Skip to main content

Advertisement

Log in

The danger and indeterminacy of forfeiting perching space of bryophytes from climate shift: a case study for 115 species in China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2022

This article has been updated

Abstract

Identifying the danger and expressing the indeterminacy of forfeiting perching space of species induced by rapid climate warming is crucial for biodiversity risk management under future changes in climate conditions. The scenarios of climate shift named the representative concentration pathways, the categorizing technique with regard to fuzzy-set, and Monte Carlo scheme was employed to survey the indeterminacy and the danger of forfeiting perching space caused by climate warming for 115 bryophytes in China. For the deterministic scenarios of climate shift, the richness of 115 bryophytes improved in several areas in north-eastern China, while it dropped in some areas in southern, eastern, south-eastern, and central China. In addition, for the deterministic scheme of altering climatic state, the count for bryophytes with the proportion of contracting the present areal range as less than 20%, 20–40%, 40–60%, 60–80%, and over 80% was belike 34–38, 19–38, 24–35, 9–19, and 4–9, separately; the count of bryophytes with the ratio of the occupying entire areal range as over 80%, 60–80%, and less than 20% was roughly 97–109, 4–14, and 2–8, separately. For the scenarios of randomly change in climate state, the number of bryophytes with a various proportion of forfeiting the present perching space dropped with enhancing the possibility; with the likelihood beyond 0.6, the count of bryophytes with forfeiting present perching space as less than 20%, 20–40%, 40–60%, 60–80% and high than 80% of the present areal range was approximately 7–14, 2–10, 0–7, 2–9, and 13–20, separately; the number of bryophytes with the ratio of occupying the whole areal range as less than 20%, 20–40%, 40–60%, 60–80%, and over 80% was more or less 1–3, 0–3, 1–5, 1–3, and 38–44, separately. Roughly 48 bryophytes would face the risk of extinction from climate warming, including endemic and non-endemic species. Forfeiting perching space induced by climate warming would cause variations in species composition and the disappearance of some ecological functions associated with these bryophytes. The inconstancy of forfeiting areal range caused by climate warming should be incorporated into the policy-making of conservation bryophytes for adaptation of climate warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The distribution data included national-level distribution data and records, and the sources were the Chinese virtual herbarium database (http://www.cvh.ac.cn/txzwz); Chinese Field Herbarium (http://www.cfh.ac.cn/); Chinese biodiversity Heritage Library(http://www.bhl-china.org/bhl); the Mossy Flora of China (Vol from 1–10); Flora of China (http://foc.eflora.cn/); local- or regional-level distribution data were from census records, investigations or samples of bryophyte species at regional, provincial, district, county, or township levels (See ESM_2). Climate data supplied by the Climate Center of the Chinese Administration of Meteorology.

Code availability

We used the Arc GIS (Vers. 10.3 for Windows, ESRI Corp., 2014) to produce the map of the richness for 115 bryophytes for various scenarios of climate shift. A visual FORTRAN program (Compaq Visual FORTRAN Professional edition 6.5, Compaq Computer Corporation, 2000) was performed to finish all computations.

Change history

References

  • Abramowitz, M., & Stegum, I. (1964). Handbook of mathematical functions. Dover, New York, USA.

  • Akçakaya, H. R., Butchart, S. H., Mace, G. M., Stuart, S. N., & Hilton-Taylor, C. (2006). Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Global Change Biology, 12(11), 2037–2043.

  • Alatalo, J. M., Jägerbrand, A. K., & Molau, U. (2014). Climate change and climatic events: Community, functional and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alpine Botany, 124, 81–91.

    Article  Google Scholar 

  • Alatalo, J. M., Jägerbrand, A. K., & Molau, U. (2015). Testing reliability of short-term responses to predict longer-term responses of bryophytes and lichens to environmental change. Ecological Indicators, 58, 77–85.

    Article  Google Scholar 

  • Alexander, J. M., Chalmandrier, L., Lenoir, J., Burgess, T. I., Essl, F., Haider, S., Kueffer, C., McDougall, K., Milba-u, A., Nuñez, M. A., Pauchard, A., Rabitsch, W., Rew, L. J., Sanders, N. J., & Pellissier, L. (2017). Lags in the response of mountain plant communities to climate change. Global Change Biology, 24, 563–579.

    Article  Google Scholar 

  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: Prevalence, Kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232.

