Skip to main content
Log in

Effect of plant growth regulators on alkaloid the production in cell cultures of Chilean Amaryllidaceae: Rhodophiala pratensis, Rhodophiala splendens, Rhodophiala advena, and Rhodolirium speciosum

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Amaryllidaceae plants are well known for producing isoquinoline-type alkaloids which have important biological activities, however the production of these secondary metabolites in plants is very low, it’s necessary to study mechanisms to increase the productivity of them. Our study shows the alkaloids composition on the wild bulbs and in vitro bulbs of four species Chilean Amaryllidaceae. Qualitative and semi-quantitative analysis of alkaloid extracts carried out by GC/MS–MS we found a total of 48 different alkaloids produced in wild plants and in vitro culture; 38 alkaloids were identified. These results suggest that different combinations of auxins and cytokinins can modulate plant biochemical pathways that regulate alkaloid biogenesis and show the high potential that plants of the Amaryllidaceae family have to produce lycorine type alkaloids. This study allowed knowing the content of alkaloids in wild and in vitro bulbs of the studied species. These results enable to establish the culture media with 4.44 µM BAP and 2.70 µM NAA and 2.20 µM BAP and 5.40 µM NAA increased the production of lycorine-type alkaloids for R. advena and R. pratensis respectively, therefore it is able to promote oxidative phenol coupling via ortho-para' and demonstrates how it is possible to direct the production of these molecules through the use of phytohormones in in vitro culture. Finally, we can say that the results confirm that micropropagation is a good tool to produce this type of alkaloids.

Key message

Amaryllidaceae alkaloid biosynthesis by the plant in vitro systems and the effect of plant growth regulators on the biosynthetic route and its mode of action is reviewed to provide a starting point for scaling-up of the production of these valuable medicinal alkaloids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated o analyses during this study are included in this article.

Abbreviations

AAs:

Amaryllidaceae alkaloids

l-Tyr:

Tyrosine

l-Phe:

Phenylalanine

SAM:

S-Adenosyl methionine

AChE:

Acetylcholinesterase

BAP:

6-Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

NAA:

1-Naphthaleneacetic acid

IAA:

Indole-3-acetic acid

CYP450s:

Cytochromes P450

MS:

Murashige and Skoog culture medium

References

  • Baeza C, Ruiz E, Negritto M (2007) The chromosome number of Phycella australis Ravenna (Amaryllidaceae). Gayana Botánica 64:119

    Article  Google Scholar 

  • Baeza C, Novoa P, Ruiz E, Negritto M (2009) The Fundamental Karyotype in Traubia Modesta (Phil) Ravenna (Amaryllidaceae). Gayana Botánica 661:1

    Google Scholar 

  • Barton DHR, Kirby GW, Taylor GB, Thomas GM (1963) Phenol oxidation and biosynthesis. Part VI. The biogenesis of Amaryllidaceae alkaloids. J Chem Soc 1963:4545

    Article  Google Scholar 

  • Bastida J, Lavilla R, Viladomat F (2006) Chemical and biological aspects of Narcissus alkaloids. In: Cordell GA (ed) The alkaloids: chemistry and physiology. Elsevier, Amsterdam, pp 87–179

    Google Scholar 

  • Bastidas J, Berkov S, Torras L, Pigni NB, de Andrade JP, Martinez V, Codina C, Viladomat F (2011) Chemical and biological aspects of Amaryllidaceae alkaloids. In: Muñoz-Torrero D (ed) Recent advances in pharmaceutical science. Kerala, Transworld Research Network, pp 65–100

    Google Scholar 

  • Berkov S, Bastida J, Viladomat F, Codina C (2008) Analysis of galanthamine-type alkaloids by capyllary gas chromatography-mass spectrometry in plants. Phytochem Anal 19:285

    Article  CAS  PubMed  Google Scholar 

  • Berkov S, Martinez-Frances V, Bastida J, Codina C, Rios S (2014) Evolution of alkaloids biosynthesis in the genus Narcissus. Phytochemistry 99:95

    Article  CAS  PubMed  Google Scholar 

  • Bessa C, de Andrade JP, de Oliveira RS, Domingos E, Santos H, Romao W, Bastida J, Bolrges WS (2017) Identification of Alkaloids from Hippeastrum aulicum (Ker Gawl) Herb (Amaryllidaceae) using CGC-MS and ambient ionization mass spectrometry (PS-MS and LS-MS). J Braz Chem Soc 28:819

