Skip to main content
Log in

A protocol for in vitro propagation of Morella pubescens: a protected species in the Tambillo community protected area—Ecuador

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A protocol was developed for the in vitro propagation of Morella pubescens (Humb. & Bonpl. ex Willd.) Wilbur, a species poorly investigated and not previously reported, with the purpose of massively obtaining plants and meeting the goal of reforesting Tambillo, the first protected community area in Ecuador. Apexes of M. pubescens as explants, which were aseptically disinfected with a sodium hypochlorite solution, were subcultured in WPM basal medium, supplemented with GA3 and BAP to determine the number of leaves and shoots. Subsequently, the explants were incubated in WPM supplemented with IBA and IAA and the number and length of roots were evaluated. A completely randomized design was used with five and seven replicates, respectively. And for ex vitro acclimatization, the survival of 200 vitroplants was evaluated. The best response in multiplication was observed in WPM with 0.25 mg L−1 GA3 + 1.5 mg L−1 BAP. The number and length of roots per explant was higher in the treatment with 1 mg L−1 IBA and IAA. Out of 200 vitroplants, 65% survived the environmental conditions. The proper selection of the concentration and type of the growth phytoregulator and the appropriate environmental conditions are important factors to micropropagate Morella pubescens.

Key message

The successful development of the protocol for the in vitro propagation of Morella pubescens a protected species in Ecuador, establishes the foundations for mass plant production and reforestation in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data supporting the findings are available from the corresponding author upon request.

Abbreviations

BAP:

6-Benzylaminopurine

IBA:

Indole-3-butryic acid

IAA:

Indole-3-acetic acid

NAA:

Naphthaleneacetic acid

GA3:

Gibberellic acid

TDZ:

Thidiazuron

2,4-D:

Dichlorophenoxyacetic

WPM:

Woody Plant Medium

MS:

Murashige and Skoog

References

  • Abbasi N, Pervaiz T, Hafiz I, Yaseen M, Hussain A (2013) Assessing the response of indigenous loquat cultivar Mardan to phytohormones for in vitro shoot proliferation and rooting. Zhejiang Univ Sci B—Biomed Biotechnol 14(9):774–784. https://doi.org/10.1631/jzus.B1200277

    Article  CAS  Google Scholar 

  • Abdalla N, El- Ramady H, Seliem MK, El- Mahrouk ME, Taha N, Bayoumi Y, Shalaby TA, Dobránszki J (2022) An academic and technical overview on plant micropropagation challenges. Horticulture 8(8):677. https://doi.org/10.3390/hortícolae8080677

    Article  Google Scholar 

  • Abdelnour A, Muñoz A (2005) Micropropagación de teca (Tectona grandis Lf). Revista Forestal Mesoamericana Kurú 2(5):1–11

    Google Scholar 

  • Aguirre N, Palomeque X, Weber M, Stimm B, Günter S (2011) Reforestation and natural succession as tools for restoration on abandoned pastures in the Andes of South Ecuador. In: Günter S, Weber M, Stimm B, Mosandl R (eds) Silviculture in the Tropics. Springer, Berlin, pp 513–524

    Chapter  Google Scholar 

  • Alcantara-Cortes JS, Acero Godoy J, Alcántara Cortés JD, Sánchez Mora RM (2019) Principales reguladores hormonales y sus interacciones en el crecimiento vegetal. Nova 17(32):109–129

    Article  Google Scholar 

  • Ancasi R, Alcázar J, Muñoz I (2023) Concentraciones de ácido indolbutirico para la formacion de raices en condiciones in vitro de castaña (Bertholletia excelsa bonpl., Lecythidaceae). Revista Científica Multidisciplinaria 7(1):17–22

    Google Scholar 

  • Corporación Andina de Fomento [CAF] (2005) Biotecnología para el uso sostenible de la biodiversidad. Capacidades locales y mercados potenciales. 32. https://scioteca.caf.com/bitstream/handle/123456789/662/Biotecnologia_para_el_desarrollo_sostenible_de_la_biodiversidad._Capacidades_locales_y_mercados_potenciales.pdf?sequence=3&isAllowed=y