    Article  Google Scholar 

  • Anderson, B., Borgonovo, E., Galeotti, M., & Roson, R. (2014). Uncertainty in climate change modeling: Can global sensitivity analysis be of help? Risk Analysis, 34, 271–293.

    Article  Google Scholar 

  • Araújo, M. B., Anderson, R. P., Márcia Barbosa, A., Beale, C. M., Dormann, C. F., Early, R., Garcia, R. A., Guisan, A., Maiorano, L., Naimi, B., O'Hara, R. B., Zimmermann, N. E., & Rahbek, C. (2019). Standards for distribution models in biodiversity assessments. Science Advances, 5, eaat4858, 1–11.

  • Attorre, F., Abeli, T., Bacchetta, G., Farcomeni, A., Fenu, G., De Sanctis, M., Gargano, D., Peruzzi, L., Montagnani, C., Rossi, G., Conti, F., & Orsenigo, S. (2018). How to include the impact of climate change in the extinction risk assessment of policy plant species? Journal for Nature Conservation, 44, 43–49.

    Article  Google Scholar 

  • Aubin, I., Munson, A. D., Cardou, F., Burton, P. J., Isabel, N., Pedlar, J. H., Paquette, A., Taylor, A. R., Delagrange, S., Kebli, H., Messier, C., Shipley, B., Valladares, F., Kattge, J., Boisvert-Marsh, L., & McKenney, D. (2016). Traits to stay, traits to move: A review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Research, 24, 164–186.

    Google Scholar 

  • Austin, M. P., & Van Niel, K. P. (2011). Improving species distribution models for climate change studies: Variable selection and scale. Journal of Biogeography, 38, 1–8.

    Article  Google Scholar 

  • Aven, T., & Renn, O. (2015). An evaluation of the treatment of risk and uncertainties in the IPCC reports on climate change. Risk Analysis, 35, 701–712.

    Article  Google Scholar 

  • Baker, D. J., Hartley, A. J., Butchart, S. H. M., & Willis, S. G. (2016). Choice of baseline climate data impacts projected species’ responses to climate change. Global Change Biology, 22, 2392–2404.

    Article  Google Scholar 

  • Bates, J. W., Thompson, K., & Grime, J. P. (2005). Effects of simulated long-term climatic change on the bryophytes of a limestone grassland community. Global Change Biology, 11, 757–769.

    Article  Google Scholar 

  • Beaumont, L. J., Hughes, L., & Pitman, A. J. (2008). Why is the choice of future climate scenarios for species distribution modelling important? Ecology Letters, 11, 1135–1146.

    Article  Google Scholar 

  • Becker Scarpitta, A., Bardat, J., Lalanne, A., & Vellend, M. (2017). Long-term community change: Bryophytes are more responsive than vascular plants to nitrogen deposition and warming. Journal of Vegetation Science, 28, 1220–1229.

    Article  Google Scholar 

  • Bergamini, A., Ungricht, S., & Hofmann, H. (2009). An elevational shift of cryophilous bryophytes in the last century-an effect of climate warming? Diversity and Distributions, 15, 871–879.

    Article  Google Scholar 

  • Buisson, L., Thuiller, W., Casajus, N., Lek, S., & Grenouillet, G. (2010). Uncertainty in ensemble forecasting of species distribution. Global Change Biology, 16, 1145–1157.

    Article  Google Scholar 

  • Burgman, M. A., & Fox, J. C. (2003). Bias in species range estimates from minimum convex polygons: Implications for conservation and options for improved planning. Animal Conservation, 6, 19–28.

    Article  Google Scholar 

  • Cai, J. R., Chen, Y. H., Zang, C., Yu, J., & Guo, S. L. (2017). Quantitative analyses on the moss flora of China based on 125 geographical units. Plant Science Journal, 35(2), 207–215.

  • Chen, B. J. (1958). Preliminary report on the ecological community and geographical distribution of bryophytes in China. Journal of Plant Taxonomy, 7(4), 271–293.

  • Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.

    Article  Google Scholar 

  • Cornelissen, J. H. C., Callaghan, T. V., Alatalo, J. M., Michelsen, A., Graglia, E., Hartley, A. E., Hik, D. S., Hobbie, S. E., Press, M. C., Robinson, C. H., Henry, G. H. R., Shaver, G. R., Phoenix, G. K., Gwynn Jones, D., Jonasson, S., Chapin, F. S., III., Molau, U., Neill, C., Lee, J. A., … Aerts, R. (2001). Global change and Arctic ecosystems: Is lichen decline a function of increases in vascular plant biomass? Journal of Ecology, 89, 984–994.