    CAS  Google Scholar 

  • Codina C (2002) Narcissus and daffodil. The genus Narcissus. In: Hanks G (ed) Medicinal and aromatic plants-industrial profiles. Taylor and Francis, London

    Google Scholar 

  • Cortes N, Sierra K, Alzate F, Osorio EH, Osorio E (2018) Alkaloids of Amaryllidaceae as inhibitors of cholinesterases (AChEs and BChEs): an integrated bioguided study. Phytochem Anal 29:217

    Article  CAS  PubMed  Google Scholar 

  • Desgagné-Penix I (2021) Biosynthesis of alkaloids in Amaryllidaceae plants: a review. Phytochem Rev 20:409–431

    Article  Google Scholar 

  • Duffield AM, Aplin RT, Budzikiewicz H, Djerassi C, Murphy CF, Wildman WC (1965) Mass spectrometry in structural and stereochemical problems. LXXXII. A study of fragmentation of some Amarillidaceae alkaloids. J Am Chem Soc 87:4902

    Article  CAS  PubMed  Google Scholar 

  • El Tahchy A, Ptak A, Boisbrum M, Barre E, Guillou C, Dupire F, Chrétien F, Henry M, Chapleur Y, Laurain-Mattar D (2011) Kinetic study of the rearrangement of deuterium-labeled 4’-O-methylnorbelladine in Leucojum aestivum shoot cultures by mass spectrometry, influence of precursor feeding on Amaryllidaceae alkaloids accumulation. J Nat Prod 74:2356

    Article  PubMed  Google Scholar 

  • Evidente A, Arrigoni O, Liso R, Calabrese G, Randazzo G (1986) Further experiments on structure-activity relationships among the lycorine alkaloids. Phytochemistry 25:2739

    Article  CAS  Google Scholar 

  • Fennell CW, Crouch NR, van Staden J (2001) Micropropagation of the River Lily, Crinum variabile (Amaryllidaceae). S Afr J Bot 67:74

    Article  CAS  Google Scholar 

  • Ferdausi A, Chang X, Hall A, Jones M (2020) Galanthamine production in tissue culture and metabolomic study on Amaryllidaceae alkaloids in Narcissus pseudonarcissus cv. Carlton Ind Crop Prod 144:112058

    Article  CAS  Google Scholar 

  • Georgiev V, Ivanov I, Berkov S, Pavlov A (2011) Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiol Plant 33:927

    Article  CAS  Google Scholar 

  • Heinrich M, Teoh HL (2004) Galanthamine from snowdrop—the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol 92:147

    Article  CAS  PubMed  Google Scholar 

  • Ibuka T, Irie H, Kato A, Uyeo S, Kotera K (1966) Nakagawa Y (1966) Mass spectrometry of some Amaryllidaceae alkaloids. Tetrahedron Lett 39:4745

    Article  Google Scholar 

  • Kang JJ, Zhang YS, Cao X et al (2012) Lycorine inhibits lipopolysaccharide-induced iNOS and COX-2 up-regulation in RAW2647 cell through suppressing P38 and STATs activation and increases the survival rate of mice after LPS challenge. Int Inmunopharmacol 12:249

    Article  CAS  Google Scholar 

  • Kinstle TH, Wildman WC, Brown CL (1966) Mass spectra of Amaryllidaceae alkaloids the structure of narcissidine. Tetrahedron Lett 39:4659

    Article  Google Scholar 

  • Kornienko A, Evidente A (1982) Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem Rev 2008:108

    Google Scholar 

  • Kreh M, Matusch R, Witte L (1995) Capillary gas chromatography-mass-spectrometry of Amaryllidaceae alkaloids. Phytochemistry 38:773

    Article  CAS  Google Scholar 

  • Lamoral-Theys D, Decaestecker C, Mathieu V, Dubois J, Kornienko A, Kiss R, Evidente A, Pottier L (2010) Lycorine and its derivatives for anticancer drug design. Mini-Rev Med Chem 10:41

    Article  CAS  PubMed  Google Scholar 

  • Li SY, Chen C, Zhang HQ, Guo HY, Wang H, Wang L, Zhang X, Hua SN, Yu J, Xiao PG, Li RS, Tan X (2005) Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res 67:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li A, Du Z, Liao M, Feng Y, Ruan H, Jiang H (2018) Discovery and characterization of lycorine-type alkaloids in Lycoris ssp. (amaryllidacae) using UHPLC-QTOS-MS. Phytochem Anal 29:1

