Skip to main content
Log in

Ectopic expression of Kxhkn5 in the viviparous species Kalanchoe × Houghtonii induces a novel pattern of epiphyll development

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

KxhKN5 (class 1 KNOX gene) was cloned from Kalanchoe × houghtonii with strong tendency to form epiphylls on leaves. KxhKN5 appear to be homologue of BP of A. thaliana on the basis of phylogeny, expression and phenotype analysis. Beside the modification of several plant and leaf traits, the appearance of epiphylls was drastically reduced by both the silencing and the over-expression of KxhKN5 in most of the generated clones. In silenced clones, epiphyll production followed the morphogenetic pathway of the WT plants: somatic embryos outbreak in the centre of each leaf-pedestal, grown in the notch between leaf indentations and were supported by a suspensor. The connection between the epiphyll and the mother plant did not include any vasculature and as a result, the epiphylls dropped easily from the mother plant. The most represented category of over expressor clones, disclosed a novel pattern of epiphyll development: the leaf-pedestals were absent and single bud outbreaks in each leaf notch. Buds developed into shoots which remained attached to the maternal plant by a strong vascular connection. The leaves supporting shoots, produced a thickened midrib and veins, and their lamina ceased expanding. Finally, the leaf/shoot structure resembles a lateral branch. The ectopic expression of KxhKN5 in K. × houghtonii induces a process comparable to the alternation of leaf and shoot formation in other species and support the idea, that it is the variation in shared molecular and developmental processes which produces the growth of specific structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abid G, Jacquemin JM, Sassi K, Muhovski Y, Toussaint A, Baudoin JP (2010) Gene expression and genetic analysis during higher plants embryogenesis. Biotechnol Agron Soc Environ 14(4):667–680

    Google Scholar 

  • Abraham-Juárez MJ, Martínez-Hernández A, Leyva-González MA, Herrera-Estrella L, Simpson J (2010) Class I KNOX genes are associated with organogenesis during bulbil formation in Agave tequilana. J Exp Bot 62(12):1–13

    Google Scholar 

  • Baldwin JT (1938) Kalanchoe: the genus and its chromosomes. Am J Bot 25:572–579

    Article  Google Scholar 

  • Batigina T (2005) Sexual and asexual processes in reproductive system of flowering plants. Acta Biologica Cracoviensa Sertes Botanica 47:51–60

    Google Scholar 

  • Batigina TB, Bragina EA, Titova GE (1996) Morphogenesis of propagules in viviparous species Bryophyllum daigremontianum and B. calycinum. Acta Societatis Botanicorum Poloniae 65:127–133

    Google Scholar 

  • Bertolino E, Reimund B, Wildt-Perinic D, Clerc RG (1995) A novel homeobox protein which recognizes a TGT core and functionally interferes a retinoid-responsive motif. J Biol Chem 270:31178–31188

    Article  PubMed  CAS  Google Scholar 

  • Burglin TR (1997) Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acid Res 25:4173–4180

    Article  PubMed  CAS  Google Scholar 

  • Byrne ME, Simorowski J, Martienssen RA (2002) ASYMMETRIC LEAVES1 reveals knox gene redundancy in arabidopsis. Development 129:1957–1965

    PubMed  CAS  Google Scholar 

  • Cho SK, Larue CT, Chevalier D, Wang H, Jinn TL, Zhang S, Walker JC (2008) Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 105:15629–15634

    Article  PubMed  CAS  Google Scholar 

  • Chuck G, Lincoln C, Hake S (1996) KNAT1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    PubMed  CAS  Google Scholar 

  • Clark SE (2001) Cell signalling at the shoot meristem. Nat Rev Mol Cell Biol 2(4):276–284

    Article  PubMed  CAS  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • DeYoung BJ, Clarks E (2008) BAM receptors regulate stem cell specification and organ development through complex interaction with CLAVATA signaling. Genetics 180:895–904

    Article  PubMed  CAS  Google Scholar 

  • Dodsworth S (2009) A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem. Dev Biol 336:1–9

    Article  PubMed  CAS  Google Scholar 

  • Douglas SJ, Chuck G, Dengler RE, Pelecanda L, Riggs CD (2002) KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis. Plant Cell 14:547–558

    Article  PubMed  CAS  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979

    Article  PubMed  CAS  Google Scholar 

  • Fambrini M, Cionini G, Bianchi R, Pugliesi C (2000) Epiphylly in a variant of Helianthus annuus × H. tuberosus induced by in vitro tissue culture. Int J Plant Sci 161:13–22

    Article  PubMed  Google Scholar 

  • Fisher JB, Rutishauser R (1990) Leaves and epiphyllous shoots in Chisocheton (Meliaceae): a continuum of woody leaf and stem axes. Can J Bot 68:2316–2328

