Skip to main content
Log in

Paleoenvironmental and paleoclimatic dynamics of the Subtropical Andes of Argentina (35° S) during the last 3000 years

  • Original paper
  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

The most recent IPCC report indicated that the Subtropical Andes (32°–35° S) are one of the world areas undergoing a strong tendency towards more arid conditions due to current climate change. The winter precipitation that falls on the Andes, related to the Southern Westerlies System (SWS), is the main source of water for central Chile and west central Argentina, making it a fundamental socioeconomic resource. The few long-term records of the eastern slope of the Subtropical Andes do not permit establishing the long-term natural climate variability or determining if this trend does or does not respond to natural forcings. This study therefore presents a centennial and sub-centennial scale reconstruction of the paleoenvironmental dynamics of the eastern slope of the Subtropical Andes during the last 3000 cal yrs BP, based on the pollen record of the Laguna Corazón (LCO; 35.13° S; 2200 m a.s.l.), in order to establish the different regional paleoenvironmental scenarios. The sedimentary record (182 cm) is mostly composed of laminated dark brown clay, and includes a 21–24 cm layer preliminarily associated with the 1932 AD eruption of the Quizapú volcano. The LCO record shows the development of a grass steppe associated with high-Andean shrubs between 3000 and 2440 cal yrs BP, suggesting slightly more humid conditions than present. From 2440 to 1110 cal yrs BP, there was continuous presence of the grass steppe along with high-Andean and Patagonian low shrubs, indicating moderately more humid conditions than today. The development of a grass steppe with low high-Andean shrubs from 1110 to 320 cal yrs BP reflects conditions slightly more humid that at present, showing a progressive decrease in humidity between 900 and 320 cal yrs BP. Since then, environmental conditions were similar to present ones, associated with the climatic variability at sub-centennial timescale. In the last 320 cal yrs BP, the record shows the presence of introduced species as a consequence of the occupation of the valley to raise livestock, and more recently, tourist activities. These environmental/climatic patterns are similar to those recorded for the western slope of the Subtropical Andes for the Late Holocene, indicating a regional forcing related to the winter precipitation associated with the SWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aceituno P (1988) On the functioning of the southern oscillation in the south American sector. Part I: surface climate. Mon Weather Rev 116(3):505–524

    Article  Google Scholar 

  • Acevedo A, Fiore D, Tucker H, Neme G (2022) El arte rupestre de Valle Hermoso: primeros resultados y contextualización dentro la producción rupestre altoandina del sur de Mendoza. Comechingonia 26(1):1–10

    Google Scholar 

  • Anderson EP, Marengo JA, Villalba R, Halloy S, Young B, Cordero D, Gast F, Jaimes E, Ruiz D (2011) Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In: Herzog SK, Martínez R, Jørgenseny PM, Tiessen H (eds) Climate Change and biodiversity in the Tropical Andes. Inter-American Institute for Global Change Research and Scientific Committee on Problems of the Environment, San Jose dos Campos and Paris

    Google Scholar 

  • Baied CA (1989) Transhumance and land use in the northern Patagonian Andes. Mt Res Dev 9:365–380

    Article  Google Scholar 

  • Bandieri S (2009) Historia de la Patagonia. Editorial Sudamericana, Buenos Aires

    Google Scholar 

  • Barrera RO (1959) Estudio preliminar sobre los caracteres geográficos de Valle Hermoso en la alta cuenca del rio Grande. Boletín De Estudios Geográficos 5(24):120–156

    Google Scholar 

  • Bengoa J (2008) Historia del pueblo mapuche. Siglos XIX y XX. LOM Ediciones, Santiago de Chile

    Google Scholar 

  • Bennett KD, Willis KJ (2001) Pollen. In: Smol JP, Birks y HJB, Last WM (eds) Tracking environmental change using lake sediments. Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, p 32

    Google Scholar 

  • Blaauw M, Christen JA, Aquino-López, MA (2021) Rbacon: Age-depth modelling using Bayesian statistics. R package version 2.5.7. https://CRAN.R-project.org/package=rbacon

  • Bonnat GF (2011) Abastecimiento y producción lítica en el sitio Valle Hermoso 1 (Malargüe, Mendoza). Intersecc En Antropol 12(1):121–133

