Skip to main content

Advertisement

Log in

Ecological phytochemistry of Cerrado (Brazilian savanna) plants

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The Cerrado (the Brazilian savanna) is one of the vegetation formations of great biodiversity in Brazil and it has experienced strong deforestation and fragmentation. The Cerrado must contain at least 12,000 higher plant species. We discuss the ecological relevance of phytochemical studies carried out on plants from the Cerrado, including examples of phytotoxicity, antifungal, insecticidal and antibacterial activities. The results have been classified according to activity and plant family. The most active compounds have been highlighted and other activities are discussed. A large number of complex biochemical interactions occur in this system. However, only a small fraction of the species has been studied from the phytochemical viewpoint to identify the metabolites responsible for these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abas F, Lajis NH, Kalsom Y (2003) Antioxidant and radical scavenging properties of the constituents isolated from Cosmos caudatus Kunth. Nat Prod Sci 9:245–248

    CAS  Google Scholar 

  • Aires SS, Ferreira AG, Borghetti F (2005) Allelopathic effect of leaves and fruits of Solanum lycocarpum A. St.-Hil. (Solanaceae) on the germination and growth of Sesamum indicum L. (Pedaliaceae) in soil under three temperatures. Acta Bot Brasilica 19:339–344

    Google Scholar 

  • Alcerito T, Barbo FE, Negri G, Santos DYAC, Meda CI, Younga MCM, Chavez D, Blatt CTT (2002) Foliar epicuticular wax of Arrabidaea brachypoda: flavonoids and antifungal activity. Biochem Syst Ecol 30:677–683

    CAS  Google Scholar 

  • Almeida LFR, Sannomiya M, Rodrigues CM, Delachiave ME, Santos LC, Vilegas W, Feo V (2007) In vitro allelopathic effects of extracts and amenthoflavone from Byrsonima crassa (Malpighiaceae). J Plant Interact 2:121–124

    Google Scholar 

  • Ascari J, Takahashi JA, Boaventura MAD (2010) Phytochemical and biological investigations of Caryocar brasiliense Camb. Bol Latinoam Caribe Pl 9:20–28

    CAS  Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    PubMed  CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of roots exudates in thyzosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    PubMed  CAS  Google Scholar 

  • Batalha MA (2011) The Brazilian Cerrado is not a biome. Biota Neotropica 11:1–4

    Google Scholar 

  • Batalha MA, Mantovani W (2001) Floristic composition of the cerrado in the Pé-de-Gigante Reserve (Santa Rita do Passa Quatro) southeastern Brazil. Acta Bot Brasilica 15:289–304

    Google Scholar 

  • Bertin C, Yang X, Weston LA (2003) The role of root exudates and allelochemicals in the rizosphere. Plant Soil 256:67–83

    CAS  Google Scholar 

  • Bezerra JCB, Silva IA, Ferreira HD, Ferri PH, Santos SC (2002) Molluscicidal activity against Biomphalaria glabrata of Brazilian Cerrado medicinal plants. Fitoterapia 73:428–430

    PubMed  CAS  Google Scholar 

  • Blatt CTT, Santos MD, Salatino A (1998) Flavonoids of Bignoniaceae from the “cerrado” and their possible taxonomic significance. Plant Syst Evol 210:289–292

    CAS  Google Scholar 

  • Blum U (1999) Designing laboratory plant debris-soil bioassays: some reflections. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC, Boca Raton

    Google Scholar 

  • Bolzani VD, Izumisawa CM, Young MC, Trevisan LMV, Kingston DGI, Gunatilaka L (1997) Iridoids from Tocoyena formosa. Phytochemistry 46:305–308

    Google Scholar 

  • Bustamante MMC, Corbeels M, Scopel E, Roscoe R (2006) Soil carbon and sequestration potential in the Cerrado region of Brazil. In: Lal R, Cerri CC, Bernoux M, Etchevers J, Cerri CEP (eds) Carbon sequestration in soils of Latin America. Haworth, New York

    Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523

    PubMed  CAS  Google Scholar 

  • Callaway RM, Ridenour WM (2004) Novel weapons: invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443

    Google Scholar 

  • Callaway RM, Deluca TH, Belliveau WM (1999) Biological-control herbivores may increase competitive ability of the noxious weed Centaurea maculosa. Ecology 80:1196–1201

    Google Scholar 

  • Candido ACS, Schmidt V, Laura VA, Faccenda O, Hess SC, Simionatto E, Peres MTLP (2010) Allelopathic potential of aerial parts of Senna occidentalis (L.) Link (Fabaceae, Caesalpinioideae): laboratory bioassays. Acta Bot Brasilica 24:235–242

    Google Scholar 

  • Cardoso CMV, Sajo MG (2006) Leaf venation in Brazilian species of Myrtaceae Adans. Acta Bot Brasilica 20:657–669

    Google Scholar 

  • Carmo AB, Vasconcelos HL, Araujo GM (2011) Structure of the woody plant community in fragments of cerrado: relationship with fragment size and its level of disturbance. Braz J Bot 34:31–38

    Google Scholar 

  • Coley PD (1983) Herbivory and defensive characteristics of tree species in a lowland tropical forest. Ecol Monogr 53:209–233

    Google Scholar 

  • Corrêa PG, Pimentel RMM, Cortez JSA, Xavier HS (2008) Herbivoria e anatomia foliar em plantas tropicais brasileiras. Cienc Cult 60:54–57

    Google Scholar 

  • Costa TR, Fernandes FL, Santos SC, Oliveira CMA, Lião LL, Ferri PH, Paula JR, Ferreira HD, Sales BHN, Silva MRR (2000) Antifungal activity of volatile constituents of Eugenia dysenterica leaf oil. J Ethnopharmacol 72:111–117

    PubMed  CAS  Google Scholar 

  • Costa ES, Hiruma-Lima CA, Lima EO, Sucupira GC, Bertolin AO, Lolis SF, Andrade FDP, Vilegas W, Souza-Brito ARM (2008) Antimicrobial activity of some medicinal plants of the Cerrado, Brazil. Phytother Res 22:705–707

    PubMed  CAS  Google Scholar 

  • Costa MS, Pinheiro DO, Serrão JE, Pereira MJB (2012) Morfological changes in the midgut of Aedes aegypti L. (Diptera: Culicidae) larvae following exposure to an Annona coriacea (Magnoliales: Annonaceae) extract. Neotrop Entomol 41:311–314

    PubMed  CAS  Google Scholar 

  • Coutinho LM (2002) O bioma do cerrado. In: Klein AL (Org) Eugen Warmimg e o cerrado brasileiro: um século depois. Editora da Unesp, São Paulo

  • Cunha NL, Uchôa CJM, Cintra LS, Souza HC, Peixoto JA, Silva CP, Magalhães LG, Gimenez VMM, Groppo M, Rodrigues V, Silva Filho AAS, Silva MLA, Cunha WR, Pauletti PM, Januário AH (2012) In vitro schistosomicidal activity of some brazilian cerrado species and their isolated compounds. Evid Based Complement Alternat Med 2012:1–8

    Google Scholar 

  • Dakota FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Google Scholar 

  • DaSilva DM, Batalha MA (2011) Defense syndromes against herbivory in a cerrado plant community. Plant Ecol 212:181–193

    Google Scholar 

  • Durigan G, Siqueira MF, Franco GADC (2007) Threats to the Cerrado remnants of the state of São Paulo. Sci Agric 64:355–363

    Google Scholar 

  • Egydio AP, Valvassoura TA, Santos DYAC (2013) Geographical variation of isoquinoline alkaloids of Annona crassiflora Mart. from cerrado, Brazil. Biochem Syst Ecol 46:145–151

    CAS  Google Scholar 

  • Filgueiras TS (1990) Africanas no Brasil: gramineas introduzidas da África. Cad Geociênc 5:57–63

