Skip to main content

Advertisement

Log in

The complete chloroplast genome of two Firmiana species and comparative analysis with other related species

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Firmiana is a small genus within the subfamily Sterculioideae of the Malvaceae. There are nine Firmiana species distributed in South and South-west China, most of which are endangered. Due to the shortage of plastid genomes data, the phylogenetic relationships and the evolutionary history of this genus remain unclear. Therefore, the complete chloroplast genomes of F. calcarean and F. hainanensis were sequenced using high-throughput sequencing and then compared with the chloroplast genomes of other reported Firmiana species. The genome size of F. calcarean and F. hainanensis is 161,263 and 160,031 bp long, respectively, containing a total of 131 genes (including 85 protein coding genes, 37 tRNAs, 8 rRNAs, and one pseudogene). Comparative analysis revealed that the genome structure, GC content, gene content and order, as well as the RNA editing sites within the chloroplast genomes of F. calcarean and F. hainanensis were similar to previously reported Firmiana species. ML phylogenetic analysis revealed that F. danxiaensis, F. hainanensis, F. calcarean, F. simplex, and F. major form a sister group to F. colorata, F. pulcherrima, and F. kwangsiensis. The SSRs, long repeats, and 21 highly divergent regions (Pi > 0.01) identified in this study might provide potential DNA markers for further population genetics and phylogenetic studies of Firmiana. Our findings can help design new species-specific molecular markers and the general framework to further explore the evolutionary history of Firmiana and to address their conservation challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdullah SI, Mehmood F, Ali Z, Malik MS, Waseem S, Mirza B, Ahmed I, Waheed MT (2019) Comparative analyses of chloroplast genomes among three Firmiana species: Identification of mutational hotspots and phylogenetic relationship with other species of Malvaceae. Plant Gene 19:100199

    Article  CAS  Google Scholar 

  • Acemel RD, Tena JJ, Irastorza-Azcarate I, Marlétaz F, Gómez-Marín C, de la Calle-Mustienes E, Bertrand S, Diaz SG, Aldea D, Aury JM, Mangenot S, Holland PWH, Devos DP, Maeso I, Escrivá H, Gómez-Skarmeta JL (2016) A single three-dimensional chromatin compartment in amphioxus indicates a stepwise evolution of vertebrate Hox bimodal regulation. Nat Genet 48:336–341

    Article  CAS  PubMed  Google Scholar 

  • Ajaib M, Wahla SQ, Khan KM (2014) Firmiana simplex: A potential source of antimicrobials. J Chem Soc Pakistan 36:744–753

    CAS  Google Scholar 

  • Amiryousefi A, Hyvönen J, Poczai P (2018) IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34(17):3030–3031

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2014) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  • Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer C, Fay MF, De Bruijn AY, Savolainen V, Morton CM, Kubitzki K, Alverson WS, Chase MW (1999) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Bot J Linn Soc 129:267–303

    Google Scholar 

  • Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: A web server for microsatellite prediction. Bioinformatics 33:2583–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boetzer M, Pirovano W (2012) Toward almost closed genomes with GapFiller. Genome Biol 13:R56

    Article  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (2006) The chloroplast genome of Phalaenopsis Aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23(2):279–291

    Article  CAS  PubMed  Google Scholar 

  • Chen SF, Li MW, Hou RF, Liao WB, Zhou RC, Fan Q (2014) Low genetic diversity and weak population differentiation in Firmiana danxiaensis, a tree species endemic to danxia landform in northern Guangdong, China. Biochem Syst Ecol 55:66–72

    Article  CAS  Google Scholar 

  • Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium×hortorum: Organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Erixon P, Oxelman B (2008) Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS ONE 3:e1386

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan Q, Chen SF, Li MW, He SY, Zhou RC, Liao WB (2013) Development and characterization of microsatellite markers from the transcriptome of Firmiana danxiaensis (Malvaceae s.l.). Appl Plant Sci 1(12):1300047

    Article  Google Scholar 

  • Fan R, Ma W, Liu S, Huang Q (2021) Integrated analysis of three newly sequenced fern chloroplast genomes: Genome structure and comparative analysis. Ecol Evol 11(9):4550–4563

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004) VISTA: computational tools for comparative genomics. Nucleic Acids Res 32:273–279

