Skip to main content

Advertisement

Log in

Antileishmanial Effects of Bunium Persicum Crude Extract, Essential Oil, and Cuminaldehyde on Leishmania Major: In Silico and In Vitro Properties

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Cuminaldehyde (CA), an oxidized aldehyde monoterpene, is a major essential oil component in cumin seeds, which has shown different promising medical effects. In this study, we comprehensively evaluated the antileishmanial potential of Bunium persicum (Boiss) B. Fedtsch (Apiaceae) and one of its main essential oil constituents, CA, focus on the mechanisms of action.

Methods

We used a molecular docking approach to examine the capability of CA for binding to IL-12P40 and TNF-α. The colorimetric assay was performed to assess the effect of B. persicum crude extract, essential oil, and CA, against Leishmania major promastigotes and intracellular amastigotes. The expression of IFN-γ, IL-12P40, TNF-α, and IL-10 genes was detected using quantitative real-time polymerase chain reaction qPCR.

Results

Docking analyses in the current study indicated CA binds to IL-12P40 and TNF-α. These products were safe, extremely antileishmanial, and significantly promoted Th1-related cytokines (IFN-γ, IL-12P40, TNF-α), while downregulating the Th2 phenotype (IL-10).

Conclusion

Cumin essential oil and its major component, CA, possessed powerful antileishmanial activity. The primary mechanism of activity involves an immunomodulatory role toward Th1 cytokine response. Therefore, cumin essential oil and CA deserve further explorations as promising medications for treating leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this published article.

Abbreviations

CA:

Cuminaldehyde

CL:

Cutaneous leishmaniasis

IFN-γ:

Interferon-gamma

IL-12:

Interleukin-12

NO:

Nitric oxide

OD:

Optical density

PCR:

Polymerase chain reaction

SI:

Selectivity index

TGF-β:

Transforming growth factor-beta

TNF-α:

Tumor necrosis factor-alpha

References

  1. Shoraka HR, Taheri Soodejani M, Allah Kalteh E, Chegeni M, Mahmudimanesh M, Sofizadeh A (2021) Prevalence of leishmania major yakimoff and schokhor (Kinetoplastida: Trypanosomatidae) in sandflies in Iran: a systematic review and meta-analysis. J Med Entomol 58(1):26–36. https://doi.org/10.1093/jme/tjaa185

    Article  PubMed  Google Scholar 

  2. WHO (2014) A global brief on vector-borne diseases. Tech. Rep., World Health Organization

  3. Morales-Yuste M, Martín-Sánchez J, Corpas-Lopez V (2022) Canine Leishmaniasis: update on epidemiology, diagnosis, treatment, and prevention. Vet Sci 9(8):387. https://doi.org/10.1016/j.ejmcr.2022.100031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dey S, Johri S, Abirami M, Kumar BK, Taramelli D, Basilico N, Balana-Fouce R, Sekhar KVGC, Murugesan S (2022) Search for structurally diverse heterocyclic analogs as dual-acting antimalarial and antileishmanial agents: An overview. EJMECH Reports, Amsterdam, p 100031

    Google Scholar 

  5. Duarte N, Ramalhete C, Lourenço L (2019) Plant terpenoids as lead compounds against malaria and Leishmaniasis. Stud Nat Prod Chem 62:243–306

    Article  CAS  Google Scholar 

  6. Ogungbe IV, Setzer WN (2013) In-silico Leishmania target selectivity of antiparasitic terpenoids. Molecules 18(7):7761–7847. https://doi.org/10.3109/13880209.2010.504966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hajhashemi V, Sajjadi SE, Zomorodkia M (2011) Antinociceptive and anti-inflammatory activities of Bunium persicum essential oil, hydroalcoholic and polyphenolic extracts in animal models. Pharm Biol 49(2):146–151. https://doi.org/10.7324/JAPS.2018.81019

    Article  PubMed  Google Scholar 

  8. Hassanzad Azar H, Taami B, Aminzare M, Daneshamooz S (2018) Bunium persicum (Boiss) B Fedtsch: an overview on Phytochemistry, Therapeutic uses and its application in the food industry. J Appl Pharm Sci 8(10):150–158