    Google Scholar 

  • Flores HE, Hoy MW, Pickard JJ (1987) Secundary metabolites from root cultures. Biotechnology 3:64–69

    Google Scholar 

  • Forzza RC, Leitman PM, Costa A, Carvalho AA Jr, Peixoto AL, Walter BMT, Bicudo C, Zappi D, Costa DP, Lleras E, Martinelli G, Lima HC, Prado J, Stehmann JR, Baumgratz JFA, Pirani JR, Sylvestre LS, Maia LC, Lohmann LG, Paganucci L, Silveira M, Nadruz M, Mamede MCH, Bastos MNC, Morim MP, Barbosa MR, Menezes M, Hopkins M, Secco R, Cavalcanti T, Souza VC (2010) Catálogo de plantas e fungos do Brasil. Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro

    Google Scholar 

  • Friedman J (1995) Allelopathy, autotoxicity, and germination. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York

    Google Scholar 

  • Garcez WS, Garcez FR, Silva LMGE, Hamerski L (2009) Larvicidal activity against Aedes aegypti of some plants native to the West-Central region of Brazil. Bioresour Technol 100:6647–6650

    PubMed  CAS  Google Scholar 

  • Gatti AB, Perez SCJGA, Lima MIS (2004) Allelopathic activity of aqueous extracts of Aristolochia esperanzae O. Kuntze in the germination and growth of Lactuca sativa L. and Raphanus sativus L. Acta Bot Brasilica 18:459–472

    Google Scholar 

  • Gatti AB, Perez SCJGA, Ferreira AG (2007) Avaliação da atividade alelopática de extratos aquosos de folhas de espécies de cerrado. Rev Bras Biocienc 5:174–176

    Google Scholar 

  • Gatti AB, Lima MIS, Perez SCJGA (2008) Allelopathic potential of Ocotea odorífera (Vell) Rohwer on the germination and growth of Lactuca sativa L. and Raphanus sativis L. Allelopathy J 21:73–82

    Google Scholar 

  • Gatti AB, Ferreira AG, Arduin M, Perez SCGA (2010) Allelopathic effects of aqueous extracts of Artistolochia esperanzae O. Kuntze on development of Sesamum indicum L. seedlings. Acta Bot Brasilica 24:454–461

    Google Scholar 

  • Giotto AC, Oliveira SCC, Silva JGP (2007) Efeito alelopático de Eugenia dysinterica Mart. Ex DC. Berg. (Myrtaceae) na germinação e no crescimento de Lactuca sativa L. (Asteraceae). Rev Bras Biocienc 5:600–602

    Google Scholar 

  • Goodland R (1979) Análise ecológica da vegetação de cerrado. In: Goodland R, Ferri MG (eds) Ecologia do cerrado. Editora Itatiaia, Belo Horizonte

    Google Scholar 

  • Gorla CM, Perez SCJGA (1997) Influence of aqueous extracts of leaves of Miconia albicans triana, Lantana camara L., Leucaena leucocephala (Lam) de Witt and Drimys winteri forst on germination and initial grown of tomato and cucumber seeds. Rev Bras Sementes 19:260–265

    Google Scholar 

  • Grassi RF, Resende UM, Silva W, Macedo MLR, Butera AP, Tulli AO, Saffran FP, Siqueira JM (2005) Phytochemical study and evaluation of allelopathy in Memora peregrina, ‘ciganinha’, bignoniaceae, an invading species in pastures in mato grosso do sul, Brazil. Quim Nova 28:199–203

    CAS  Google Scholar 

  • Grisi PU, Ranal MA, Gualtieri SCJ, Santana DG (2012) Allelopathic potential of Sapindus saponaria L. leaves in the control of weeds. Acta Sci Agron 34:1–9

    Google Scholar 

  • Haridasan M (2001) Nutrient cycling as a function of landscape and biotic characteristics in the cerrado of central Brazil. In: McClain ME, Victoria RL, Richey JE (eds) Biogeochemistry of the Amazon basin and its role in a changing world. Oxford University Press, New York

