Skip to main content
Log in

A new insight to the effect of calcium concentration on gelation process and physical properties of alginate films

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of alginate films were prepared using constant alginate content (2 % w/v) with various calcium chloride (CaCl2) concentrations in the crosslinking solution (0.375–6 % w/v). Then, the initial investigation of how the CaCl2 concentration affected the gelation process and physical properties of alginate films was established. A combination of Fourier transform infrared spectroscopy, swelling test, inductively coupled plasma optical emission spectrometer, and energy-dispersive spectroscopy analysis showed that the gelation process of alginate films evolved with the increase of CaCl2 concentration, which resulted in different crosslinking density and entanglement of alginate molecular chains. Moreover, the increase of CaCl2 concentration improved the visual appearance, surface homogeneity, and tensile strength, while the elongation at break and swelling capacity of the film were decreased monotonously. As a compromise between film strength and flexibility, performing effective absorption capability as well as the product appearance, the concentration of 1.5 % w/v CaCl2 in the crosslinking step was recommended. These various physical properties of obtained alginate films could be attributed to the shaped crosslinking density and molecular entanglement characteristics during crosslinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Dumitriu RP, Mitchell GR, Vasile C (2011) Multi-responsive hydrogels based on N-isopropylacrylamide and sodium alginate. Polym Int 60:222. doi:10.1002/pi.2929

    Article  Google Scholar 

  2. Ali G, Rihouey C, Vr Larreta-Garde, Le Cerf D, Picton L (2013) Molecular size characterization and kinetics studies on hydrolysis of pullulan by pullulanase in an entangled alginate medium. Biomacromolecules 14:2234. doi:10.1021/bm400371r

    Article  Google Scholar 

  3. Benykhlef S, Dulong V, Bengharez Z, Picton L, Guemra K, Le Cerf D (2012) Alginate grafted with poly (ε-caprolactone): effect of enzymatic degradation on physicochemical properties. Polym Int 61:1456. doi:10.1002/pi.4232

    Article  Google Scholar 

  4. Pankongadisak P, Ruktanonchai UR, Supaphol P, Suwantong O (2014) Preparation and characterization of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds. AAPS PharmSciTech 15:1105. doi:10.1208/s12249-014-0140-9

    Article  Google Scholar 

  5. Pankongadisak P, Ruktanonchai UR, Supaphol P, Suwantong O (2015) Development of silver nanoparticles-loaded calcium alginate beads embedded in gelatin scaffolds for use as wound dressings. Polym Int 64:275. doi:10.1002/pi.4787

    Article  Google Scholar 

  6. Ichiura H, Konishi T, Morikawa M (2009) Alginate film prepared on polyethylene nonwoven sheet and its function for ellagic acid release in response to sodium ions. J Mater Sci 44:992. doi:10.1007/s10853-008-3220-y

    Article  Google Scholar 

  7. Petrusic S, Jovancic P, Lewandowski M et al (2013) Properties and drug release profile of poly(N-isopropylacrylamide) microgels functionalized with maleic anhydride and alginate. J Mater Sci 48:7935. doi:10.1007/s10853-013-7604-2

    Article  Google Scholar 

  8. Shi G, Che Y, Zhou Y, Bai X, Ni C (2015) Synthesis of polyglycolic acid grafting from sodium alginate through direct polycondensation and its application as drug carrier. J Mater Sci 50:7835. doi:10.1007/s10853-015-9363-8

    Article  Google Scholar 

  9. Ozhukil Kollath V, Chen Q, Mullens S et al (2015) Electrophoretic deposition of hydroxyapatite and hydroxyapatite–alginate on rapid prototyped 3D Ti6Al4 V scaffolds. J Mater Sci 51:2338. doi:10.1007/s10853-015-9543-6

    Article  Google Scholar 

  10. Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269. doi:10.1016/j.ijbiomac.2014.07.008

    Article  Google Scholar 

  11. Liu Y, Zhao J-C, Zhang C-J, Guo Y, Zhu P, Wang D-Y (2015) Effect of manganese and cobalt ions on flame retardancy and thermal degradation of bio-based alginate films. J Mater Sci 51:1052. doi:10.1007/s10853-015-9435-9

    Article  Google Scholar 

  12. Wang J, Wei J, Su S, Qiu J, Wang S (2015) Ion-linked double-network hydrogel with high toughness and stiffness. J Mater Sci 50:5458. doi:10.1007/s10853-015-9091-0

    Article  Google Scholar 

  13. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106. doi:10.1016/j.progpolymsci.2011.06.003

    Article  Google Scholar 

  14. Morgan D (1997) Alginate dressings: part 1: historical aspects. J Tissue Viability 7:4. doi:10.1016/S0965-206X(97)80014-9