    Article  CAS  Google Scholar 

  9. Sharififar F, Yassa N, Mozaffarian V (2010) Bioactivity of major components from the seeds of Bunium persicum (Boiss.) Fedtch. Pak J Pharm Sci. https://doi.org/10.7150/jca.13689

    Article  PubMed  Google Scholar 

  10. Yang S-m, Tsai K-d, Wong H-Y, Liu Y-H, Chen T-W, Cherng J, Hsu K-C, Ang Y-U, Cherng J-M (2016) Molecular mechanism of Cinnamomum verum component cuminaldehyde inhibits cell growth and induces cell death in human lung squamous cell carcinoma NCI-H520 cells in vitro and in vivo. J Cancer 7(3):251. https://doi.org/10.1017/S0007114513000627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Patil SB, Takalikar SS, Joglekar MM, Haldavnekar VS, Arvindekar AU (2013) Insulinotropic and β-cell protective action of cuminaldehyde, cuminol and an inhibitor isolated from Cuminum cyminum in streptozotocin-induced diabetic rats. Br J Nutr 110(8):1434–1443. https://doi.org/10.1017/S0007114513000627

    Article  CAS  PubMed  Google Scholar 

  12. Tomy M, Dileep K, Prasanth S, Preethidan D, Sabu A, Sadasivan C, Haridas M (2014) Cuminaldehyde as a lipoxygenase inhibitor: in vitro and in silico validation. Appl Biochem Biotechnol 174(1):388–397. https://doi.org/10.1371/journal.pone.0144120

    Article  CAS  PubMed  Google Scholar 

  13. Zheljazkov VD, Gawde A, Cantrell CL, Astatkie T, Schlegel V (2015) Distillation time as tool for improved antimalarial activity and differential oil composition of cumin seed oil. PLoS ONE 10(12):e0144120

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mojarraba M, Rezaeic M, Miraghaeeb S-S, Abdid G, Shokoohiniaa Y (2014) Antimalarial evaluation of cuminaldehyde, an aromatic monoterpenoid, using cell free β-hematin formation assay. J Rep Pharm Sci 3(1):36–41. https://doi.org/10.1371/journal.pone.0232987

    Article  CAS  Google Scholar 

  15. Monteiro-Neto V, de Souza CD, Gonzaga LF, da Silveira BC, Sousa NC, Pontes JP, Santos DM, Martins WC, Pessoa JF, Carvalho Junior AR (2020) Cuminaldehyde potentiates the antimicrobial actions of ciprofloxacin against Staphylococcus aureus and Escherichia coli. PLoS ONE 15(5):e0232987. https://doi.org/10.1016/j.jep.2020.112786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koohsari S, Sheikholeslami MA, Parvardeh S, Ghafghazi S, Samadi S, Poul YK, Pouriran R, Amiri S (2020) Antinociceptive and antineuropathic effects of cuminaldehyde, the major constituent of Cuminum cyminum seeds: possible mechanisms of action. J Ethnopharmacol 255:112786. https://doi.org/10.1111/1750-3841.13016

    Article  CAS  PubMed  Google Scholar 

  17. Morshedi D, Aliakbari F, Tayaranian-Marvian A, Fassihi A, Pan-Montojo F, Pérez-Sánchez H (2015) Cuminaldehyde as the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. J Food Sci 80(10):H2336–H2345. https://doi.org/10.1016/j.intimp.2021.108274

    Article  CAS  PubMed  Google Scholar 

  18. Sayers EW, Beck J, Bolton EE, Bourexis D, Brister JR, Canese K, Comeau DC, Funk K, Kim S, Klimke W (2021) Database resources of the national center for biotechnology information. Nucleic Acids Res 49(D1):D10. https://doi.org/10.1093/nar/gkab294