  • Arteaga AT (2022) Modeling of plant tissue culture components using artificial neural networks: A case of Actinidia arguta. [Doctoral thesis, University of Vigo]. https://www.investigo.biblioteca.uvigo.es/xmlui/bitstream/handle/11093/3757/ArtetaArteta_TomasAriel_TD_2022_version_publicable.pdf?sequence=2&isAllowed=y

  • Asghari S, Abbas SJ, Chen L, He X, Qin Y (2013) Micropropagation of Myrica rubra Sieb and Zucc using shoot tips and nodal explant. Afr J Agric Res 8(17):1731–1737

    Article  Google Scholar 

  • Azofeifa JB, Vargas AR, Hine-Gómez A (2009) Optimización del proceso de enraizamiento y aclimatización de vitroplantas de Swietenia macrophylla King (Orden Meliacea). Tecnología En Marcha 22(3):34–41

    Google Scholar 

  • Báez-Pérez A, González-Molina L, Solís Moya E, Bautista-Cruz A, Bernal-Alarcón MA (2015) Efecto de la aplicación del ácido indol-3-butiríco en la producción y calidad de trigo (Triticum aestivum L.). Revista Mexicana De Ciencias Agrícolas 6(3):523–537

    Article  Google Scholar 

  • Bandeira JDM, Thurow LB, Braga EJB, Peters JA, Bianchi VJ (2012) Rooting and acclimatization of the Japanese plum tree, cv América. Rev Bras Frutic 34:597–603

    Article  Google Scholar 

  • Barazani OZ, Friedman J (1999) Is IAA the major root growth factor secreted from plant-growth-mediating bacteria? J Chem Ecol 25:2397–2406

    Article  CAS  Google Scholar 

  • Bhatt ID, Dhar U (2004) Factors controlling micropropagation of Myrica esculenta buch Ham. Ex. D Don: a high value wild edible of Kumaun Himalaya. Afr J Biotechnol 3(10):534–540. https://doi.org/10.5897/AJB2004.000-2097

    Article  CAS  Google Scholar 

  • Bhojwani SS, Dantu PK (2013) Plant tissue culture: An introductory text. Springer, India

    Book  Google Scholar 

  • Bohórquez-Quintero M, Araque-Barrera E, Pacheco-Maldonado J (2016) Propagación in vitro de Espeletia paipana S. Díaz y Pedraza, frailejón endémico en peligro de extinción. Actualidades Biológicas 38(104):23–36

    Article  Google Scholar 

  • Cabrera LG (2011) Laurel de cera (Morella pubescens), especie promisoria de usos múltiples empleada en agroforestería. Revista Agroforestería Neotropical 1(1):1–9

    Google Scholar 

  • Cancino-Escalante G, García E, Villamizar C, Carvajal C (2015) Propagación in vitro de materiales seleccionados de Rubus glaucus Benth (mora de Castilla) en la provincia de Pamplona, región nororiental de Colombia. Rev Colomb Biotecnol 17(2):7–15

    Article  Google Scholar 

  • Delgado L, Hoyos R (2016) Multiplicación clonal in vivo e in vitro de la especie forestal nativa Aniba perutilis Hemsl. Acta Agronómica 65(2):190–196

    Article  Google Scholar 

  • Domínguez M, Castro D, Díaz J (2019) Propagación clonal in vitro de Paulownia elongata x Fortunei. Revista Bionatura 4(1):1–4. https://doi.org/10.21931/RB/2019.04.01.5

    Article  Google Scholar 

  • Eras V, Yaguana M, Paredes D (2019) Balance hormonal para la fase de brotación y enraizamiento in vitro de explantes de Cinchona officinalis L., provenientes de relictos boscosos de la provincia de Loja. Bosques Latitud Cero 1:1–11