    Google Scholar 

  • Hiruma-Lima CA, Di Stasi LC (2002) Scrophulariales medicinais. In: Di Stasi LC, Hiruma-Lima CA (eds) Plantas medicinais na Amazônia e na Mata Atlântica. Editora da Unesp, São Paulo

    Google Scholar 

  • Imatomi M, Novaes P, Gualtieri SCJ (2013a) Interspecific variation in allelopathic potential of the Myrtaceae family. Acta Bot Brasilica 27:54–61

    Google Scholar 

  • Imatomi M, Novaes P, Matos AP, Gualtieri SCJ, Molinillo JMG, Lacret R, Varela RM, Macías FA (2013b) Phytotoxic effect of bioactive compounds isolated from Myrcia tomentosa (Myrtaceae) leaves. Biochem Syst Ecol 46:29–35

    CAS  Google Scholar 

  • Inderjit, Callaway RM (2003) Experimental design for the study of allelopathy. Plant Soil 256:1–11

    CAS  Google Scholar 

  • Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539

    PubMed  CAS  Google Scholar 

  • Inderjit, Weston LA (2000) Are laboratory bioassays for allelopathy suitable for prediction of field responses? J Chem Ecol 26:2111–2118

    CAS  Google Scholar 

  • Inderjit, Pollock JL, Callaway RM, Holben W (2008) Phytotoxic effects of (±)-catechin in vitro, in soil, and in field. PLoS One 3:e2536

    PubMed  CAS  Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (2004) Mapa de biomas do Brasil. IBGE, Rio de Janeiro. ftp://geoftp.ibge.gov.br/mapas_tematicos/mapas_murais/biomas. pdf. Cited in 28 Apr 2013

  • Instituto Nacional de Meteriologia (2013) Normas climatográficas do Brasil 1961–1990. Precipitação acumulada mensal e anual (mm). http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas. Cited in 05 July 2013

  • Iqbal Z, Hiradade S, Noda A, Isojima S-I, Fujii Y (2003) Allelopathic activity of buckwheat: isolation and characterization of phenolics. Weed Sci 5:657–662

    Google Scholar 

  • Januário AH, Vieira PC, Silva MFGF, Fernandes JF (1991) Terpeno-p-hydroxybenzoic acid derivates from Rapanea umbellata. Phytochemistry 30:2019–2023

    Google Scholar 

  • Januário AH, Vieira PC, Silva MFGF, Fernandes JF (1992) Dammarane and cycloartane triterpenoids from three Rapanea species. Phytochemistry 31:1251–1253

    Google Scholar 

  • Jasicka-Misiak I, Lipok J, Swider IA, Kafarski P (2010) Possible fungistatic implications of betulin presence in Betulaceae plants and their hymenochaetaceae parasitic fungi. Z Naturforsch C 65:201–206

    PubMed  CAS  Google Scholar 

  • Kaur H, Kaur R, Kaur S, Baldwin IT, Inderjit (2009) Taking ecological function seriously: soil microbial communities can obviate allelopathic effects of released metabolites. PLoS One 4(3):e4700

    PubMed  Google Scholar 

  • Keszei A, Brubaker CL, Carte R, Köllner T, Dengenhardt J, Foley WJ (2008) Functional and evolutionary relationships between terpenes synthases from Australian Myrtaceae. Phytochemistry 71:844–852

    Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian Cerrado. Conserv Biol 19:707–713

    Google Scholar 

  • Lahlou M (2004) Study of the molluscicidal activity of some phenolic compounds: structure–activity relationship. Pharm Biol 42:258–261

    CAS  Google Scholar 

  • Langenheim JH, Macedo CA, Stubblebine WH (1986) Leaf development in the tropical leguminous tree Copaifera in relation to microlepidopteran herbivory. Biochem Syst Ecol 14:51–59