    Article  Google Scholar 

  • De Frenne, P., Lenoir, J., Luoto, M., Scheffers, B. R., Zellweger, F., Aalto, J., Ashcroft, M. B., Christiansen, D. M., Decocq, G., De Pauw, K., Govaert, S., Greiser, C., Gril, E., Hampe, A., Jucker, T., Klinges, D. H., Koelemeijer, I. A., Lembrechts, J. J., Marrec, R., … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27, 2279–2297.

    Article  CAS  Google Scholar 

  • Désamoré, A., Laenen, B., Stech, M., Papp, B., Hedenäs, L., Mateo, R. G., & Vanderpoorten, A. (2012). How do temperate bryophytes face the challenge of a changing environment? Lessons from the past and predictions for the future. Global Change Biology, 18, 2915–2924.

    Article  Google Scholar 

  • Deser, C., Phillips, A., Bourdette, V., & Teng, H. (2012). Uncertainty in climate change projections: The role of internal variability. Climate Dynamics, 38, 527–546.

    Article  Google Scholar 

  • Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Callaghan, T. V., & Van Logtestijn, R. S. P. (2004). Summer warming and increased winter snow cover affect Sphagnum fuscum growth, structure and production in a sub-arctic bog. Global Change Biology, 10, 93–104.

    Article  Google Scholar 

  • Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., Mang, T., Caccianiga, M., Dirnböck, T., Ertl, S., Fischer, A., Lenoir, J., Svenning, J.-C., Psomas, A., Schmatz, R., Silc, U., … Hülber, K. (2012). Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2, 619–622.

    Article  Google Scholar 

  • Dyderski, M. K., Paź, S., Frelich, L. E., & Jagodziński, A. M. (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology, 24, 1150–1163.

    Article  Google Scholar 

  • Edwards, M., & Henry, G. H. (2016). The effects of long-term experimental warming on the structure of three High Arctic plant communities. Journal of Vegetation Science, 27, 904–913.

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., McC, M., Overton, J., … R., Soberón, J., Williams, S., Wisz, M. S., & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.

    Article  Google Scholar 

  • Ellis, C. J. (2019). Interactions of climate and solar irradiance can reverse the bioclimatic response of poikilohydric species: an experimental test for Flavoparmelia caperata. The Bryologist, 98(1), 98–110.

  • Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Bjorkman, A. D., Callaghan, T. V., Collier, L. S., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Fosaa, A. M., Gould, W. A., Grétarsdóttir, J., Harte, J., Hermanutz, L., Hik, D. S., Hofgaard, A., Jarrad, F., Jónsdóttir, I. S., … Wookey, P. A. (2012). Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecology Letters, 15, 164–175.

    Article  Google Scholar 

  • Engler, R., Randin, C. F., Thuiller, W., Dullinger, S., Zimmermann, N. E., Araújo, M. B., Pearman, P. B., Le Lay, G., Piedallu, C., Albert, C. H., Choler, P., Coldea, G., De Lamo, X., Dirnböck, T., Gégout, J. C., Gómez‐García, D., Grytnes, J. A., Heegaard, E., Høistad, F., Nogués‐Bravo, D., Normand, S., Puşcaş, M., Sebastià, M. T., Stanisci, A., Theurillat, J. P., Trivedi, M. R., Vittoz, P., & Guisan, A. (2011). 21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 17, 2330–2341.

  • Ferreira, M. T., Cardoso, P., Borges, P. A. V., Gabriel, R., de Azevedo, E. B., Reis, F., Araújo, M. B., & Elias, R. B. (2016). Effects of climate change on the distribution of indigenous species in oceanic islands (Azores). Climatic Change, 138(3–4), 603–615.

    Article  CAS  Google Scholar 

  • Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/ absence models. Environmental Conservation, 24, 38–49.

    Article  Google Scholar 

  • Fordham, D. A., Resit Akçakaya, H., Araújo, M. B., Elith, J., Keith, D. A., Pearson, R., Auld, T. D., Mellin, C., Morgan, J. W., Regan, T. J., Tozer, M., Watts, M. J., White, M., Wintle, B. A., Yates, C., & Brook, B. W. (2012). Plant extinction risk under climate change: Are forecast range shifts alone a good indicator of species vulnerability to global warming? Global Change Biology, 18, 1357–1371.