    Article  Google Scholar 

  • Gao L, Yi X, Yang YX, Su YJ, Wang T (2009) Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol Biol 9:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YS, Wu WH, Xu WB, Liu Y (2011) Firmiana calcarea sp. nov. (Malvaceae) from limestone areas in Guangxi, china. Nord J Bot 29(5):608–610

    Article  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11(1):119–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivanova Z, Sablok G, Daskalova E, Zahmanova G, Apostolova E, Yahubyan G, Baev V (2017) Chloroplast genome analysis of resurrection tertiary relict Haberlea rhodopensis highlights genes important for desiccation stress response. Front Plant Sci 8:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Guisinger MM, Kuehl VJ, Boore LJ, Jansen RK (2011) Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol 28(1):58–600

    Article  Google Scholar 

  • Jiao Y, Jia HM, Li XW, Chai ML, Jia HJ, Chen Z, Wang GY, Chai CY, van de Weg E, Gao ZS (2012) Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genomics 13:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KJ, Lee HL (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res 11:247–261

    Article  CAS  PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution and the world view of the neutralists. Genome 31:24–31

    Article  Google Scholar 

  • Kostermans AJGH (1957) The genus Firmiana Marsili (Sterculiaceae). Reinwartia 4:281–310

    Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laslett D, Canback B (2004) ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res 32:11–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrie DS, Messer PW, Hershberg R, Petrov DA (2013) Strong purifying selection at synonymous sites in D. melanogaster. PLoS Genet. 9:33-40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohse M, Drechsel O, Bock, R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 52:267-274.

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lim SY, Subedi L, Shin D, Kim CS, Lee KR, Kim SY (2017) A new neolignan derivative, balanophonin isolated from Firmiana simplex delays the progress of neuronal cell death by inhibiting microglial activation. Biomol Ther 25:519–527

    Article  CAS  Google Scholar 

  • Lu QF, Huang ZH, Luo WH (2021) Characterization of complete chloroplast genome in Firmiana kwangsiensis and F. danxiaensis with extremely small populations. Biodivers Sci 29:586–595 (in Chinese with English abstract)

    Article  Google Scholar 

  • Lu RS, Li P, Qiu YX (2017) The complete chloroplast genomes of three Cardiocrinum (Liliaceae) species: comparative genomic and phylogenetic analyses. Front Plant Sci 7:2054

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter L, Dubchak I (2000) VISTA: visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16(11):1046–1047

    Article  CAS  PubMed  Google Scholar 

  • Menezes APA, Resende-Moreira LC, Buzatti RSO, Nazareno AG, Carlsen M, Lobo FP, Kalapothakis E, Lovato MB (2018) Chloroplast genomes of Byrsonima species (Malpighiaceae): comparative analysis and screening of high divergence sequences. Sci Rep 8:1–12

    Article  Google Scholar 

  • Mower JP (2009) The PREP suite: predictive RNA editors for plant mitochondrial genes, chloroplast genes and user-defined alignments. Nucleic Acids Res 37:W253–W259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustafina FU, Yi DK, Choi KS, Shin CHT, Komiljon S, Downie SR (2019) A comparative analysis of complete plastid genomes from Prangos fedtschenkoi and Prangos lipskyi (Apiaceae). Ecol Evol 9(7):1–14

    Google Scholar 

  • Nie XJ, Lv SZ, Zhang YX, Du XH, Wang L, Biradar SS, Tan XF, Wan FH, Song WN (2012) Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS ONE 7(5):e36869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nock CJ, Baten A, King GJ (2014) Complete chloroplast genome of Macadamia integrifolia confirms the position of the Gondwanan early-diverging eudicot family Proteaceae. Bmc Genomic 15(Suppl 9):S13

    Article  Google Scholar 

  • Pauwels M, Vekemans X, Godé C, Frérot H, Castric V, Saumitoulaprade P (2012) Nuclear and chloroplast DNA phylogeography reveals vicariance among European populations of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae). New Phytologist 193:916-928

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, McDevitt R, Vendramin G, Rafalski J (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci 92:7759–7763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saina JK, Gichira AW, Li ZZ, Hu GW, Wang QF, Liao K (2018) The complete chloroplast genome sequence of Dodonaea viscosa: Comparative and phylogenetic analyses. Genetica 146:101–113

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94(3):275–288

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens PF (2019) Angiosperm Phylogeny Website. Available online: http://www.mobot.org/MOBOT/research/APweb/ (accessed on 23 August 2019)