    Google Scholar 

  • Capitanelli R (2005) Climas locales de la extremidad sur de las montañas. Climatología de Mendoza, 145–177

  • D’Antoni H (1983) Pollen analysis of Gruta del Indio. In Quaternary of South America and Antarctic Peninsula, CRC Press, pp 83-104

  • de Abeyá AEB (1988) Contribución al conocimiento del espacio social pastoral de subsistencia. Estudio de caso: los puesteros transhumantes del departamento de Malargüe. Mendoza Cuadernos De Antropología Social 1:79–95

    Google Scholar 

  • de Jong R, von Gunten L, Maldonado A, Grosjean M (2013) Late Holocene summer temperatures in the central Andes reconstructed from the sediments of high elevation Laguna Chepical, Chile (32° S). Clim Past 9(4):1921–1932. https://doi.org/10.5194/cp-9-1921-2013

    Article  Google Scholar 

  • Dussaillant I, Berthier E, Brun F, Masiokas M, Hugonnet R, Favier V, Ruiz L (2019) Two decades of glacier mass loss along the Andes. Nat Geosci 12(10):802–808. https://doi.org/10.1038/s41561-019-0432-5

    Article  CAS  Google Scholar 

  • Espizúa LE (1999) Chronology of Late Pleistocene glacier advances in the Río Mendoza Valley. Argentina Global Planet Change 22(1–4):193–200. https://doi.org/10.1016/S0921-8181(99)00036-3

    Article  Google Scholar 

  • Espizúa LE (2005) Holocene glacier chronology of Valenzuela valley, Mendoza Andes. Argentina Holocene 15(7):1079–1085

    Article  Google Scholar 

  • Espizua LE, Pitte P (2009) The little ice age glacier advance in the Central Andes (35°S), Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):345–350. https://doi.org/10.1016/j.palaeo.2008.10.032

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, London

    Google Scholar 

  • FFalvey M, Garreaud R (2007) Wintertime precipitation episodes in central chile: Associated meteorological conditions and orographic influences. J Hydrometeor 8:171–193. https://doi.org/10.1175/JHM562.1

  • Fontijn K, Lachowycz SM, Rawson H, Pyle DM, Mather TA, Naranjo JA, Moreno-Roa H (2014) Late Quaternary tephrostratigraphy of southern Chile and Argentina. Quat Sci Rev 89:70–84. https://doi.org/10.1016/j.quascirev.2014.02.007

    Article  Google Scholar 

  • Frugone-Álvarez MC, Latorre S, Giralt F, Barreiro-Lostres A, Moreno J, Polanco-Martinez A, Maldonado ML, Carrevedo P, Bernardez R, Prego A, Delgado Huertas M, FuentealbaValero-Garces B (2020) Volcanism and climate change as drivers in Holocene depositional dynamic of Laguna del Maule (Andes of Central—36°S). Clim Past 16(4):1097–1125. https://doi.org/10.5194/cp-16-1097-2020

    Article  Google Scholar 

  • Garreaud RD (2009) The Andes climate and weather. Adv Geosci 7:1–9. https://doi.org/10.5194/adgeo-22-3-2009

    Article  Google Scholar 

  • Garreaud RD, Vuille M, Compagnucci R, Marengo J (2008) Present-day South America climate. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):180–195

    Google Scholar 

  • Garreaud RD, Boisier JP, Rondanelli R, Montecinos A, Sepúlveda HH, Veloso-Aguila D (2019) The Central Chile Mega Drought (2010–2018): a climate dynamics perspective. Int J Climatol 40(1):421–439. https://doi.org/10.1002/joc.6219

    Article  Google Scholar 

  • Grimm EC (1987) CONISS: a FORTRAN 77 Program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput Geosci 13:13–35. https://doi.org/10.1016/0098-3004(87)90022-7

    Article  Google Scholar 

  • Grimm EC (2011) Tilia software 1.7.16 Illinois State Museum. Research and Collection Center, Springfield, Illinois

    Google Scholar 

  • Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25(1):101–110. https://doi.org/10.1023/A:1008119611481

    Article  Google Scholar 

  • Heusser CJ (1971) Pollen and spores of Chile. University of Arizona, Tucson, p 167