    Article  Google Scholar 

  • Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217

    PubMed  CAS  Google Scholar 

  • Garces HMP, Champagne CEM, Townsley BT, Park S, Malho R, Pedroso MC, Harada JJ, Sinha NR (2007) Evolution of asexual reproduction in leaves of the genus Kalanchoe. Proc Natl Acad Sci 104:15578–15583

    Article  PubMed  CAS  Google Scholar 

  • Giovannini A, Zottini M, Monreale G, Spena A, Allavena A (1999) Ornamental traits modification by rol genes in Osteospermum ecklonis transformed with Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 35:70–75

    Article  CAS  Google Scholar 

  • Girin T, Sorefan K, Østergaard L (2009) Meristematic sculpting in fruit development. J Exp Bot 60:1493–1502

    Article  PubMed  CAS  Google Scholar 

  • Goethe JW (1790) Versuch die Metamorphose der Pflanzen zu erklären, vol 1. Ettinger, Gotha, Germany

  • Hake S, Smith HM, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  PubMed  CAS  Google Scholar 

  • Hamill JD, Rounsley S, Spencer A, Todd G, Rhodes MJC (1991) Use of the polymerase chain reaction in plant transformation studies. Plant Cell Rep 10:221–224

    Article  CAS  Google Scholar 

  • Hay A, Tsiantis M (2006) The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsute. Nat Genet 38:942–947

    Article  PubMed  CAS  Google Scholar 

  • Heide OM (1965) Effects of 6-benzylaminopurine and 1-naphthalene acetic acid on the epiphyllous bud formation in Bryophyllum. Planta 67:281–296

    Article  CAS  Google Scholar 

  • Janssen BJ, Lund L, Sinha N (1998) Overexpression of a homeobox gene LeT6 reveals indeterminate features in the tomato compound leaf. Plant Physiol 117:771–786

    Article  PubMed  CAS  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  PubMed  CAS  Google Scholar 

  • Kanrar S, Onguka O, Smith HM (2006) Arabidopsis inflorescence architecture requires the activities of KNOX-BELL homeodomain heterodimers. Planta 224:1163–1173

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter R, Vollbrecht E, Lowe B, Veit B, Judy Yamaguchi J, Hake S (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6:1877–1887

    PubMed  CAS  Google Scholar 

  • Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    PubMed  CAS  Google Scholar 

  • Kimura S, Koenig D, Kang J, Yoong FY, Sinha N (2008) Natural variation in leaf morphology results from mutation of a novel KNOX gene. Curr Biol 18:672–677

    Article  PubMed  CAS  Google Scholar 

  • Kulka RG (2006) Hormonal control of root development on epiphyllous plantlets of Bryophyllum (Kalanchoë) marnierianum: role of auxin and ethylene. J Exp Bot 59:2361–2370

    Article  Google Scholar 

  • Lacroix C, Jeune B, Barabé D (2005) Encasement in plant morphology: an integrative approach from genes to organisms. Can J Bot 83:1207–1221

    Article  CAS  Google Scholar 

  • Leslie ME, Lewis MW, Youn JY, Daniels MJ, Liljegren SJ (2010) The EVERSHED receptor-like kinase modulates floral organ shedding in Arabidopsis. Development 137:467–476

    Article  PubMed  CAS  Google Scholar 

  • Lin J, Müller KJ (2002) Structure and development of epiphylly in knox-transgenic tobacco. Planta 214:521–526

    Article  PubMed  CAS  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6:1859–1876

    PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and 2−∆∆Ct method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Long JA, El Moan, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Lütken H, Laura M, Borghi C, Ørgaard M, Allavena A, Rasmussen SK (2011) Expression of KxhKN4 and KxhKN5 genes in Kalanchoë blossfeldiana ‘Molly’ results in novel compact plant phenotypes–towards a cisgenesis alternative to growth retardants. Plant Cell Rep 30:2267–2279

    Article  PubMed  Google Scholar 

  • Mele G, Ori N, Sato Y, Hake S (2003) The knotted1-like homeobox gene BREVIPEDICELLUS regulates cell differentiation by modulating metabolic pathways. Gene Dev 17:2088–2093

    Article  PubMed  CAS  Google Scholar 

  • Müller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730

    Article  PubMed  Google Scholar 

  • Müller KJ, Lin J, Fischer R, Prüfer D (2006) How repeated epiphylly correlates with gene expression of resident knox1 in the leaves of tobacco epiphyllous shoots. Cent Eur J Biol 1:263–274

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagasaki H, Sakamoto T, Sato Y, Matsuoka M (2001) Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell 13:2085–2098

    PubMed  CAS  Google Scholar 

  • Pautot V, Dockx J, Hamant O, Kronenberger J, Grandjean O, Jublot D, Traas J (2001) KNAT2: evidence for a link between knotted-like genes and carpel development. Plant Cell 13:1719–1734

    PubMed  CAS  Google Scholar 

  • Pedroso MC, Durzan D (2000) Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves. Ann Bot 86:983–994

