Skip to main content
Log in

Genome size estimations in Chrysanthemum and correlations with molecular phylogenies

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

A wide range of ploidy variation exists among native Chinese Chrysanthemum germplasm. This study examined the evolution of genome size, Cx value, and chromosome number in Chinese Chrysanthemum within a phylogenetic context. The genome size of 15 species belonging to Chrysanthemum and three related genera was determined using flow cytometry. Nuclear ribosomal ITS and chloroplast trnL-F intergenic spacer sequence were used to construct molecular phylogenetic trees. Genome size values among the 15 species divide into three discrete groups, which positively correlate with three ploidy levels. We found significantly and negatively correlated 1Cx values to ploidy levels in all 15 species and a genome downsizing after polyploidization effect in Chrysanthemum. Two major phylogenetic clade, the C. indicum group and the C. zawadskii + Ajania group, possess significant differences in genome size and 1Cx values. The genome size and 1Cx values in the C. indicum group were significantly lower than in the C. zawadskii group, even though both have same ploidy level, and significant latitude and morphology correlations can be inferred. Diploid Chrysanthemum species similar in 1Cx values to C. indicum (Mt.Tianzhu) and C. indicum (Fujian) indicate that some populations of tetraploid C. indicum originated by autoploidy. We deduced that C. chanetii is a relatively young species, C. vestitum relative ancient and that the divergence between Chrysanthemum and Ajania may have been relatively recent, presumably the same divergence as created C. zawadskii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Syst Evol 257:95–117

    Article  CAS  Google Scholar 

  • Bayer RJ, Cross EW (2003) A reassessment of tribal affinities of Cratystylis and Haegiela (Asteraceae) based on three chloroplast DNA sequences. Plant Syst Evol 236:207–220

    Article  CAS  Google Scholar 

  • Bayer RJ, Starr JR (1998) Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the trnL intron and trnL/trnF intergenic spacer. Ann Mo Bot Gard 85:242–256

    Article  Google Scholar 

  • Bennert HW et al (2011) Flow cytometry confirms reticulate evolution and reveals triploidy in central European Diphasiastrum taxa (Lycopodiaceae, Lycophyta). Ann Bot London 108:867–876

    Article  CAS  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  CAS  PubMed  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot London 95:127–132

    Article  CAS  Google Scholar 

  • Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW patagonian species of Berberis L. (Berberidaceae). Ann Bot London 86:565–573

    Article  CAS  Google Scholar 

  • Bremer K, Humphries CJ (1993) Generic monograph of the Asteraceae-Anthemideae. B Nat Hist Mus Bot 23:71–177

    Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernez S, Eguiarte LE, Tenaillon MI (2013) Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytol 199:264–276

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot London 95:99–110

    Article  CAS  Google Scholar 

  • Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot London 82:17–26

    Google Scholar 

  • Dowrick GJ (1953) The chromosomes of Chrysanthemum. Heredity 7:59–72

    Article  Google Scholar 

  • Du B, Liu Q, Zhu C, Ke S (1989) Karyotype studies of two species on Dendranthema. J Wuhan Bot Res 3:293–296

    Google Scholar 

  • Fukai S, Zhang W, Goi M (1998) Some Dendranthema species native to Japan. Acta Hortic 454:85–90

    Article  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot London 95:91–98

    Article  CAS  Google Scholar 

  • Huien Z, Wang X, Chen J, Deyuan H (2003) The origin of garden chrysanthemums and molecular phylogeny of Dendranthema in China based on nucleotide sequences of nrDNA ITS, trnT-trnL and trnL-trnF intergenic spacer regions in cpDNA. Mol Plant Breed 1:597–604

    Google Scholar 

  • Jr CJ, Zahradnícek J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot London 104:161–178

    Article  Google Scholar 

  • Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91:1709–1725

    Article  CAS  PubMed  Google Scholar 

  • Lassner MW, Peterson P, Yoder JI (1989) Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7:116–128

    Article  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants: genome downsizing in polyploids. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Leong-Skornicková J, Sída O, Jarolímová V, Sabu M, Fér T, Trávnícek P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot-London 100:197–209

    Article  Google Scholar 

  • Li D, Zhao P (1998) Study on the karyotype of Dendranthema vestitum (Hemsl.) Ling. J Anhui Agr Coll 25(4):433–438

    Google Scholar 

  • Li M, Zhang X, Chen J (1983) Cytological studies on some chinese wild Dendranthema species and Chrysanthemum cultivars. Acta Hortic Sin 10:199–206

    Google Scholar 

  • Li J, Wan Q, Abbott RJ, Rao G-Y (2013) Geographical distribution of cytotypes in the Chrysanthemum indicum complex as evidenced by ploidy level and genome-size variation. J Syst Evol 51:196–204

    Article  Google Scholar 

  • Li J, Wan Q, Guo YP, Abbott RJ, Rao GY (2014) Should I stay or should I go: biogeographic and evolutionary history of a polyploid complex (Chrysanthemum indicum complex) in response to pleistocene climate change in China. New Phytol 201:1031–1044