    Article  Google Scholar 

  • Frego, K. A. (2007). Bryophytes as potential indicators of forest integrity. Forest Ecology and Management, 242(1), 65–75

  • Fremstad, E., Paal, J., & Mols, T. (2005). Impacts of increased nitrogen supply on Norwegian lichen-rich alpine communities: A 10-year experiment. Journal of Ecology, 93, 471–481.

    Article  CAS  Google Scholar 

  • Füssel, H.-M. (2009). An updated assessment of the risks from climate change based on research published since the IPCC Fourth Assessment Report. Climatic Change, 97(3–4), 469–482.

  • Gao, J., Zhang, X., Zhang, P., & Liu, Y.-H. (2016). Geographical distribution pattern of endemic bryophytes in China. Chinese Journal of Ecology, 35(7), 1691–1696.

  • Geffert, J. L., Frahm, J.-P., Barthlott, W., & Mutke, J. (2013). Global moss diversity: Spatial and taxonomic patterns of species richness. Journal of Bryology, 35, 1–11.

    Article  Google Scholar 

  • Gillingham, K., Nordhaus, W., Anthoff, D., Blanford, G., Bosetti, V., Christensen, P., McJeon, H., & Reilly, J. (2018). Modeling uncertainty in integrated assessment of climate change: A multimodel comparison. Journal of the Association of Environmental and Resource Economists, 5(4), 791–826.

    Article  Google Scholar 

  • Guo, S.-L., & Cao, T. (2001). Relationship between the distribution pattern of surface mites and environmental factors in Changbai Mountain. Chinese Plant Journal, 43(6), 631–643.

  • Harmens, H., Foan, L., Simon, V., & Mills, G. (2013). Terrestrial mosses as biomonitors of atmospheric POPs pollution: A review. Environmental Pollution, 173, 245–254.

    Article  CAS  Google Scholar 

  • He, X., He, K. S., & Hyvönen, J. (2016). Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics, 19, 49–60.

    Article  Google Scholar 

  • Hirzel, A., & Guisan, A. (2002). Which is the optimal sampling strategy for habitat suitability modelling. Ecological Modelling, 157, 331–341.

    Article  Google Scholar 

  • Hodd, R. L., Bourke, D., & Skeffington, M. S. (2014). Projected range contractions of European protected oceanic Montane plant communities: focus on climate change impacts is essential for their future conservation. PLOS ONE, 9, e95147, http://dx.doi.org/10.1371/journal.pone.0095147

  • Hofmeister, J., Hošek, J., Brabec, M., Střalková, R., Mýlová, P., Bouda, M., Pettit, J. L., Rydval, M., & Svoboda, M. (2019). Microclimate edge effect in small fragments of temperate forests in the context of climate change. Forest Ecology and Management, 448, 48–56.

    Article  Google Scholar 

  • Hülber, K., Wessely, J., Gattringer, A., Moser, D., Kuttner, M., Essl, F., Leitner, M., Winkler, M., Ertl, S., Willner, W., Kleinbauer, I., Sauberer, N., Mang, T., Zimmermann, N. E., & Dullinger, S. (2016). Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 22(7), 2608–2619.

    Article  Google Scholar 

  • Inague, G. M., Zwiener, V. P., & Marques, M. C. M. (2021). Climate change threatens the woody plant taxonomic and functional diversities of the Restinga vegetation in Brazil. Perspectives in Ecology and Conservation, 19(1), 53–60.

    Article  Google Scholar 

  • Jia, W, & He, S. (2013a). Chinese Biological Species List - Bryophytes. Science Press, Beijing, China

  • Jia,Y, & He, S. (2013b). Bryophytes-species catalogue of China. vol 1. plants. Science Press, Beijing, China.

  • Jiang, S., Jiang, Z. H., Li, W., & Shen, Y. C. (2017). Evaluation of the extreme temperature and its trend in China Simulated by CMIP5 Models. Climate Change Research, 13(1), 11–24.

  • Jing, L., Lu, J., & Xia, W. (2018). The diversity of bryophytes in the main urban area of Nanjing and its relationship with the environmental factors. Chinese Journal of Applied Ecology, 29(6), 1797–1804.

