  • Grubb PJ (1977) The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol Rev 52:107–145

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

  • Hopper SD, Gioia P (2004) The SouthWest Australian Floristic Region: evolution and conservation of a global hot spot of biodiversity. Annual Rev Ecol Evol Syst 35:623–650

  • Hughes L (2000) Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol 15:56–61

  • Hughes L (2003) Climate change and Australia: trends, projections and impacts. Austral Ecol 28:423–443

  • IPPC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, UK and New York, USA

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O'Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Parsons Chini L, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M. (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci Model Developm 4:543–570

  • Mayer AM, Poljakoff-Mayber A (1989) The germination of seeds. Pergamon Press, Oxford

  • Merritt DJ, Turner SR, Clarke S, Dixon KW (2007) Seed dormancy and germination stimulation syndromes for Australian temperate species. Austral J Bot 55:336–344

  • Moles AT, Westoby M (2004) What do seedlings die from and what are the implications for evolution of seed size? Oikos 106:193–199

  • Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

  • Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Pl Sci 15:684–692

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

  • Probert RJ (2000) The role of temperature in the regulation of seed dormancy and germination. In Fenner M (ed) Seeds. The ecology of regeneration in plant communities. 2 edn. CABI International, Wallingford, UK, 261–292

  • Reiter NH, Walsh NG, Lawrie AC (2015) Causes of infertility in the endangered Australian endemic plant Borya mirabilis (Boryaceae). Austral J Bot 63:554–565

  • Schütz W (2000) Ecology of seed dormancy and germination in sedges (Carex). Perspect Pl Ecol Evol Syst 3:67–89

  • Simons AM (2011) Modes of response to environmental change and the elusive empirical evidence for bet hedging. Proc Roy Soc Biol Sci Ser B 278:1601–1609

  • Soberón J, Arroyo-Peña B (2017) Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLOS One 12:e0175138

  • Thompson K, Grime JP (1983) A comparative study of germination responses to diurnally-fluctuating temperatures. J Appl Ecol 20:141–156

  • Thompson K, Grime JP, Mason G (1977) Seed germination in response to diurnal fluctuations of temperature. Nature 267:147–9

  • Tieu A (2000) The interaction of burial, heat and smoke in the alleviation of seed dormancy in selected southwestern Australian plant species. PhD Thesis. The University of Western Australia, Australia

  • Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Global Change Biol 17:2145–2161

  • Willis AJ, Groves RH (1991) Temperature and light effects on the germination of seven native forbs. Austral J Bot 39:219–228

  • Zeppel MJB, Harrison SP, et al. (2015) Drought and resprouting plants. New Phytol 206:583–589

Download references

Acknowledgements

I would like to thank Andrew Crawford (DBCA) for collection of seed from Anigozanthos manglesii, Borya sphaerocephala, Podolepis aristata and Rhodanthe pyrethrum and Nicole Siemon (Siemon and Associates) for collection of Carex tereticaulis seed. Collections were made for conservation purposes and partially funded through the international Millennium Seed Bank Project (Royal Botanic Gardens Kew UK). Support for the purchase of the temperature gradient plate came from a Natural Heritage Trust grant from the Australian Government through the South Coast Natural Resource Management Inc. (Project 04SC1-13h). I thank Matt Williams (DBCA) for assistance with statistical analyses and two anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Cochrane.

Ethics declarations

There is no conflict of interest and all research complies with the current laws of the country where it has been performed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cochrane, A. Effects of temperature on germination in eight Western Australian herbaceous species. Folia Geobot 54, 29–42 (2019). https://doi.org/10.1007/s12224-019-09335-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12224-019-09335-6

Keywords

Navigation