    Google Scholar 

  • Le NHT, Malterud KE, Diallo D, Paulsen BS, Nergard CS, Wangensteen H (2012) Bioactive polyphenols in Ximenia americana and the traditional use among Malian healers. J Ethnopharmacol 139:858–862

    PubMed  CAS  Google Scholar 

  • Lee YS, Cha BY, Choi SS, Harada Y, Choi BK, Yonezawa T, Teruya T, Nagai K, Woo JT (2012) Fargesin improves lipid and glucose metabolism in 3T3-L1 adipocytes and high-fat diet-induced obese mice. BioFactors 38:300–308

    PubMed  CAS  Google Scholar 

  • Lima CSA, Amorin ELC, Sena KXFR, Chiappeta AA, Nunes XP, Agra MF, daCunha EVL, Silva MS, Barbosa Filho JM (2003) Antimicrobial activity of a mixture of two isomeric phenylpropanoid glycosides from Arrabidaea harleyi A.H. Gentry (Bignoniaceae). Braz J Pharm Sci 39:77–81

    CAS  Google Scholar 

  • Lista de Espécies da Flora do Brasil (2013). http://floradobrasil.jbrj.gov.br. Cited 10 July 2013

  • Llanos GG, Varela RM, Jimenez IA, Molinillo JMG, Macias FA, Bazzocchi IL (2010) Metabolites from Withania aristata with potential phytotoxic activity. Nat Prod Commun 5:1043–1047

    PubMed  CAS  Google Scholar 

  • Macias FA, Simonet AM, Esteban MD (1994) Potential allelopathic lupane triterpenes from bioactive fractions of Melilotus messanensis. Phytochemistry 36:1369–1379

    CAS  Google Scholar 

  • Macías FA, Castellano D, Molinillo JMG (2000) Search for a standard phytotoxic bioassay for allelochemicals. Selection of standard target species. J Agric Food Chem 48:2512–2521

    PubMed  Google Scholar 

  • Maraschin-Silva F, Áqüila MEA (2006) Contribution to the study of native species allelopathic potential. Rev Árvore 30:547–555

    Google Scholar 

  • Marchi G, Marchi ECS, Wang G, Mcgiffen M (2008) Effect of age of a sorgum-sundgrass hybrid on its allelopathic action. Planta Daninha 26:707–716

    Google Scholar 

  • Marquis RJ, Morais HC, Diniz IR (2002) Interactions among cerrado plants and their herbivores: unique or typical. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil: ecology and natural history of a Neotropical savanna. Columbia University Press, New York

    Google Scholar 

  • Medeiros MB, Miranda HS (2005) Mortalidade pós-fogo em espécies lenhosas de campo sujo submetidas a três queimadas prescritas anuais. Acta Bot Brasilica 19:493–500

    Google Scholar 

  • Meiners SJ, Kong C-H, Ladwig LM, Pisula NL, Lang KA (2012) Developing ecological context for allelopathy. Plant Ecol 213:1221–1227

    Google Scholar 

  • Metwally AM, Omar AA, Harraz FM, El Sohafy SM (2010) Phytochemical investigation and antimicrobial activity of Psidium guajava L. leaves. Pharmacogn Mag 6:212–218

    PubMed  CAS  Google Scholar 

  • Miranda HS, Sato MN, Nascimento-Neto W, Aires FS (2009a) Fires in the cerrado, Brazilian savana. In: Cochrane MA (ed) Tropical fire ecology: climate change, land use, and ecosystem dynamics. Springer, South Dakota

    Google Scholar 

  • Miranda RRS, Duarte LP, Silva GDF, Vieira Filho SA, Carvalho PB, Messas AC (2009b) Evaluation of antibacterial activity of “Mangabarana” Austroplenckia populnea Reissek (Celastraceae). Rev Bras Farmacogn 19(2A):370–375

    Google Scholar 

  • Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Fonseca GAB (2004) Hotspots revisited. CEMEX/Agrupación Sierra Madre, Mexico City