  • Jones, R. N. (2001). An environmental risk assessment/management framework for climate change impact assessments. Natural Hazards, 23(2–3), 197–230.

  • Klanderud, K. (2005). Climate change effects on species interactions in an alpine plant community. Journal of Ecology, 93, 127–137.

    Article  Google Scholar 

  • Lang, S. I., Cornelissen, J. H. C., Hölzer, A., Ter Braak, C. J. F., Ahrens, M., Callaghan, T. V., & Aerts, R. (2009). Determinants of cryptogam composition and diversity in Sphagnum-dominated peatlands: The importance of temporal, spatial and functional scales. Journal of Ecology, 97, 299–310.

    Article  Google Scholar 

  • Liu, X., Shao, X., Jiang, Y., Sun, Y., & Hu, W. (2010). Study on the relationship between spatial distribution of bryophytes and environment in Beijing. Wuhan Botanical Research, 28(2), 171–178.

  • Liu, Y., Pi, C., & Tian, S. (2015a). Characteristics of ground bryophyte community in the main urban area of Chongqing and its relationship with environmental factors. Chinese Journal of Applied Ecology, 26(10), 3145–3152.

  • Liu, Y., Tian, S., & Pi, C. Y. (2015b). Study on the Bryoflora in nine districts of Chongqing city. Plant Science Journal, 33(2), 176–185.

  • Livensperger, C., Steltzer, H., Darrouzet-Nardi, A., Sullivan, P. F., Wallenstein, M., & Weintraub, M. N. (2019). Experimentally warmer and drier conditions in an Arctic plant community reveal microclimatic controls on senescence. Ecosphere, 10(4), e02677. https://doi.org/10.1002/ecs2.2677

    Article  Google Scholar 

  • Lloret, F., & González-Mancebo, J. M. (2011). Altitudinal distribution patterns of bryophytes in the Canary Islands and vulnerability to climate change. Flora (Jena) , 206(9), 769–781.

  • Löbel, S., Mair, L., Lönnell, N., Schröder, B., & Snäll, T. (2018). Biological traits explain bryophyte species distributions and responses to forest fragmentation and climatic variation. Journal of Ecology, 106, 1700–1713.

    Article  Google Scholar 

  • Loehle, C. (2018). Disequilibrium and relaxation times for species responses to climate change. Ecological Modelling, 384, 23–29.

    Article  Google Scholar 

  • Ma, Y., Li, D., Yu, J., & Guo, S. (2013). Geographical distribution patterns of Macromitrium and Orthotrichum in China and their relationship with climatic factors. Biodiversity Science, 21(2), 177–184.

  • Mastrandrea, M. D., & Schneider, S. H. (2004). Probabilistic integrated assessment of “dangerous” climate change. Science, 304, 571–575.

    Article  CAS  Google Scholar 

  • McDaniel, S. F., & Miller, N. G. (2000). Winter dispersal of bryophyte fragments in the Adironàck Mountains New York. Bryologist, 103, 592–600.

    Article  Google Scholar 

  • MClaughlin, B.C. & Zavaleta, E.S. (2012). Predicting species responses to climate change: Demography and climate microrefugia in California valley oak (Quercus lobata). Global Change Biology, 18, 2301–2312.

    Article  Google Scholar 

  • Medina, N. G., Draper, I., & Lara., F. (2011). Biogeography of mosses and allies: Does size matter? In D. Fontaneto (Ed.), Biogeography of microscopic organisms: Is everything small everywhere? The Systematics Association Special (Vol. 79, pp. 209–233). Cambridge University Press.

    Chapter  Google Scholar 

  • Michel, P., Burritt, D. J., & Lee, W. G. (2011). Bryophytes display allelopathic interactions with tree species in native forest ecosystems. Oikos, 120(8), 1272–1280.

  • Midgley, G., Hannah, L., Millar, D., Rutherford, M., & Powrie, L. (2002). Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Global Ecology and Biogeography, 11, 445–451.

    Article  Google Scholar 

  • Miles, C. J., & Longton, R. E. (1992). Deposition of moss spores in relation to distance from parent gametophytes. Journal of Bryology, 17, 355–368.

    Article  Google Scholar 

  • Miller, N. G., & McDaniel, S. F. (2004). Bryophyte dispersal inferred from colonization of an introduced substratum on Whiteface Mountain New York. American Journal of Botany, 91, 1173–1182.