    Article  PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:1–10

    Article  Google Scholar 

  • Reiser L, Sánchez-Baracaldo P, Hake S (2000) Knots in the family tree: evolutionary relationships and functions of knox homeobox genes. Plant Mol Biol 42:151–166

    Article  PubMed  CAS  Google Scholar 

  • Resende F (1956) Hibridos intergenericos e interespecificos em Kalanchoideae 1. Boletim da sociedade portuguesa de ciencias naturais 6:241–244

    Google Scholar 

  • Rosin FM, Kramer EM (2009) Old dogs, new tricks: regulatory evolution in conserved genetic modules leads to novel morphologies in plants. Dev Biol 332:25–35

    Article  PubMed  CAS  Google Scholar 

  • Schattat MH, Klosgen RB, Marques JP (2004) A novel vector for efficient gene silencing in plants. Plant Mol Biol Rep 22:145–153

    Article  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Klaus F, Mayer X (2000) The stem cell population of Arabidopsis shoot meristems are maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Scofield S, Murray JAH (2006) KNOX gene function in plant stem cell niches. Plant Mol Biol 60:929–946

    Article  PubMed  CAS  Google Scholar 

  • Sentoku N, Tamaoki M, Nishimura A, Matsuoka M (1998) The homeobox gene NTH23 of tobacco is expressed in the basal region of leaf primordia. Biochim Biophys Acta 1399:203–208

    Article  PubMed  CAS  Google Scholar 

  • Sentoku N, Sato Y, Matsuoka M (2000) Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Dev Biol 220:358–364

    Article  PubMed  CAS  Google Scholar 

  • Shaw JMH (2008) An investigation of the cultivated Kalanchoe daigremontiana group, with a checklist of Kalanchoe cultivars. Hanburyana 3:17–79

    Google Scholar 

  • Shi CL, Stenvik GE, Vie AK, Bones AM, Pautot V, Proveniers M, Aalen RB, Butenko MA (2011) Arabidopsis class I KNOTTED-like homeobox proteins act downstream in the IDA-HAE/HSL2 floral abscission signaling pathway. Plant Cell 23:2553–2567

    Article  PubMed  CAS  Google Scholar 

  • Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795

    Article  PubMed  CAS  Google Scholar 

  • Smith HMS, Hake S (2003) The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell 15:1717–1727

    Article  PubMed  CAS  Google Scholar 

  • Stenvik GE, Tandstad NM, Guo Y, Shi CL, Kristiansen W, Holmgren A, Clark SE, Aalen RB, Butenko MA (2008) The EPIP peptide of INFLORESCENCE DEFICIENT IN ABSCISSION is sufficient to induce abscission in arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell 20:1805–1817

    Article  PubMed  CAS  Google Scholar 

  • Testone G, Bruno L, Condello E, Chiappetta A, Bruno G, Mele A, Tartarini L, Spano AM, Innocenti D, Mariotti D, Bitonti MB, Giannino D (2008) Peach (Prunus persica [L.] Batsch) KNOPE1, a class 1KNOX orthologue to Arabidopsis BREVIPEDICELLUS/KNAT1, is misexpressed during hyperplasia of leaf curl disease. J Exp Bot 59:389–402

    Article  PubMed  CAS  Google Scholar 

  • Traas J, Vernoux T (2002) The shoot apical meristem: the dynamics of a stable structure. Philos Trans R Soc Lond B Biol Sci 357:737–747

    Article  PubMed  CAS  Google Scholar 

  • Uchida N, Townsley B, Chung KH, Sinha N (2007) Regulation of SHOOT MERISTEMLESS genes via an upstream-conserved noncoding sequence coordinates leaf development. Proc Natl Acad Sci USA 104:15953–15958

    Article  PubMed  CAS  Google Scholar 

  • Vaira AM, Semeria L, Crespi S, Lisa V, Allavena A, Accotto GP (1995) Resistance to tospoviruses in Nicotiana benthamiana transformed with the N gene of tomato spotted wilt virus: correlation between transgene expression and protection in primary transformants. Mol Plant Microbe Interact 8:66–73

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  PubMed  CAS  Google Scholar 

  • Ward DB (2006) A name of a hybrid Kalanchoe now naturalized in Florida. Cactus Succul J 78:92–95

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Serena Varotto (University of Padova) for protocol and help with in situ hybridization technique. This work was founded by the Italian Ministry of Agriculture and Forestry (MiPAAF) in the framework of the project “Agronanotech”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Allavena.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 194 kb)

Supplementary material 2 (PDF 912 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laura, M., Borghi, C., Regis, C. et al. Ectopic expression of Kxhkn5 in the viviparous species Kalanchoe × Houghtonii induces a novel pattern of epiphyll development. Transgenic Res 22, 59–74 (2013). https://doi.org/10.1007/s11248-012-9628-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9628-9

Keywords

Navigation