    Google Scholar 

  • Li D-D, Zhang Y-H, Zhang W, Zhao P (2019) Meta-analysis of randomized controlled trials on the efficacy and safety of Donepezil, Galantamine, Rivastigmine, and Memantine for the treatment of Alzheimer’s disease. Front Neurosci 13:472

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu W, Zhang Q, Tang Q, Hu Ch, Huang J, Liu Y, Lu Y, Wang Q, Li G, Zhang R (2018) Lycorine inhibits cell proliferation and migration by inhibiting ROCK1/cofilin-induced actin dynamics in HepG2 hepatoblastoma cells. Oncol Rep 40:2298

    CAS  PubMed  Google Scholar 

  • Longevialle P, Fales HM, Highet RJ, Burlingame AL (1973) High resolution mass spectrometry in molecular structure study-VI: the fragmentation of Amarillidaceae in the crinine series compounds bearing a hydroxyl substituent at C-11 (and some 11-oxo derivatives). Org Mass Spectrom 7:417

    Article  Google Scholar 

  • Martinez A, Castro A (2006) Novel Cholinesterase inhibitors as future effective drugs for the treatment of Alzheimer’s disease. Expert Opin Investig Drugs 15:1

    Article  CAS  PubMed  Google Scholar 

  • Mizutani M, Sato F (2011) Unusual P450 reactions in plant secondary metabolism. Arch Biochem Biophys 507:194

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee P, Kumar V, Mal M, Houghton PJ (2007) Acetylcholinesterase inhibitors from plants. Phytomedicine 14:289

    Article  CAS  PubMed  Google Scholar 

  • Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194

    Article  CAS  PubMed  Google Scholar 

  • Paredes K, Delaveau C, Carrasco P, Baeza C, Mora F, Uribe ME (2014) In vitro bulbing for the propagation of Traubia Modesta (Amaryllidaceae), a threatened plant endemic to Chile. Ciencia e Investigación Agraria 41:13

    Article  Google Scholar 

  • Pavlov A, Berkov S, Courot E, Gocheva T, Tuneva D, Pandova B, Georgiev M, Georgiev V, Yanev D, Burrus M, Ilieva M (2007) Galanthamine production by Leucojum aestivum in vitro systems. Process Biochem 42:734

    Article  CAS  Google Scholar 

  • Pereira da Costa GG, Gasca CA, Dutras JV, Gomes A, Santos IR, Tavares F, Fagg ChW, Simeoni LA, Silveira D, Pereira Gomes-Copeland KK (2019) Influence of in vitro micropropagation on lycorine biosynthesis and anticholinesterase activity in Hippeastrum goianum. Rev Bras Farmacogn 29:262

    Article  Google Scholar 

  • Ptak A, El Tahchy A, Skrzypek E, Wojtowicz T, Laurain-Mattar L (2013) Influence of aauxins on somatic embryogenesis and alkaloids accumulation in Leucojum aestivum callus. Cent Eur J Biol 8:591

    CAS  Google Scholar 

  • Ravenna P (2003) Elucidation and systematics of the Chilean genera of Amaryllidaceae. Numero 2 botanica Australis. Pierfelice Ravenna 2003:1–20

    Google Scholar 

  • Rei A, Magne K, Massot S, Tallini LR, Scopel M, Bastida J, Ratet P, Zuanazzi JA (2019) Amaryllidaceae alkaloids: identification and partial characterization of montanine production in Rhodophiala bífida plant. Sci Rep 9:8471

    Article  Google Scholar 

  • Rhee IK, Appels N, Hofte B, Karabatak B, Erkelens C, Stark L, M: Flippin, L.A., Verpoorte, R. (2004) Isolation of the acetylcholinesterase inhibitor ungeremine from Nerine bowdenii by preparative HPLC coupled on-line to a flow assay system. Biol Pharm Bull 27:1804

    Article  CAS  PubMed  Google Scholar 

  • Salomone S, Caraci F, Leggio GM, Fedotova J, Drago F (2011) New pharmacological strategies for treatment of Alzheimer’s disease: focus on disease modifying drugs. Br J Clin Pharmacol 73:504

    Article  PubMed Central  Google Scholar 

  • Sellees M, Vilamont F, Bastida J, Codina C (1999) Callus induction, somatic embryogenesis and organogenesis in Narcissus confusus: correlation between the state of differentiation and the content of galanthamine and related alkaloids. Plant Cell Rep 18:646