    Google Scholar 

  • Flores-Escobar G, Legaria-Solano I, Gil-Vásquez M, Colinas-León T (2008) Propagación in vitro de Oncidium stramineum Lindl. una orquídea amenazada y endémica de México. Chapingo Serie Horticultura 14(3):347–353

    Google Scholar 

  • García G, Gonzáles E, Manzanera J (2001) Quercus suber L. Somatic embryo germination and plant conversion: pretreatments and germination conditions. Vitro Cell Develop Biol—Plant 37:190–198. https://doi.org/10.1079/IVP2000119

    Article  Google Scholar 

  • Hágsater M, Soto GA, Salazar R, Jiménez MA, López R, Dressler R (2005) Las orquídeas de México. Instituto Chinoín México 304 pp. Acta Botánica Mexicana 75:101–103

    Google Scholar 

  • Hartmann HT, Kester DE, Davies FT, Geneve RL (2002) Propagación de plantas: principios y prácticas Prentice-Hall Inc Nueva Jersey Estados Unidos. https://aulavirtual.agro.unlp.edu.ar/pluginfile.php/45969/mod_resource/content/1/Propagacion%20de%20plantas.pdf

  • Herbert J (2005) New combinations and a new species in Morella (Myricaceae). Novon 293–295. https://www.jstor.org/stable/3393340

  • Kabra A, Martins N, Sharma R, Kabra R, Baghel US (2019) Myrica esculenta Buch.-Ham. ex D. Don: a natural source for health promotion and disease prevention. Plants 8(6):149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharel P, Creech M, Nguyen CD, Vendrame W, Muñoz PR, Huo H (2022) Effect of explant type, culture medium, and BAP concentration on in vitro shoot development in highbush blueberry (Vaccinium corymbosum L.) cultivars. In Vitro Cell Develop Biol—Plant 58:1057–1065. https://doi.org/10.1007/s11627-022-10299-0

    Article  CAS  Google Scholar 

  • Kravchenko L, Azarova T, Makarova N, Tikhonocich I (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73:156–158. https://doi.org/10.1023/B:MICI.0000023982.76684.9d

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot-tip culture. Proceed Int Plant Propag Soc 30:421–426

    Google Scholar 

  • Lolaei A, Teymouri N, Bemana R, Kazempour A, Aminian S (2013) Effect of gibberellin on vegetative and sexual growth and fruit quality of strawberry ( Fragaria × Ananassa Duch. Cv. Selva and Qeen elisa). Int J Agric Crop Sci 5(14):1508–1513

    Google Scholar 

  • Mc-Caughey D, Ayala G, García C, Buitimea N, Buitimea-Cantúa G, Andres O-M (2020) Germinación in vitro e inducción de callo y raíz en Bursera laxiflora S. Watson. Abanico Agroforestal. https://doi.org/10.37114/abaagrof/2020.4

    Article  Google Scholar 

  • Méndez D, Abdeknour A (2014) Establecimineto in vitro de Terminalia amazonia (Gmel). Excell. Revista Forestal Mesoamericana Kúru 11(27):2–12

    Google Scholar 

  • Mihai RA, Melo Heras EJ, Pinto Valdiviezo EA, Espinoza Caiza IA, Cubi Insuaste NS, Mejía JP, Catana RD, Moldoveanu MM, Florescu LI (2023) Somatic embryogenesis of representative medicinal trees in South America—Current status. Forests 14(10):2066. https://doi.org/10.3390/f14102066

    Article  Google Scholar 

  • Minga D, Verdugo A, Clavijo X, Tinoco B (2006) Biodiversidad del Bosque Protector Tambillo

  • Ministerio del Ambiente del Ecuador (2019) Plan nacional de restauración forestal 2019 - 2030. Programa nacional de reforestación con fines de conservación ambiental, protección de cuencas hidrográficas y beneficios alternos Quito-Ecuador, 54–55

  • Moncada E, Vielma M, Mora A (2004) Inducción in vitro de embriogénesis somática a partir de tejido foliar de Coffea arabica L. variedad Catuaí amarillo. Universidad De Los Andes Venezuela 3(6):23–28