    Article  Google Scholar 

  • Monserud, R. A., & Leemans, R. (1992). Comparing global vegetation maps with the Kappa statistic. Ecological Modelling, 62, 275–293.

    Article  Google Scholar 

  • Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., Van-Vuuren, D. P., Carter, T. R., Emori, S., Kainuma, M., Kram, T., Meehl, G. A., Mitchell, F. B., Nakicenovic, N., Riahi, K., Smith, S. J., Stouffer, R. J., Th-omson, A. M., Weyant, J. P., & Wilbanks, T. J. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463, 747–756.

    Article  CAS  Google Scholar 

  • Murphy, J. M., Sexton, D. M., Barnett, D. N., Jones, G. S., Webb, M. J., Collins, M., & Stainforth, D. A. (2004). Quantificatin of modeling uncertainties in a large ensemble of climate change simulations. Nature, 430, 768–772.

  • Murray, K. A., Verde Arregoitia, L. D., Davidson, A., Di Marco, M., & Di Fonzo, M. M. I. (2014). Threat to the point:Improving the value of comparative extinction risk analysis for conservation action. Global Change Biology, 20, 483–494.

    Article  Google Scholar 

  • Nascimbene, J., & Spital, D. (2017). Spitale patterns of beta-diversity along elevational gradients inform epiphyte conservation in alpine forests under a climate change scenario. Biological Conservation, 216, 26–32.

    Article  Google Scholar 

  • Nenzén, H. K., & Araújo, M. B. (2011). Choice of threshold alters projections of species range shifts under climate change. Ecological Modelling, 222(18), 3346–3354.

  • Ohlemüller, R., Gritti, E. S., Sykes, M. T., & Thomas, C. D. (2006). Quantifying components of risk for European woody species under climate change. Global Change Biology, 12, 1788–1799.

    Article  Google Scholar 

  • Pacifici, M., Foden, W. B., Visconti, P., Watson, J. E. M., Butchart, S. H. M., Kovacs, K. M., Scheffers, B. R., Hole, D. G., Martin, T. G., Akçakaya, H. R., Corlett, R. T., Huntley, B., Bickford, D., Carr, J. A., Hoffmann, A. A., Midgl-ey, G. F., Pearce-Kelly, P., Pearson, R. G., Williams, S. E., Willis, S. G., Young, B., & Rondinini, C. (2015). Assessing species vulnerability to climate change. Nature Climate Change, 5(3), 215–225.

  • Pardow, A., & Lakatos, M. (2013). Desiccation tolerance and global change: Implications for tropical bryophytes in lowland forests. Biotropica, 45, 27–36.

    Article  Google Scholar 

  • Pasiche-Lisboa, C. J., Belland, R. J., & Piercey-Normore, M. D. (2018). Regeneration responses differ among three boreal mosses after exposure to extreme temperatures. Botany, 96(8), 521–532.

  • Patiño, J., Mateo, R. G., Zanatta, F., Marquet, A., Aranda, S. C., Borges, P. A. V., Dirkse, G., Gabriel, R., Gonzalez-Mancebo, J. M., Guisan, A., Muñoz, J., Sim-Sim, M., & Vanderpoorten, A. (2016). Climate threat on the Macaronesian endemic bryophyte flora. Scientific Reports, 6, 29156.

  • Pearce-Higgins, J. W., Beale, C. M., Oliver, T. H., August, T. A., Carroll, M., Massimino, D., Ockendon, N., Savage, J., Wheatley, C. J., Ausden, M. A., Bradbury, R. B., Duffield, S. J., Macgregor, N. A., McClean, C. J., Morecroft, M. D., Thomas, C. D., Watts, O., Beckmann, B. C., Fox, R., Roy, H. E., Sutton, P. G., Walker, K. J., & Crick, H. Q. P (2017). A national-scale assessment of climate change impacts on species: assessing the balance of risks and opportunities for multiple taxa. Biological Conservation, 213, 124–134.

  • Peter, K., Luise, H., Paul, M., Wheeler, J., & Cranston, B. (2018). Bryophyte community diversities and expected change under a warming climate in contrasting habitats of the Torngat Mountains, Labrador. The Bryologist, 121(2), 174–182.