    Google Scholar 

  • Moreira A (2000) Effects of fire protection on savanna structure in Central Brazil. J Biogeogr 27:1021–1029

    Google Scholar 

  • Nascimento MC, Alcântara SF, Haddad CRB, Martins FR (2007) Allelopatic potential of Pouteria torta (Mart.) Radlk., a species of Brazilian cerrado. Allelopathy J 20:279–286

    Google Scholar 

  • Norton RA (1997) Effect of carotenoids on aflatoxin B1 synthesis by Aspergillus flavus. Phytopathology 87:814–821

    PubMed  CAS  Google Scholar 

  • Novaes P (2011) Alelopatia e bioprospecção de Rapanea ferruginea e de Rapanea umbellata. UFSCar, PhD Thesis

  • Novaes P, Imatomi M, Miranda MAFM, Gualtieri SCJ (2013a) Phytotoxicity of leaf aqueous extracts of Rapanea umbellata (Mart.) Mez (Primulaceae) on weeds. Acta Sci Agron 35:231–239

    Google Scholar 

  • Novaes P, Varela RM, Molinillo JMG, Lacret R, Gualtieri SCJ, Macías FA (2013b) Allelopathic potential of extracts from Rapanea umbellata. Chem Biodivers. doi:10.1002/cbdv.201200367

  • Núñez V, Otero R, Barona J, Saldarriaga M, Osorio RG, Fonnegra R, Jiménez SL, Díaz A, Quintana JC (2004) Neutralization of the edema-forming, defibrinating and coagulant effects of Bothrops asper venom by extracts of plants used by healers in Colombia. Braz J Med Biol Res 37:969–977

    PubMed  Google Scholar 

  • Oliveira SCC, Campos ML (2006) Allelopathic effects of Solanum palinacanthum leaves on germination and seedling growth of Sesamum indicum. Allelopathy J 18:331–338

    Google Scholar 

  • Oliveira MNS, Mercadante MO, Lopes PSN, Gomes IAC, Gusmão E, Ribeiro LM (2002) Allelopathic effects of aqueous and ethanolic extracts of the jatobá do Cerrado (Hymenea Stigonocarpa Mart.). Unimontes Científica 4:1–12

    Google Scholar 

  • Oliveira SCC, Ferreira AG, Borghetti F (2004) Allelopathic effect of Solanum lycocarpum A. St.-Hil. leaves on the germination and growth of Sesamum indicum L. (Pedaliaceae) under different temperatures. Acta Bot Brasilica 18:401–406

    Google Scholar 

  • Oliveira AM, Humberto MMS, Silva JM, Rocha RFA, Sant’Ana AEG (2006) Phytochemical studies of the extracts of stem bark and leaves of Eugenia malaccensis L. (Myrtaceae) and evaluation of their molluscicidal and larvicidal activities. Rev Bras Farmacogn 16:618–624

    Google Scholar 

  • Ooshiro A, Hiradate S, Kawano S, Takushi T, Fujii Y, Natsume M, Abe H (2009) Identification and activity of ethyl gallate as an antimicrobial compound produced by Geranium carolinianum. Weed Biol Manag 9:169–172

    CAS  Google Scholar 

  • Pan JX, Hensens OD, Zink DL, Chang MN, Hwang SB (1987) Lignans with platelet activating factor antagonist activity from Magnolia biondii. Phytochemistry 26:1377–1379

    CAS  Google Scholar 

  • Park BS, Kim JR, Lee SE, Kim KS, Takeoka GR, Ahn YJ, Kim JH (2005) Selective growth-inhibiting effects of compounds identified in Tabebuia impetiginosa inner bark on human intestinal bacteria. J Agric Food Chem 53:1152–1157

    PubMed  CAS  Google Scholar 

  • Periotto F, Perez SCJGA, Lima MIS (2004) Allelopathic effect of Andira humilis Mart. ex Benth in the germination and growth of Lactuca sativa L. and Raphanus sativus L. Acta Bot Brasilica 18:425–430