    Article  CAS  PubMed  Google Scholar 

  19. Keyhani A, Sharifi I, Salarkia E, Khosravi A, Oliaee RT, Babaei Z, Almani PGN, Hassanzadeh S, Kheirandish R, Mostafavi M (2021) In vitro and in vivo therapeutic potentials of 6-gingerol in combination with amphotericin B for treatment of Leishmania major infection: Powerful synergistic and multifunctional effects. Int Immunopharmacol 101:108274. https://doi.org/10.1016/j.cimid.2022.101797

    Article  CAS  PubMed  Google Scholar 

  20. Adasme MF, Linnemann KL, Bolz SN, Kaiser F, Salentin S, Haupt VJ, Schroeder M (2021) PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res 49(W1):W530–W534. https://doi.org/10.1080/17460441.2022.2002843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mohseni F, Sharifi I, Oliaee RT, Babaei Z, Mostafavi M, Almani PGN, Keyhani A, Salarkia E, Sharifi F, Nave HH (2022) Antiproliferative properties of turmerone on Leishmania major: modes of action confirmed by antioxidative and immunomodulatory roles. Comp Immunol, Microbiol Infe. https://doi.org/10.1371/journal.pntd.0008903

    Article  Google Scholar 

  22. Zulfiqar B, Avery VM (2022) Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opin Drug Discov 17(2):151–166. https://doi.org/10.1016/B978-0-444-64179-3.00007-4

    Article  CAS  PubMed  Google Scholar 

  23. Merdekios B, Pareyn M, Tadesse D, Eligo N, Kassa M, Jacobs BK, Leirs H, Van Geertruyden J-P, van Griensven J, Caljon G (2021) Evaluation of conventional and four real-time PCR methods for the detection of Leishmania on field-collected samples in Ethiopia. PLoS Negl Trop Dis 15(1):e0008903. https://doi.org/10.1128/AAC.47.6.1895-1901.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Isah MB, Tajuddeen N, Umar MI, Alhafiz ZA, Mohammed A, Ibrahim MA (2018) Terpenoids as emerging therapeutic agents: cellular targets and mechanisms of action against protozoan parasites. Stud Nat Prod Chem 59:227–250. https://doi.org/10.1128/iai.66.9.4553-4556.1998

    Article  CAS  Google Scholar 

  25. Rosa MdSS, Mendonça-Filho RR, Bizzo HR, Rodrigues IdA, Soares RMA, Souto-Padrón T, Alviano CS, Lopes AHC (2003) Antileishmanial activity of a linalool-rich essential oil from croton cajucara. Antimicrob Agents Chemother 47(6):1895–1901. https://doi.org/10.1155/2015/392918

    Article  CAS  PubMed Central  Google Scholar 

  26. Doherty TM, Sher A, Vogel SN, immunity, (1998) Paclitaxel (Taxol)-induced killing of Leishmania major in murine macrophages. Infection 66(9):4553–4556. https://doi.org/10.1093/jac/dkr575

    Article  CAS  Google Scholar 

  27. Miranda MM, Panis C, da Silva SS, Macri JA, Kawakami NY, Hayashida TH, Madeira TB, Acquaro VR, Nixdorf SL, Pizzatti L (2015) Kaurenoic acid possesses leishmanicidal activity by triggering a NLRP12/IL-1β/cNOS/NO pathway. Mediators Inflamm 2015:1–10. https://doi.org/10.1078/0944-7113-00381

    Article  Google Scholar 

  28. Bhaumik SK, Paul J, Naskar K, Karmakar S, De T (2012) Asiaticoside induces tumour-necrosis-factor-α-mediated nitric oxide production to cure experimental visceral leishmaniasis caused by antimony-susceptible and-resistant Leishmania donovani strains. J Antimicrob Chemother 67(4):910–920. https://doi.org/10.1371/journal.pone.0144946

    Article  CAS  PubMed  Google Scholar 

  29. Torres-Santos E, Lopes D, Oliveira RR, Carauta J, Falcao CB, Kaplan M, Rossi-Bergmann B (2004) Antileishmanial activity of isolated triterpenoids from pourouma guianensis. Phytomedicine 11(2–3):114–120. https://doi.org/10.1155/2013/279726