    Article  Google Scholar 

  • Sener B, Orhan I, Satayavivad J (2003) Antimalarial activity screening of some alkaloids and the plants extract from Amaryllidaceae. Phytother Res 17:1220

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Desgagné-Penix I (2014) Biosynthesis of the Amaryllidaceae alkaloids. Plant Science Today 1:114

    Article  Google Scholar 

  • Smith R, Burrows J, Kurten K (1999) Challenges associated with micropropagation of Zephyranthes and Hippeastrum sp. (Amaryllidaceae). In Vitro Cell Dev-P1 35:281

    Article  Google Scholar 

  • Tallini LR, de Andrade JP, Kaiser M, Viladomat F, Nair JJ, Zuanazzi JA, Bastida J (2017) Alkaloids constituents of Amaryllidaceae plant Amaryllis belladona L. Molecules 22:1437

    Article  PubMed  PubMed Central  Google Scholar 

  • Tallini LR, Bastida J, Cortes N, Osorio EH, Theoduloz C, Schmeda-Hirschmann T (2018) Cholinesterase inhibition activity, alkaloid profiling and molecular docking of Chilean Rhodophiala (Amaryllidaceae). Molecules 23:1532

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarakemeh A, Azizi M, Rowshan V, Salehi H, Spina R, Dupire F, Arouie H, Laurain-Mattar (2019) Screening of Amaryllidaceae alkaloids in bulbs and tissue cultures of Narcissus papyraceus and four varieties of N. tazetta. J Pharmaceut Biomed 172:230–237

    Article  CAS  Google Scholar 

  • Tariot PN, Solomon PR, Morris JC, Kershaw P, Lilienfeld S, Ding C (2000) A 5-month, randomized, placebo-controlled trial of galantamine in AD. Neurology 54:2269

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Zhang Ch, Guo M (2015) Comparative analysis of Amaryllidaceae alkaloids from three Lycoris species. Molecules 20:21854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trujillo-Chacon L, Alarcón-Enos JE, Cespedes-Acuña CL, Bustamante L, Baeza M, Lopez MG, Fernandez-Mendivil C, Cabezas F, Pastene-Navarrete ER (2019) Neuroprotective activity of isoquinoline alkaloids from of Chilean Amaryllidaceae plants against oxidative stress-induced cytotoxicity on human neuroblastoma SH-SY5Y cells and mouse hippocampal slice culture. Food Chem Toxicol 132:110665

    Article  CAS  PubMed  Google Scholar 

  • Trujillo-Chacon LM, Pastene-Navarrete ER, Bustamante L, Baeza M, Alarcon-Enos JE, Cespedes-Acuña CL (2020) In vitro micropropagation and alkaloids analysis by GC–MS of Chilean Amaryllidaceae plants: Rhodophiala pratensis. Phytochem Anal 31:46–56

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Xu X, Du L, Li X, Zhao H, Wang Z, Zhao L, Yang Z, Zhang S, Yang Y, Wang C (2022) Lycorine and organ protection: review of its potential effects and molecular mechanisms. Phytomedicine 104:154266

    Article  CAS  PubMed  Google Scholar 

  • Zayed R, El-Shamy, Bastida J, Codina C BS (2011) In vitro micropropagation and alkaloids of Hippeastrum vittatum. In Vitro Cell Dev Biol-Plant 47:695–701

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors want to thank an internal grant from Dirección de Investigación, Universidad del Bío Bío, Chillán, Chile: DIUBB # 083009-2R, # 122509 and # 132209 GI/C.

Author information

Authors and Affiliations

Authors

Contributions

DC Methodology, Formal analysis, Writing LB Methodology, Formal analysis, MB Identification Plants Material, EPN Methodology, Formal analysis, Supervision, Writing—Original Draft JAE Methodology, Formal analysis, Supervision, Writing—Original Draft.

Corresponding author

Correspondence to Julio Alarcón-Enos.

Ethics declarations

Conflict of interest

The authors proclaim no conflict of interest.

Additional information

Communicated by Ali R. Alan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa, D.I., Pastene-Navarrete, E., Baeza, M. et al. Effect of plant growth regulators on alkaloid the production in cell cultures of Chilean Amaryllidaceae: Rhodophiala pratensis, Rhodophiala splendens, Rhodophiala advena, and Rhodolirium speciosum. Plant Cell Tiss Organ Cult 151, 521–534 (2022). https://doi.org/10.1007/s11240-022-02368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02368-4

Keywords

Navigation