  • Peters, H., O’Leary, B. C., Hawkins, J. P., & Roberts, C. M. (2015). Identifying species at extinction risk using global models of anthropogenic impact. Global Change Biology, 21, 618–628.

    Article  Google Scholar 

  • Pharo, E. J., & Zartman, C. E. (2007). Bryophytes in a changing landscape: The hierarchical effects of habitat fragmentation on ecological and evolutionary processes. Biological Conservation, 135(3), 315–325.

    Article  Google Scholar 

  • Pidgeon, N. (2012). Climate change risk perception and communication: Addressing a critical moment? Risk Analysis, 32, 951–956.

    Article  Google Scholar 

  • Pittock, A. B., Jones, R. N., & Mitchell, C. D. (2001). Probabilities will help us plan for climate change. Nature, 413, 249.

  • Preston, B. L. (2006). Risk-based reanalysis of the effects of climate change on U.S. cold-water habitat. Climatic Change, 76(1–2), 91–119.

  • Puttick, M. N., Morris, J., Williams, T. A., Cox, C. J., Edwards, D., Kenrick, P., Pressel, S., Wellman, C. H., Schneider, H., Pisani, D., & Donoghue, P. C. J. (2018). The interrelationships of land plants and the nature of the ancestral embryophyte. Current Biology, 28, 1–13.

    Article  CAS  Google Scholar 

  • Reilly, J., Stone, P. H., Forest, C. E., Webster, M. D., Jacoby, H. D., & Prinn, R. G. (2001). Uncertainty and climate change assessments. Science, 293, 430–433.

    Article  CAS  Google Scholar 

  • Ren, Z. J., Li, L., Zhong, B., Guo, M. M., Fu, X., & Zhao, Z. T. (2014). Bryophyte diversity and floristic characteristics of mountain Kunyu, Shandong, China. Plant Science Journal, 32(4), 340–354.

  • Robert, C. P., & Casella, G. (2004). Monte Carlo statistical methods, 2nd ed. Springer-Verlag, Berlin, Heidllberg, New York, U.S.A.

  • Robertson, M. P., Villet, M. H., & Palmer, A. R. (2004). A fuzzy classification technique for predicting species distributions: Applications using invasive alien plants and indigenous insects. Diversity and Distributions, 10, 461–474.

    Article  Google Scholar 

  • Rogora, M., Frate, L., Carranza, M., Freppaz, M., Stanisci, A., Bertani, I., Bottarin, R., Brambilla, A., Canullo, R., C-arbognani, M., Cerrato, C., Chelli, S., Cremonese, E., Cutini, M., DiMusciano, M., Erschbamer, B., Godone, D., Iocchi, M., Isabellon, M., Magnani, A., Mazzola, L., MorradiCella, U., Pauli, H., Petey, M., Petriccione, B., Porro, F., Psenner, R., Rossetti, G., Scotti, A., Sommaruga, R., Tappeiner, U., Theurillat, J-P., Tomaselli, M., Viglietti Viterbi, D.R., Vittoz, P., Winkler, M., & Matteucci, G.(2018).Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Science of the Total Environment, 624, 1429–1442.

  • Shen, T., Corlett, R. T., Song, L., Ma, W., Guo, X., Song, Y., & Wu, Y. (2018a). Vertical gradient in bryophyte diversity and species composition in tropical and subtropical forests in Yunnan, SW China. Journal of Vegetation Science, 29, 1075–1087.

    Google Scholar 

  • Shen, J. C., Zhang, Z. H., & Wang, Z. H. (2018b). The effects of rocky desertification degree on bryophyte diversity and soil chemical properties of crusts. Acta Ecologica Sinica, 38(17), 6043–6054.

  • Simpson, N. P., Mach, K. J., Constable, A., Hess, J., Hogarth, R., Howden, M., Lawrence, J., Lempert, R. J., Muccione, V., Mackey, B., New, M. G., O'Neill, B., Otto F., Pörtner, H.-O., Reisinger, A., Roberts, D., Schmidt, D. N., Seneviratne, S., Strongin, S., van Aalst, M., Totin, E., Trisos, C. H. (2021). A framework for complex climate change risk assessment. One Earth, 2021, 4(4), 489–501.

  • Smith, R. J., & Stark, L. R. (2014). Habitat vs. dispersal constraints on bryophyte diversity in the Mojave Desert, USA. Journal of Arid Environments, 102, 76–81.