    Article  CAS  PubMed  Google Scholar 

  • Lin YR, Shi Z, Humphries CJ, Gilbert MG (2011) Anthemideae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, vol 20–21 (Asteraceae). Sci Press/Miss Bot Gard Press, Beijing/St Louis, pp 653–733

    Google Scholar 

  • Liu PL, Wan Q, Guo YP, Yang J, Rao GY (2012) Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences. PLoS ONE 7(11):4237–4243

    Google Scholar 

  • Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberprieler C (2002) A phylogenetic analysis of Chamaemelum Mill. (Compositae: Anthemidae) and related genera based upon nrDNA ITS and cpDNA trnL/trnF IGS sequence variation. Bot J Linn Soc 138:255–273

    Article  Google Scholar 

  • Oberprieler C, Vogt R (2000) The position of Castrilanthemum Vogt & Oberprieler and the phylogeny of Mediterranean Anthemideae (Compositae) as inferred from nrDNA ITS and cpDNA trn L/trn F IGS sequence variation. Plant Syst Evol 225:145–170

    Article  CAS  Google Scholar 

  • Oberprieler C, Vogt R (2007) A new subtribal classification of the tribe Anthemideae (Compositae). Willdenowia 37:89–114

    Article  Google Scholar 

  • Ohri D, Khoshoo TN (1986) Genome size in gymnosperms. Plant Syst Evol 153:119–132

    Article  Google Scholar 

  • Pellicer J, Leitch IJ (2014) The application of flow cytometry for estimating genome size and ploidy level in plants. In: Methods in Molecular Biology, vol 1115. Humana Press, Clifton NJ, pp 279–307

    Google Scholar 

  • Petrov DA (2002) DNA loss and evolution of genome size in Drosophila. Genetica 115:81–91

    Article  CAS  PubMed  Google Scholar 

  • Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to different altitudes. Theor Appl Genet 79(4):470–474

    Article  CAS  PubMed  Google Scholar 

  • Reeves G, Francis D, Davies MS, Rogers HJ, Hodkinson TR (1998) Genome size is negatively correlated with altitude in natural populations of Dactylis glomerata. Ann Bot-London 82:99–105

    Article  Google Scholar 

  • Sanz M, Vallès J (2008) Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences. Taxon 57:66–78

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veselý P, Bureš P, Šmarda P, Pavlíček T (2012) Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Ann Bot London 109:65–75

    Article  Google Scholar 

  • Wagstaff SJ, Breitwieser I (2002) Phylogenetic relationships of New Zealand Asteraceae inferred from ITS sequences. Plant Syst Evol 231:203–224

    Article  CAS  Google Scholar 

  • Wang JW (1991) Karyotypical study of five species of chinese Dendranthema. Acta Bot Yunnan 4:411–416

    Google Scholar 

  • Wang X, Li M (1987) Observation of chromosomes on 10 Compositae species. J Wuhan Bot Res 2:111–117

    Google Scholar 

  • Watson LE, Bates PL, Evans TM, Unwin MM, Estes JR (2002) Molecular phylogeny of subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. BMC Evol Biol 2(2):17

    Article  PubMed  PubMed Central  Google Scholar 

  • Weiss-schneeweiss H, Greilhuber J, Schneeweiss GM (2006) Genome size evolution in holoparasitic Orobanche (Orobanchaceae) and related genera. Am J Bot 93:148–156

    Article  CAS  Google Scholar 

  • White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA enes for phylogenetics. Pcr Protoc 38:315–322

    Google Scholar 

  • Yang W, Glover BJ, Rao GY, Yang J (2006) Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytol 171:875–886

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Yukawa T, Kondo K (2009) Molecular phylogenetic analysis of members of Chrysanthemum and its related genera in the tribe anthemideae, the asteraceae in East Asia on the basis of the internal transcribed spacer (ITS) region and the external transcribed spacer (ETS) region of nrDNA. Chromosome Bot 4:25–36

    Article  Google Scholar 

  • Zhao HB, Chen FD, Chen SM, Wu GS, Guo WM (2010) Molecular phylogeny of Chrysanthemum, Ajania and its allies (Anthemideae, Asteraceae) as inferred from nuclear ribosomal ITS and chloroplast trn L-F IGS sequences. Plant Syst Evol 284:153–169

    Article  CAS  Google Scholar 

  • Zhou C (2002) AFLP analysis of some Dendranthema spp. J Beijing For Univ Z1:72–76

    Google Scholar 

  • Zhou S, Wang J (1997) The cytologic study on ten species of Endranthema. J Wuhan Bot Res 15:289–292

    Google Scholar 

  • Zhou S, Zang D, Zhao L (1996) A new combination variety of Dendranthema. B Bot Res 16:296–297

    Google Scholar 

Download references

Acknowledgments

This research was mainly supported by The Project of Science and Technology of Beijing Academy of Agriculture and Forestry Sciences (KJCX20140109, KJCX20140202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conglin Huang.

Ethics declarations

Conflict of interest

The authors state no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, C., Chen, D., Cheng, X. et al. Genome size estimations in Chrysanthemum and correlations with molecular phylogenies. Genet Resour Crop Evol 64, 1451–1463 (2017). https://doi.org/10.1007/s10722-016-0448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-016-0448-2

Keywords

Navigation