Skip to main content
Log in

Chemical analysis of Tanacetum corymbosum (L.) Sch. Bip. using neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

For the first time the elemental composition of Tanacetum corymbosum (L.) Sch. Bip. of Moldavian origin was determined by means of neutron activation analysis. The content of 21 major and trace elements Al, As, Br, Ca, Cl, Co,Cs, Fe, K, La, Mg, Mn, Mo, Na, Rb, Sb, Sc, Sm, Sr, Th, and Zn were determined. The content of As in analysed plants was lower than value established by World Health Organization. Obtained results were compared with literature data as well as Reference plant values. Concentration of elements determined in T. corymbosum fell within the values reported for other medicinal herbs of Asteraceae family.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bremer K, Humphries CJ (1993) Generic monograph of the Asteraceae-Anthemideae. Bull Nat Hist Mus Lond 23:71–177

    Google Scholar 

  2. Heywood VH (1976) Tanacetum L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, Plantaginaceae to Compositae (and Rubiaceae), vol 4. Cambridge University Press, Cambridge, pp 169–171

    Google Scholar 

  3. Negru A (2007) Determinator de plante din flora Republicii Moldova. Chişinău: Ed. Universul p. 249. (in Romanian)

  4. Özbilgin S, Akkol EK, ÖzB Ergene, Ilhan M, Saltan G, Acıkara ÖB, Tekin M, Keleş H, Süntar I (2018) In vivo activity assessment of some Tanacetum species used as traditional wound healer along with identification of the phytochemical profile by a new validated HPLC method. Iran J Basic Med Sci 21(2):145–152

    PubMed  PubMed Central  Google Scholar 

  5. Дикopacтyщиe пoлeзныe pacтeния Poccии (2001)/Oтв. peд. Бyдaнцeв AЛ, Лecиoвcкaя EE. CПб.: Издaтeльcтвo CПXФA, cтp. 117–118. (in Russian)

  6. Brewer JG (1968) Flowering and seed setting in pyrethrum (Chrysanthemum cinerariae folium Vis.). Pyrethrum Post 9(4):18–21

    Google Scholar 

  7. Kumar V, Sharma Y (2016) Chemical composition and antibacterial activity of essential oils of Tanacetum longifolium. Int J Micorbiol App Sci 5(10):836–841

    CAS  Google Scholar 

  8. Todorova M, Evstatieva L (2014) Comparative study of Tanacetum species growing in Bulgaria. Zeitschrift für Naturforschung C 56(7–8):506–512

    Google Scholar 

  9. Pareek A, Suthar M, Rathore GS, Bansal V (2011) Feverfew (Tanacetum parthenium L.): a systematic review. Pharmacogn Rev 5(9):103–110

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kumar V, Tyagi D (2013) Chemical composition and biological activities of essential oils of genus Tanacetum: a review. J Pharmacogn Phytochem 2(3):159–163

    CAS  Google Scholar 

  11. Ivanescu B, Tuchilus C, Corciova A, Lungu C, Mihai TC, Gheldiu AM, Vlase L (2018) Antioxidant, antimicrobial cytotoxic activity of Tanacetum vulgare, Tanacetum corymbosum and Tanacetum macrophyllum extracts. Farmacia 66(2):282–288

    CAS  Google Scholar 

  12. Zinicovscaia I, Aničić Urošević M, Vergel K, Vieru E, Frontasyeva M, Povar I, Duca Gh (2018) Active moss biomonitoring of trace elements with Sphagnum girgensohnii in relation to atmospheric bulk deposition: chisinau case study. Ecol Chem Eng S 25(3):361–372

    CAS  Google Scholar 

  13. Zinicovscaia I, Sturza R, Gurmeza I, Vergel K, Gundorina S, Duca Gh (2018) Metal bioaccumulation in the soil-leaf-fruit system determined by neutron activation analysis. J Food Meas Charact 13(1):592–601

    Article  Google Scholar 

  14. Ciocarlan N, Ciocarlan A, Dragalin I, Aricu A, Zinicovscaia I, Gundorina S (2018) GC–MS and neutron activation analysis of medicinal Teucrium L. speces. Prog Cryogen Isot Sep 21(2):121–128

    Google Scholar 

  15. Pavlov SS, Dmitriev AYu, Frontasyeva MV (2016) Automation system for neutron activation analysis at the reactor IBR-2, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia. J Radioanal Nucl Chem 309:27–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rončević S, Pitarevič Svedružić L, Nemet I (2014) Elemental composition and chemometric characterization of pyrethrum plant materials and insecticidal flower extracts. Anal Lett 47(4):627–640

    Article  CAS  Google Scholar 

  17. Arceusz A, Radecka I, Wesolowki M (2010) Identification of diversity in elements content in medicinal plants belonging to different plant families. Food Chem 120:52–58

    Article  CAS  Google Scholar 

  18. Markert B (1992) Establishing of ‘Reference Plant’ for inorganic characterization of different plant species by chemical fingerprinting. Water Air Soil Pollut 64:533

    Article  CAS  Google Scholar 

  19. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14(4):7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17(8):2142–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen W, He ZhL, Yang XE, Mishra S, Stoffella PJ (2010) Chlorine nutrition of higher plants: progress and perspectives. J Plant Nutr 33(7):943–952