    Article  Google Scholar 

  15. Morgan D (1997) Alginate dressings: part 2: product guide. J Tissue Viability 7:9. doi:10.1016/S0965-206X(97)80015-0

    Article  Google Scholar 

  16. Qin Y (2008) Alginate fibres: an overview of the production processes and applications in wound management. Polym Int 57:171. doi:10.1002/pi.2296

    Article  Google Scholar 

  17. Qin Y (2005) Silver-containing alginate fibres and dressings. Int Wound J 2:172. doi:10.1111/j.1742-4801.2005.00101.x

    Article  Google Scholar 

  18. Cuadros TR, Skurtys O, Aguilera JM (2012) Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydr Polym 89:1198. doi:10.1016/j.carbpol.2012.03.094

    Article  Google Scholar 

  19. Akin Evingür G, Kaygusuz H, Bedia Erim F, Pekcan Ö (2014) Effect of calcium Ion concentration on small molecule desorption from alginate beads. J Macromol Sci Part B Phys 53:1157. doi:10.1080/00222348.2014.895625

    Article  Google Scholar 

  20. Xin Y, Bligh MW, Kinsela AS, Wang Y, Waite TD (2015) Calcium-mediated polysaccharide gel formation and breakage: impact on membrane foulant hydraulic properties. J Membr Sci 475:395. doi:10.1016/j.memsci.2014.10.033

    Article  Google Scholar 

  21. Crossingham YJ, Kerr PG, Kennedy RA (2014) Comparison of selected physico-chemical properties of calcium alginate films prepared by two different methods Int. J Pharm 473:259. doi:10.1016/j.ijpharm.2014.06.043

    Google Scholar 

  22. Chan LW, Lee HY, Heng PW (2006) Mechanisms of external and internal gelation and their impact on the functions of alginate as a coat and delivery system. Carbohydr Polym 63:176. doi:10.1016/j.carbpol.2005.07.033

    Article  Google Scholar 

  23. Li J, He J, Huang Y, Li D, Chen X (2015) Improving surface and mechanical properties of alginate films by using ethanol as a co-solvent during external gelation. Carbohydr Polym 123:208. doi:10.1016/j.carbpol.2015.01.040

    Article  Google Scholar 

  24. Jana S, Samanta A, Nayak AK, Sen KK, Jana S (2015) Novel alginate hydrogel core–shell systems for combination delivery of ranitidine HCl and aceclofenac. Int J Biol Macromol 74:85. doi:10.1016/j.ijbiomac.2014.11.027

    Article  Google Scholar 

  25. Pongjanyakul T, Puttipipatkhachorn S (2007) Xanthan–alginate composite gel beads: molecular interaction and in vitro characterization. Int J Pharm 331:61. doi:10.1016/j.ijpharm.2006.09.011

    Article  Google Scholar 

  26. Cho AR, Chun YG, Kim BK, Park DJ (2014) Preparation of alginate–CaCl2 microspheres as resveratrol carriers. J Mater Sci 49:4612. doi:10.1007/s10853-014-8163-x

    Article  Google Scholar 

  27. Sartori C, Finch DS, Ralph B, Gilding K (1997) Determination of the cation content of alginate thin films by FTi. r. spectroscopy. Polymer 38:43. doi:10.1016/S0032-3861(96)00458-2

    Article  Google Scholar 

  28. Pongjanyakul T (2009) Alginate–magnesium aluminum silicate films: importance of alginate block structures. Int J Pharm 365:100. doi:10.1016/j.ijpharm.2008.08.025

    Article  Google Scholar 

  29. Pavlath A, Gossett C, Camirand W, Robertson G (1999) Ionomeric films of alginic acid. J Food Sci 64:61. doi:10.1111/j.1365-2621.1999.tb09861.x

    Article  Google Scholar 

  30. Rhim J-W (2004) Physical and mechanical properties of water resistant sodium alginate films. LWT Food Sci Technol 37:323. doi:10.1016/j.lwt.2003.09.008

    Article  Google Scholar 

  31. Goh CH, Heng PWS, Chan LW (2012) Cross-linker and non-gelling Na + effects on multi-functional alginate dressings. Carbohydr Polym 87:1796. doi:10.1016/j.carbpol.2011.09.097

    Article  Google Scholar 

  32. Khuathan N, Pongjanyakul T (2014) Modification of quaternary polymethacrylate films using sodium alginate: film characterization and drug permeability. Int J Pharm 460:63. doi:10.1016/j.ijpharm.2013.10.050

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Weihai Science and Technology Development Plan Project (2013GNS028) and Shandong Province Postdoctoral Foundation (201101003). Experiments were conducted at the National Engineering Laboratory, WeGo Group Co., Ltd, Weihai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinmei He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, Y., He, J. et al. A new insight to the effect of calcium concentration on gelation process and physical properties of alginate films. J Mater Sci 51, 5791–5801 (2016). https://doi.org/10.1007/s10853-016-9880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9880-0

Keywords

Navigation