    Google Scholar 

  • Hogg AG, Heaton TJ, Hua Q, Palmer JG, Turney CS, Southon J, Bayliss A, Blackwell PG, Boswijk G, Bronk Ramsey C, Pearson C, Petchey F, Reimer P, Reimer R, Wacker L (2020) SHCal20 Southern Hemisphere calibration, 0–55,000 years cal BP. Radiocarbon 62(4):759–778. https://doi.org/10.1017/RDC.2020.59

    Article  CAS  Google Scholar 

  • Jenny B, Valero-Garcés BL, Urrutia R, Kelts K, Veit H, Appleby PG, Geyh M (2002) Moisture changes and fluctuations of the Westerlies in Mediterranean Central Chile during the last 2000 years: the Laguna Aculeo record (33°50′S). Quat Int 87(1):3–18. https://doi.org/10.1016/S1040-6182(01)00058-1

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge Univ Press, Cambridge

    Book  Google Scholar 

  • Le Quesne C, Acuña C, Boninsegna J, Rivera A, Barichivich J (2009) Long-term glacier variations in the Central Andes of Argentina and Chile, inferred from historical records and tree-ring reconstructed precipitation. Palaeogeogr Palaeoclimatol Palaeoecol 281:334–344. https://doi.org/10.1016/j.palaeo.2008.01.039

    Article  Google Scholar 

  • Lo Vecchio Repetto A, Candela M, Falaschi D, Otero F, Videla MA, Lenzano MG, Rivera A (2022) Cambio de área glaciar en el volcán Maipo (Andes Centrales), una aproximación morfométrica: 4 décadas de registros satelitales. Andean Geology: Formerly Revista Geológica De Chile 49(1):55–76. https://doi.org/10.5027/andgeoV49n1-3369

    Article  Google Scholar 

  • Maldonado A, Villagrán C (2006) Climate variability over the last 9900 cal yr BP from a swamp forest pollen record along the semiarid coast of Chile. Quat Res 66(2):246–258. https://doi.org/10.1016/j.yqres.2006.04.003

    Article  Google Scholar 

  • Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett. https://doi.org/10.1029/2003GL017814

    Article  Google Scholar 

  • Markgraf V (1983) Late and postglacial vegetational and paleoclimatic changes in subantartic, temperate, and arid environments in Argentina. Palynology 7:43–63

    Article  Google Scholar 

  • Markgraf V, D’Antoni HL (1978) Pollen flora of Argentina. University of Arizona, Tucson, p 201

    Google Scholar 

  • Markgraf V, Whitlock C, Anderson RS, García A (2009) Late Quaternary vegetation and fire history in the northernmost Nothofagus forest region: Mallín Vaca Lauquen, Neuquén Province, Argentina. J Quat Sci 24(3):248–258. https://doi.org/10.1002/jqs.1233

    Article  Google Scholar 

  • Martel-Cea A, Maldonado A, Grosjean M, Alvial I, de Jong R, Fritz SC, von Gunten L (2016) Late Holocene environmental changes as recorded in the sediments of high Andean Laguna Chepical, Central Chile (32°S; 3050 m a.s.l.). Palaeogeogr Palaeoclimatol Palaeoecol 461:44–54. https://doi.org/10.1016/j.palaeo.2016.08.003

    Article  Google Scholar 

  • Masiokas MH, Villalba R, Luckman BH, Montaña E, Betman E, Christie D, Le Quesne C, Mauget S (2013) Recent and historic Andean snowpack and streamflow variations and vulnerability to water shortages in Central-Western Argentina. In: Pielke RAS (ed) Climate vulnerability. Understanding and addressing threats to essential resources, vol 1. Elsevier, Amsterdam, pp 213–227

    Google Scholar 

  • Méndez E (2011) La vegetación de los altos Andes: El flanco oriental del Cordón del Portillo (Tunuyán, Mendoza, Argentina). Boletín De La Sociedad Argentina De Botánica 46(3–4):317–353

    Google Scholar 

  • Miller A (1976) The Climate of Chile. In: Schwerdtfeger W (ed) Climates of central and South America. Elsevier Scientific Publishing Company, Amsterdam, pp 113–145