    Article  CAS  Google Scholar 

  23. Ducu SȘ, Gergen I, Ştef L, Hărmănescu M, Pop C, Druga M, Bujanca G, Popa M (2010) Determination of the macro elements content of some medicinal herbs. Anim Sci Biotech 4(1):122–126

    Google Scholar 

  24. Konieczyski P, Wesoowski M (2012) Water-extractable magnesium, manganese and copper in leaves and herbs of medicinal plants. Acta Pol Pharm Drug Res 69(1):33–39

    Google Scholar 

  25. Guo W, Chen S, Hussain N, Cong Y, Liang Z, Chen K (2015) Magnesium stress signaling in plant: just a beginning. Plant Signal Behav 10(3):e992287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nieves-Cordones M, Al-Shiblawi FR, Sentenac H (2016) Roles and transport of sodium and potassium in plants. Met Ions Life Sci 16:291–324

    Article  CAS  PubMed  Google Scholar 

  27. Haidu D, Párkányi D, Moldovan RI, Savii C, Pinzaru I, Dehelean C, Kurunczi L (2017) Elemental characterization of Romanian crop medicinal plants by neutron activation analysis. J Anal Methods Chem. https://doi.org/10.1155/2017/9748413

    Article  PubMed  PubMed Central  Google Scholar 

  28. Szentmihalyi K, Kery A, Then M, Lakatos B, Sandor Z, Vinkler P (1998) Potassium-sodium ratio for the characterization of medicinal plant extracts with diuretic activity. PhytotherRes 12:163–166

    Google Scholar 

  29. Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19(2):164–174

    PubMed  PubMed Central  Google Scholar 

  30. Demoz MS, Kareru PG, Keriko J, Girmay B, Medhanie Gh, Debretsion S (2016) Profile of trace elements in selected medicinal plants used for the treatment of diabetes in eritrea. Sci World J 2016:2752836

    Google Scholar 

  31. Burnell JN (1988) The biochemistry of manganese in plants. In: Graham RD, Hannam RJ, Uren NC (eds) Manganese in soils and plants. Developments in plant and soil sciences. Springer, Dordrecht

    Google Scholar 

  32. Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25(3):597–610

    Article  CAS  PubMed  Google Scholar 

  33. Scott McCall A, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG (2014) Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157(6):1380–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kabata-Pendias A (2011) Trace elements in soils and plants. Taylor and Francis, Boca Raton, p 548

    Google Scholar 

  35. Mendel RR, Bittner F (2006) Cell biology of molybdenum. Biochim Biophys Acta Molec Cell Res 1763(7):621–635

    Article  CAS  Google Scholar 

  36. Liu D, Wang X, Chen Z (2012) Effects of rare earth elements and REE-binding proteins on physiological responses in plants. Protein Pept Lett 9(2):198–202

    Article  Google Scholar 

  37. Zhang Ch, Li Q, Zhang M, Zhang N, Li M (2013) Effects of rare earth elements on growth and metabolism of medicinal plants. Acta Pharm Sin B3:20–24

    Article  Google Scholar 

  38. WHO (World Health Organization) (1998) Quality control methods for plant materials. WHO, Geneva

    Google Scholar 

  39. Polechońska L, Dambiec M, Klink A, Rudecki A (2015) Concentrations and solubility of selected trace metals in leaf and bagged black teas commercialized in Poland. J Food Drug Anal 23(3):486–492

    Article  CAS  PubMed  Google Scholar 

  40. Zengin M, Ozcan MM, Cetin U, Gezgin S (2008) Mineral contents of some aromatic plants, their growth soils and infusions. J Sci Food Agric 88(4):581–589

    Article  CAS  Google Scholar 

  41. Pereira Junior JB, Dantas KGF (2016) Evaluation of inorganic elements in cat’s claw teas using ICP- OES and GF AAS. Food Chem 196(1):331–337

    Article  CAS  Google Scholar 

  42. Szymczycha-Madeja A, Welna M, Pohl P (2012) Elemental analysis of teas and their infusions by spectrometric methods. Trends Anal Chem 35:165–181

    Article  CAS  Google Scholar 

  43. Arpadjan S, Celik G, Taskesen S, Gucer S (2008) Arsenic, cadmium and lead in medicinal herbs and their fractionation. Food Chem Toxicol 46(8):871–2875

    Article  CAS  Google Scholar 

  44. Zinicovscaia I, Duliu OG, Culicov OA, Frontasyeva M, Sturza R (2018) Major and trace element distribution in soil of two Moldavian vineyards: romanesti and Cricova. Rom Rep Phys 70:701

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of the staff of the Department of Activation Analysis and Applied Research of FLNP, JINR for handling of radioactive samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inga Zinicovscaia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinicovscaia, I., Ciocarlan, A., Lupascu, L. et al. Chemical analysis of Tanacetum corymbosum (L.) Sch. Bip. using neutron activation analysis. J Radioanal Nucl Chem 321, 349–354 (2019). https://doi.org/10.1007/s10967-019-06590-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-019-06590-x

Keywords

Navigation