  • Sugiura M (1992) The chloroplast genome. 10 Years Plant Mol Bio 1:149–168

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94(3):302–312

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Cai YC, Zhao KK, Zhu ZX, Zhou RC, Wang HF (2018) Characterization of the complete chloroplast genome sequence of Firmiana pulcherrima (Malvaceae). Conserv Genet Resour 10:445–448

    Article  Google Scholar 

  • Wang JH, Moore MJ, Wang HX, Zhu ZX, Wang HF (2021) Plastome evolution and phylogenetic relationships among Malvaceae subfamilies.Gene145103

  • Wang NJ, Chen SF, Xie L, Wang L, Feng YY, Lv J, Fan YM, Ding H (2022) The complete chloroplast genomes of three Hamamelidaceae species: Comparative and phylogenetic analyses. Ecol Evol 12(2):e8637

    Article  PubMed  PubMed Central  Google Scholar 

  • Weng ML, Blazier JC, Govindu M, Jansen RK (2014) Reconstruction of the ancestral plastid genome in Geraniaceae reveals a correlation between genome rearrangements, repeats, and nucleotide substitution rates. Mol Biol Evol 31(3):645–659

    Article  CAS  PubMed  Google Scholar 

  • Wilkie P, Clark A, Pennington RT, Cheek M, Wilkie P, Clark A, Pennington RT, Cheek M, Bayer C, Wilcock CC, Edinburgh G, Row I, Eh E (2006) Phylogenetic relationships within the subfamily Sterculioideae (Malvaceae / Sterculiaceae-Sterculieae) using the chloroplast gene ndhF. Syst Bot 31:160–170

    Article  Google Scholar 

  • Woo KW, Choi SU, Kim KH, Lee KR (2015) Ursane saponins from the stems of Firmiana simplex and their cytotoxic activity. J Brazilian Chem Soc 26:1450–1456

    CAS  Google Scholar 

  • Wu ST, Zhu ZW, Fu LM, Niu BF, Li WZ (2011) WebMGA: A customizable web server for fast metagenomic sequence analysis. BMC Genomics 12:444

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie XN, Huang R, Li F, Tian EW, Li C, Chao Z (2021) Phylogenetic position of Bupleurum sikangense inferred from the complete chloroplast genome sequence. Gene 145801

  • Xiong YL, Xiong Y, He J, Yu QQ, Zhao JM, Lei X, Dong ZX, Yang J, Peng Y, Zhang XQ, Ma X (2020) The complete chloroplast genome of two important annual clover species, Trifolium alexandrinum and T. resupinatum: genome structure, comparative analyses and phylogenetic relationships with relatives in Leguminosae. Plants 9(4):478

  • Xu C, Dong WP, Li WQ, Lu YZ, Xie XM, Jin XB, Shi JP, He KH, Suo ZL (2017) Comparative analysis of six Lagerstroemia complete chloroplast genomes. Front Plant Sci 8:15

    PubMed  PubMed Central  Google Scholar 

  • Ya JD, Yu ZX, Yang YQ, Zhang SD, Zhang ZR, Cai J, Yang JB, Yu WB (2018) Complete chloroplast genome of Firmiana major (Malvaceae), a critically endangered species endemic to southwest China. Conserv Genet Resour 10:713–715

    Article  Google Scholar 

  • Yao X, Tan YH, Liu YY, Song Y, Yang JB, Corlett RT (2016) Chloroplast genome structure in Ilex (Aquifoliaceae). Sci Rep 6:28559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang GL, Cai L, Duan JQ, Wang T, Xiang JY (2020) Firmiana daweishanensis sp. nov. (Malvaceae) from Southeast Yunnan, China. Phytotaxa 456(2):215–218

    Article  Google Scholar 

  • Zhang HY, Li C, Miao HM, Xiong SJ (2013) Insights from the complete chloroplast genome into the evolution of Sesamum indicum L. PLoS ONE 8:e80508

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS (2017) Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. New Phytol 214:1355–1367

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31960083). The authors thank AiMi Academic Services (www.aimieditor.com) for the English language editing and review services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Luo, W. The complete chloroplast genome of two Firmiana species and comparative analysis with other related species. Genetica 150, 395–405 (2022). https://doi.org/10.1007/s10709-022-00169-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-022-00169-3

Keywords

Navigation