    Google Scholar 

  • Montes AM, Sepúlveda G, Evangelista S, Rodríguez M (2016) Estudio preliminar para la propagación in vitro de Cedrus atlantica mediante yemas axilares. Revista Mexicana De Ciencias Agrícolas 7(1):2071–2078

    Google Scholar 

  • Naranjo E (2022) Establecimiento in vitro de plantas nativas de aliso (Alnus acuminata)-mortiño (Vaccinium meridionale) a partir de semillas y segmentos nodales de bosque nativo de la microcuenca de la quebrada las Torres. Revista Centro Minero 1(1):1–6

    Google Scholar 

  • Núñez J, Quilaa E, De Fiera M, Mestanza S, Teanga S (2017) Propagación in vitro de Caesalpinia spinosa (Mol.) O. Kuntz a partir de yemas axilares de árboles plus seleccionados. Biotecnología Vegetal 17(2):1–9

    Google Scholar 

  • Ortega D (2020) Enfoque de la biotecnología industrial en Ecuador y la provincia de Esmeraldas. Polo Del Conocimiento 48(5):1235–1237

    Google Scholar 

  • Ospina B (2002) La yuca en el tercer Milenio: Sistemas Modernos de producción, procesamiento, utilización y comercialización. CIAT

  • Parra OC (2000) A new species of Morella (Myricaceae) from Bolivia and Argentina. Brittonia 52:320–324. https://doi.org/10.2307/2666584

    Article  Google Scholar 

  • Parra OC (2003) Revisión taxonómica de la familia Myricaceae en Colombia/Taxonomic revision of Myricaceae from Colombia. Caldasia, pp 23–64

  • Patiño J, Eras V, Poma R, Yaguana M, Delgado G (2014) Propagación in vitro de guayacán negro, Tabebuia billbergii (Bignoniaceae), a partir de explantes obtenidos de plántulas in vitro. Centro De Biotecnología 3:1–9

    Google Scholar 

  • Pedroza JA, Gonzáles SR, Téllez DC (2007) Micropropagation of Dodonea viscosa (L) Jacq: an endangered plant. Colomb J Biotechnol 1(2):33–44

    Google Scholar 

  • Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In in Vitro Cell Develop Biol-Plant 55(3):242–257. https://doi.org/10.1007/s11627-019-09983-5

    Article  Google Scholar 

  • Poothong S, Reed BM (2014) Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Scientia Hortícolae 165(1):132–141. https://doi.org/10.1016/J.SCIENTA.2013.10.040

    Article  CAS  Google Scholar 

  • Ramírez LA, Granados JE, Carreño NE (2014) Evaluación del efecto de tratamientos de desinfección con hipoclorito de sodio sobre segmentos nodales de Guadua angustifolia Kunth para el establecimiento del cultivo in vitro. Revista De Investigación Agraria y Ambiental 5(1):1–15

    Google Scholar 

  • Rivera DR (2019) Germinación de semillas y crecimiento inicial de cuatro especies forestales nativas del bosque de Nero, Provincia del Azuay. Universidad de Cuenca. http://dspace.ucuenca.edu.ec/handle/123456789/31737

  • Robles H, Román-Dañobeytia F, Rafael JL, Álvarez CE, Meléndez NL, De la Peña R, Robles O (2023) Propagación in vitro del árbol de castaña amazónica (Bertholletia excelsa Bonpl.). Revista De Innovación y Transferencia Productiva. https://doi.org/10.54353/ritp.v3i2.e002

    Article  Google Scholar 

  • Rueda A, Ramírez G, Ruiz J, Moreno F, Gonzáles A, Martínez O, Sáenz T, Muñoz J, Molina A, Jiménez V (2013) Requerimientos agroecológicos de especies forestales Jalisco, México.