    Google Scholar 

  • Pina GO, Borghetti F, Silveira CES, Pereira LAR (2009) Effects of Eugenia desynterica leaf extracts on the growth of sesame and radish. Allelopathy J 23:313–322

    Google Scholar 

  • Borghetti F, Silva LCR, Pinheiro, JD, Varella BB, Ferreira AG (2005) Aqueous leaf extract properties of Cerrado species in Central Brazil. In: Proceedings of the fourth world congress on allelopathy, Charles Sturt University, Wagga Wagga, 21–26 Aug 2005

  • Pinheiro L, Cortez DAG (2003) Phytochemical study and evaluation of the molluscicidal activity of Kielmeyera variabilis Mart (Clusiaceae). Quim Nova 26:157–160

    CAS  Google Scholar 

  • Pivello VR, Shida CN, Meirelles ST (1999) Alien grasses in Brazilian Savannas: a threat to the biodiversity. Biodivers Conserv 8:1281–1294

    Google Scholar 

  • Portillo A, Vila R, Freixa B, Adzet T, Cañigueral S (2001) Antifungal activity of Paraguayan plants used in traditional medicine. J Ethnopharmacol 76:93–98

    PubMed  CAS  Google Scholar 

  • Povh JA, Pinto DD, Corrêa MOG, Ono EO (2007) Atividade alelopática de Machaerium acutifolium Vog. na germinação de Lactuca sativa L. Rev Bras Biocienc 5:447–449

    Google Scholar 

  • Prakash B, Singh P, Kedia A, Dubey NK (2012) Assessment of some essential oils as food preservatives based on antifungal, antiaflatoxin, antioxidant activities and in vivo efficacy in food system. Food Res Int 49:201–208

    CAS  Google Scholar 

  • Putnan AR, Tang CS (1986) The science of allelopathy. John Wiley & Sons, New York

    Google Scholar 

  • Ratter JA (1980) Notes on the vegetation of Fazenda Água Limpa (Brasília, DF, Brasil). Royal Botanical Garden, Edinburgh

    Google Scholar 

  • Saleem A, Husheem M, Harkonen P, Pihlaja K (2002) Inhibition of cancer cell growth by crude extract and the phenolics of Terminalia chebula retz. fruit. J Ethnopharmacol 81:327–336

    PubMed  CAS  Google Scholar 

  • Sanches ACC, Lopes GC, Nakamura CV, Dias Filho BP, Mello JCP (2005) Antioxidant and antifungal activities of extracts and condensed tannins from Stryphnodendron obovatum Benth. Braz J Pharm Sci 41:101–107

    CAS  Google Scholar 

  • Sano EE, Rosa RR, Brito JLS, Ferreira LG (2008) Semidetailed land use mapping in the Cerrado. Pesqui Agropecu Bras 43:153–156

    Google Scholar 

  • Santos RC, Salvador JAR (2007) Synthesis and evaluation of new betulin derivatives. In: Santos F (ed) Frontiers in CNS and oncology medicinal chemistry. ACS-EFMC, Siena, Italy, 7–9 Oct 2007

  • Sartorelli P, Carvalho CS, Reimao JQ, Lorenzi H, Tempone AG (2010) Antitrypanosomal activity of a diterpene and lignans isolated from Aristolochia cymbifera. Planta Med 76:1454–1456

    PubMed  CAS  Google Scholar 

  • Shen Y, Pang ECK, Xue CCL, Zhao ZZ, Lin JG, Li CG (2008) Inhibitions of mast cell-derived histamine release by different flos magnoliae species in rat peritoneal mast cells. Phytomedicine 15:808–814

    PubMed  CAS  Google Scholar 

  • Silva Junior IF, Cechinel Filho VC, Zacchino SA, Lima JCS, Martins DTO (2009) Antimicrobial screening of some medicinal plants from Mato Grosso Cerrado. Rev Bras Farmacogn 19:242–248