    Article  CAS  PubMed  Google Scholar 

  30. Yamamoto ES, Campos BL, Jesus JA, Laurenti MD, Ribeiro SP, Kallás EG, Rafael-Fernandes M, Santos-Gomes G, Silva MS, Sessa DP (2015) The effect of ursolic acid on Leishmania (Leishmania) amazonensis is related to programed cell death and presents therapeutic potential in experimental cutaneous leishmaniasis. PLoS ONE 10(12):e0144946. https://doi.org/10.1371/journal.pntd.0001787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rodrigues KAdF, Amorim LV, Oliveira JMGd, Dias CN, Moraes DFC, Andrade EHdA, Maia JGS, Carneiro SMP, Carvalho FAdA (2013) Eugenia uniflora L essential oil as a potential anti-leishmania agent: effects on Leishmania amazonensis and possible mechanisms of action. J Evid Based Complement Altern Med. https://doi.org/10.1111/j.1476-5381.2009.00609.x

    Article  Google Scholar 

  32. Soares DC, Calegari-Silva TC, Lopes UG, Teixeira VL, de Palmer Paixao IC, Cirne-Santos C, Bou-Habib DC, Saraiva EM (2012) Dolabelladienetriol, a compound from Dictyota pfaffii algae, inhibits the infection by Leishmania amazonensis. BMC Complement Alt Med. https://doi.org/10.1186/s12906-015-0681-9

    Article  Google Scholar 

  33. Misra P, Sashidhara KV, Singh SP, Kumar A, Gupta R, Chaudhaery SS, Gupta SS, Majumder H, Saxena AK, Dube A (2010) 16α-Hydroxycleroda-3, 13 (14) Z-dien-15, 16-olide from Polyalthia longifolia: a safe and orally active antileishmanial agent. Br J Pharmacol 159(5):1143–1150. https://doi.org/10.1016/j.molstruc.2020.129447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teles CBG, Moreira-Dill LS, Silva ADA, Facundo VA, de Azevedo WF, da Silva LHP, Motta MCM, Stábeli RG, Silva-Jardim I (2015) A lupane-triterpene isolated from Combretum leprosum Mart fruit extracts that interferes with the intracellular development of Leishmania (L.) amazonensis in vitro. BMC complement med ther 15(1):1–10. https://doi.org/10.2147/JEP.S285079

    Article  CAS  Google Scholar 

  35. Zare S, Hatam G, Firuzi O, Bagheri A, Chandran JN, Schneider B, Paetz C, Pirhadi S, Jassbi AR (2021) Antileishmanial and pharmacophore modeling of abietane-type diterpenoids extracted from the roots of Salvia hydrangea. J Mol Struct 1228:129447. https://doi.org/10.1016/j.molstruc.2020.129447

    Article  CAS  Google Scholar 

  36. Nigatu H, Belay A, Ayalew H, Abebe B, Tadesse A, Tewabe Y, Degu A (2021) In vitro Antileishmanial activity of some ethiopian medicinal plants. J Exp Pharmacol 13:15. https://doi.org/10.2147/JEP.S285079

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors are grateful for the financial support given by Kerman University of medical sciences, Kerman, Iran (Grant No. 400001193). The ethical committee of Kerman University of Medical Sciences approved it. The Ethic approval Code is IR.KMU.REC.1401.011.

Author information

Authors and Affiliations

Authors

Contributions

NM and FS designed the experimental studies and performed the experiments; AA contributed to carrying out molecular docking; IS and FS directed the experimental studies. All the authors contributed to writing the manuscript.

Corresponding author

Correspondence to Fatemeh Sharifi.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadi, N., Sharifi, I., Afgar, A. et al. Antileishmanial Effects of Bunium Persicum Crude Extract, Essential Oil, and Cuminaldehyde on Leishmania Major: In Silico and In Vitro Properties. Acta Parasit. 68, 103–113 (2023). https://doi.org/10.1007/s11686-022-00642-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-022-00642-1

Keywords

Navigation