    Google Scholar 

  • Modenutti B, Balseiro E, Bastidas Navarro M, Laspoumaderes C, Souza MS, Cuassolo F (2013) Environmental changes affecting light climate in oligotrophic mountain lakes: the deep chlorophyll maxima as a sensitive variable. Aquat Sci 75(3):361–371

    Article  CAS  Google Scholar 

  • Morales MS, Cook ER, Barichivich J, Christie DA, Villalba R, LeQuesne C, Srur AM, Eugenia Ferrero M, González-Reyes Á, Couvreux F, Matskovsky V, Aravena JC, Lara A, Mundo IA, Rojas F, Prieto MR, Smerdon JE, Bianchi LO, Masiokas MH, Boninsegna JA (2020) Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proceedings of the National Academy of Sciences of the United States of America, 117(29):16816-16823. https://doi.org/10.5194/cp-8-653-2012

  • Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420(6912):162–165. https://doi.org/10.1038/naturaleza01194

    Article  CAS  Google Scholar 

  • Nanavati W, Whitlock C, de Porras ME, Gil A, Navarro D, Neme G (2022) Disentangling the last 1000 years of human–environment interactions along the eastern side of the southern Andes (34–52°S lat). Proc Nat Acad Sci 119(9):e2119813119. https://doi.org/10.1073/pnas.2119813119

    Article  CAS  Google Scholar 

  • Navarro D, Rojo L, De Franchesco CG, Hassan GS (2012) Paleoecología y reconstrucciones paleoambientales en Mendoza durante el Holoceno. In: Nemey G, Gil A (eds) Paleoecología humana en el sur de Mendoza: perspectivas arqueológicas. Sociedad Argentina de Antropología, Buenos Aires, pp 17–56

    Google Scholar 

  • Neme G, Gil A (2008) Biogeografía humana en los Andes meridionales: tendencias arqueológicas en el sur de Mendoza. Chungará (arica) 40(1):5–18

    Google Scholar 

  • Oyarzábal M, Clavijo J, Oakley L, Biganzoli F, Tognetti P, Barberis I, Maturo HM, Aragón R, Campanello PI, Prado D, Oesterheld M, León RJC (2018) Unidades de vegetación de la Argentina. Ecol Austral 28(1):40–63. https://doi.org/10.25260/EA.18.28.1.0.399

    Article  Google Scholar 

  • Perucca LP, Moreiras SM (2010) Seismic and volcanic hazard in Argentina. Natural Hazards and Human-Exacerbated Disasters In: Latin-America. Special volume of geomorphology: Developments in Earth surface processes 13. Editor Edgardo Latrubesse. Series Editor J.F. Shroder. Elsevier. First edition pp 267–297

  • Pitte P, Masiokas M, Gargantini H, Ruiz L, Berthier E, Hidalgo LF, Dussaillant I, Viale M, Zorzut V, Corvalán E, Scarpa JP, Costa G, Villalba R (2022) Recent mass-balance changes of Agua Negra glacier (30°S) in the Desert Andes of Argentina. J Glaciol 68(272):1197-1209. https://doi.org/10.1017/jog.2022.22

  • R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical. Vienna, Computing. https://www.R-project.org/. (Viena).

  • Rein B, Lückge A, Reinhardt L, Siroko F, Wolf A, Dullo WC (2005) El Niño variability off Peru during the last 20,000 years. Palaeoceanography 20:1–17. https://doi.org/10.1029/2004PA001099

    Article  Google Scholar 

  • Rivera JA, Otta S, Lauro C, Zazulie N (2021) A decade of hydrological drought in central-western Argentina. Front Water 3:640544. https://doi.org/10.3389/frwa.2021.640544

    Article  Google Scholar 

  • Rojo LD, Mehl AE, Pietrelli M, Durán V, Barberena R (2022) Mid-to late holocene environmental evolution of a high mountain wetland in the subtropical Andes cordillera of Argentina. Wetlands 42(4):1–14. https://doi.org/10.1007/s13157-022-01549-3

    Article  Google Scholar 

  • Rosenblüth B, Fuenzalida HA, Aceituno P (1997) Recent temperature variations in southern South America. Int J Climatol 17:67–85