    Google Scholar 

  • Silva HHG, Ionizete GS, Santos RMG, Rodrigues Filho E, Carmeci NE (2004) Larvicidal activity of tannins isolated of Magonia pubescens St. Hil. (Sapindaceae) against Aedes aegypti (Diptera, Culicidae). Rev Soc Bras Med Trop 37:396–399

    PubMed  Google Scholar 

  • Silva GB, Martim L, da Silva CL, Young MCM, Ladeira AMP (2006) Allelopathic potential of Cerrado native arboreous species. Hoehnea 33:331–338

    Google Scholar 

  • Silva FM, Paula JE, Espindola LS (2009) Evaluation of the antifungal potential of Brazilian Cerrado medicinal plants. Mycoses 52:511–517

    Google Scholar 

  • Sinha BN, Bansal SK, Pattnaik AK (2009) Phytochemical and antimicrobial activity of extracts, fractions and betulin, 7-methyl juglone obtained from Diospyros paniculata. J Nat Remedies 9:99–102

    CAS  Google Scholar 

  • Souza Filho APS, Guilhon GMSP, Santos LS (2010) Metodologias empregadas em estudos de avaliação da atividade alelopática em condições de laboratório: revisão crítica. Planta Daninha 28:689–697

    Google Scholar 

  • Teles HL, Silva GH, Castro-Gamboa I, Bolzani VS, Pereira JO, Costa-Neto CM, Haddad R, Eberlin MN, Young MCM, Araújo AR (2005) Benzopyrans from Curvularia sp., an endophytic fungus associated with Ocotea corymbosa (Lauraceae). Phytochemistry 66:2363–2367

    PubMed  CAS  Google Scholar 

  • Violante IM, Garcez WS, Barbosa Cda S, Garcez FR (2012) Chemical compostion and biological activities of essencial oil from Hyptis crenata growing in the Brazilian Cerrado. Nat Prod Commun 7:1387–1389

    PubMed  CAS  Google Scholar 

  • Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestial phosphorus limitation: mechanisms, implications, and nitrogen–phosphorus interactions. Ecol Appl 20:5–15

    PubMed  Google Scholar 

  • Watson L, Dallwitz MJ (2007) The families of flowering plants: descriptions, illustrations, identification, and information retrieval. http://biodiversity.uno.edu/delta. Cited 19 Dec 2012

  • Weidenhamer JD, Callaway RM (2010) Direct and indirect effects of invasive plants on soil chemistry and ecology function. J Chem Ecol 36:59–69

    PubMed  CAS  Google Scholar 

  • Williams DG, Baruch Z (2000) African grass invasion in the Americas: ecosystem consequences and the role of ecophysiology. Biol Invasions 2:123–140

    Google Scholar 

  • Wu J (2006) Antifungal activities and mechanisms of phenols from Schlechtendalia chinensis to plant pathogenic fungi. Shijie Nongyao 28:29–32

    CAS  Google Scholar 

  • Wu AP, Yu H, Gao SO, Huang ZY, He WM, Miao SL, Dong M (2009) Differential below ground allelopathic effects of leaf and root of Mikania micrantha. Trees Struct Funct 23:11–17

    Google Scholar 

  • Yadav RP, Singh A (2009) Combinations of binary and tertiary toxic effects of extracts of Euphorbia pulcherima latex powder with other plant derived molluscicides against freshwater vector snails. Int J Toxicol 7(1). doi:10.5580/39b

Download references

Acknowledgments

This research was supported by the CNPq (Conselho Nacional de Pesquisa), Brazil, the Ministerio de Educación y Ciencia (Project No. AGL2009-08864 (AGR) and Junta de Andalucía (PAI-III, AGR-5822), Seville, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco A. Macías.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Novaes, P., Molinillo, J.M.G., Varela, R.M. et al. Ecological phytochemistry of Cerrado (Brazilian savanna) plants. Phytochem Rev 12, 839–855 (2013). https://doi.org/10.1007/s11101-013-9315-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-013-9315-3

Keywords

Navigation