  • Ruiz J, Arteaga M, Campos S (2020) Establecimiento de un protocolo de desinfección y micropropagación in vitro de “caoba” Swietenia macrophylla King (Meliaceae). Arnaldoa 27(1):141–156

    Google Scholar 

  • Silva J, Pérez R, Fonseca Y, Rogríguez S (2020) Propagación in vitro de Salix babylonica L. a partir de segmentos nodales. Revista Cubana De Ciencias Forestales 8(3):410–424

    Google Scholar 

  • Suárez IE, Jarma AJ, Avila M (2006) Desarrollo de un protocolo para propagacion in vitro de roble (Tabebuia rosea bertol dc). Temas Agrarios 11(2):52–62

    Article  Google Scholar 

  • Sutter E, Langhans RW (1979) Epicuticular wax formation on carnation plantlets regenerated from shoot tip culture1. J Am Soc Hortic Sci 104(4):493–496

    Article  Google Scholar 

  • Tavares F, Abreu I, Salema R (1998) Regeneration of the actinorhizal plant Myrica gale L from epicotyl explants. Plant Sci 135(2):203–210. https://doi.org/10.1016/S0168-9452(98)00070-3

    Article  CAS  Google Scholar 

  • Tedesco A (2023) Beyond ecology: ecosystem restoration as a process for social-ecological transformation. Trends in Ecol Evol 38(7):643–645

    Article  Google Scholar 

  • Thiem B, Hermosaningtyas AA, Budzianowska A, Kikowska M (2023) Polish contributions in developing medicinal plant in vitro propagation system. Plant Cell, Tissue Organ Cult 155(1):1–28. https://doi.org/10.1007/s11240-023-02562-y

    Article  Google Scholar 

  • Urgiles N, Strauß A, Loján P, Schüßler A (2014) Cultured arbuscular mycorrhizal fungi and native soil inocula improve seedling development of two pioneer trees in the Andean region. New for 45:859–874. https://doi.org/10.1007/s11056-014-9442-8

    Article  Google Scholar 

  • Valverde L, Vargas A, Hine M (2008) In vitro propagation of Albizia guachapele, Cedrela odorata, Platymiscium pinnatum and Guaiacum sanctum. Plant Tissue Cult Biotechnol 18(2):1–6

    Google Scholar 

  • Ventura EV (2016) Influencia del ácido giberélico (GA3) y bencilo aminopurina (BAP), en la propagación clonal in vitro de Physalis peruviana L. [Tesis de pregrado, Universidad nacional Cajamarca]. https://lc.cx/TMH46C

  • Wilbur RL (2001) Five new combinations in the genus Morella (Myricaceae) for Neotropical species. Rhodora 103(913):120–122

    Google Scholar 

  • Xu Q, Krishnan S, Merewitz E, Xu J, Huang B (2016) Gibberellin-regulation and genetic variations in leaf elongation for tall fescue in association with differential gene expression controlling cell expansion. Sci Rep 6(1):1–12. https://doi.org/10.1038/srep30258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Rufford Foundation for funding project 35230-1. To the Jima Ltda Community Development Cooperative and the Tambillo Forest Initiative for the openness provided. Special recognition is given to the students Merly Cevallos and Jailene Loor, who collaborated in the collection of plant material and the establishment of the plant bank.

Funding

Rufford Foundation, 35230-1, Mateo David León Durán

Author information

Authors and Affiliations

Authors

Contributions

KBMB: Conceptualization, Methodology. LC-Q: Investigation; Resources; Writing—original draft. MLD: Writing—original draft. FMP: Writing—review & editing. MP: Writing—review & editing. LAS-R: Data Curation, Formal analysis, Visualization.

Corresponding author

Correspondence to Liliana Corozo-Quiñónez.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the contents of this article.

Additional information

Communicated by Amita Bhattacharya.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrero, K.B.M., Corozo-Quiñónez, L., Durán, M.L. et al. A protocol for in vitro propagation of Morella pubescens: a protected species in the Tambillo community protected area—Ecuador. Plant Cell Tiss Organ Cult 156, 20 (2024). https://doi.org/10.1007/s11240-023-02643-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11240-023-02643-y

Keywords

Navigation