    Article  Google Scholar 

  • Rovere EI, Violante RA, Rodriguez E, Osella A, De la Vega M (2012) Aspectos tefrológicos de la erupción del volcán Quizapú de 1932 en la región de la laguna Llancanelo, Payenia (Mendoza, Argentina). Latin Am J Sedimentol Basin Anal 19(2):105–124

    Google Scholar 

  • Srur A (2002) Condiciones paleoambientales durante el Holoceno tardío en la Precordillera (Mendoza). Universidad Nacional de Mar del Plata, Mar del Plata

    Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Stuiver M, Reimer PJ, Reimer RW (2020) CALIB. 8.0.1. http://calib.org

  • Sugrañes N (2011) Tecnología cerámica y estrategias de movilidad entre cazadores-recolectores de altura: El caso del sitio Valle Hermoso 1 (Malargüe, Mendoza). Intersecc. En Antropol 12(2):293–304

    Google Scholar 

  • Sugrañes N, Acevedo A, Bonnat F, Tucker H, Salgán ML, Fiore D, Gil A, Neme G (2021) Ocupaciones humanas de altura en el extremo Sur Andino. Evidencias arqueológicas de Valle Hermoso (Malargüe, Argentina). Revista del Museo de Antropología 14(3):31–46. https://doi.org/10.31048/1852.4826.v14.n3.32062

  • Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Tank AK, Zhai P (2007) Observations: surface and atmospheric climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the 4th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Viale M, Bianchi E, Cara L, Ruiz LE, Villalba R, Pitte P, Masiokas M, Rivera J, Zalazar L (2019) Contrasting climates at both sides of the Andes in Argentina and Chile. Front Environ Sci 7(69):1–15. https://doi.org/10.3389/fenvs.2019.00069

    Article  Google Scholar 

  • Villa-Martínez R, Villagrán C, Jenny B (2003) The last 7500 cal yr BP of westerly rainfall in Central Chile inferred from a high-resolution pollen record from Laguna Aculeo (34°S). Quat Res 60:284–293. https://doi.org/10.1016/j.yqres.2003.07.007

    Article  Google Scholar 

  • von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, central Chile, back to AD 850. Holocene 19(6):873–881

    Article  Google Scholar 

  • Wingenroth M, Heusser C (1984) Polen en la Alta Cordillera Quebrada Benjamín Matienzo Mendoza Argentina. IANIGLA (ed.) CRICYT, Mendoza, p 195

Download references

Acknowledgements

We thank the Company Valle de Las Leñas S.A. for allowing us to work in Valle Hermoso, especially the efforts of geologist Luis Ballarini. We also thank the Hospital Universitario of the Universidad Nacional de Cuyo (UNCuyo) for the X-ray images of the sediment cores. This study was financed by projects FONDECYT #1180413 (to AM; MEdP), REDES 180099 (to AM) and PIP 0784 (to RB; MEdP), and forms part of the thesis of EIC, financed by a scholarship of the Secretaría de Investigación, Internacionales y Posgrado SIIP 2019-06/A711 (UNCuyo), directed by SMM.

Funding

Fondo Nacional de Desarrollo Científico y Tecnológico, FONDECYT #1180413 (to AM and MEdP) Consejo Nacional de Investigaciones Científicas y Técnicas, PIP 0784 (to RB and MEdP). Agencia Nacional de Investigación y Desarrollo, REDES 180099 (to AM).

Author information

Authors and Affiliations

Authors

Contributions

EIC processed the pollen samples and analyzed the pollen data, wrote and edited the manuscript with contributions from all coauthors. MEdP designed the study, retrieved the cores, obtained the funding, performed the lithological description, X rays and LOI of the sedimentary record, wrote and edited the manuscript. AM designed the study, retrieved the cores, obtained the funding, performed the lithological description of the sedimentary record and edited the manuscript. SMM retrieved the cores and edited the manuscript. RB obtained the funding and edited the manuscript.

Corresponding author

Correspondence to E. I. Cavagna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

I declare that the authors have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavagna, E.I., de Porras, M.E., Maldonado, A. et al. Paleoenvironmental and paleoclimatic dynamics of the Subtropical Andes of Argentina (35° S) during the last 3000 years. J Paleolimnol (2024). https://doi.org/10.1007/s10933-023-00310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10933-023-00310-y

Keywords

Navigation