  • Snäll, T., & Catford, J. (2018). Biological traits explain bryophyte species distributions and responses to forest fragmentation and climatic variation. Journal of Ecology, 106, 1700–1713.

    Article  Google Scholar 

  • Song, L., Ma, W.-Z., Yao, Y.-L., Liu, W.-Y., Li, S., Chen, K., Lu, H.-Z., Cao, M., Sun, Z.-H., Tan, Z.-H., & Nakamura, A. (2015). Bole bryophyte diversity and distribution patterns along three altitudinal gradients in Yunnan, China. Journal of Vegetation Science, 26, 576–587.

    Article  Google Scholar 

  • Song, L., Liu, W.-Y., & Nadkarni, N. M. (2012). Response of non-vascular epiphytes to simulated climate change in a montane moist evergreen broad-leaved forest in southwest China. Biological Conservation, 152, 127–135.

    Article  Google Scholar 

  • Soudzilovskaia, N. A., Graae, B. J., Douma, J. C., Grau, O., Milbau, A., Shevtsova, A., Wolters, L., & Cornelissen, J. H. C. (2011). How do bryophytes govern generative recruitment of vascular plants? New Phytologist, 190, 1019–1031.

    Article  Google Scholar 

  • Spitale, D. (2016). The interaction between elevational gradient and substratum reveals how bryophytes respond to the climate. Journal of Vegetation Science, 27, 844–853.

    Article  Google Scholar 

  • Stanton, J. C., Shoemaker, K. T., Pearson, R. G., & Akçakaya, H. R. (2015). Warning times for species extinctions due to climate change. Global Change Biology, 21, 1066–1077.

    Article  Google Scholar 

  • Steen, V., Sofaer, H. R., Skagen, S. K., Ray, A. J., & Noon, B. R. (2017). Projecting species’ vulnerability to climate change: Which uncertainty sources matter most and extrapolate best? Ecology and Evolution, 7, 8841–8851.

    Article  Google Scholar 

  • Stoneburner, A., Lane, D. M., & Anderson, L. E. (1992). Spore dispersal distances in Atrichum angustatum Polytrichaceae. Bryologist, 95, 324–328.

    Article  Google Scholar 

  • Suggitt, A. J., Gillingham, P. K., Hill, J. K., Huntley, B., Kunin, W. E., Roy, D. B., & Thomas, C. D. (2011). Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos, 120, 1–8.

    Article  Google Scholar 

  • Sun, S. Q., Wang, G. X., Chang, S. X., Bhatti, J. S., Tian, W., & Luo, J. (2016). Warming and nitrogen addition effects on bryophytes are species- and plant community‐specific on the eastern slope of the Tibetan Plateau. Journal of Vegetation Science, 28(1), 128–138.

  • Sun, Y., He, X., & Glenny, D. (2014). Transantarctic disjunctions in Schistochilaceae. Marchantiophyta explained by early extinction events, post-Gondwanan radiations and palaeoclimatic changes. Molecular Phylogenetics and Evolution, 76, 189–201.

  • Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.

    Article  CAS  Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl., G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 934, 485–498.

  • The Research Institute of Toponomy, Chinese State Bureau of Surveying and Mapping. (1997). An index to the atlas of the People’s Republic of China. Chinese map publishing house, Beijing, China.

  • Thomopoulos, N. T. (2013). Essentials of Monte Carlo simulation-statistical methods for building simulation models. Springer New York, U.S.A, Heidelberg Dordrecht London, UK.

  • Tømmervik, H., Johansen, B., Tombre, I., Thannheiser, D., Høgda, K. A., Gaare, E., & Wielgolaski, F. E. (2004). Vegetation changes in the mountain birch forests due to climate and or grazing. Arctic Antarctic and Alpine Research, 36, 322–331.

    Article  Google Scholar 

  • Trull, N., Böhm, M., & Carr, J. (2017). Patterns and biases of climate change threats in the IUCN Red List. Conservation Biology, 32, 135–147.

    Article  Google Scholar 

  • Turetsky, M. R. (2003). The role of bryophytes in carbon and nitrogen cycling. The Bryologist, 106, 395–409.

    Article  Google Scholar 

  • Turetsky, M. R., Bond-Lamberty, B., Euskirchen, E., Talbot, J., Frolking, S., McGuire, A. D., & Tuittila, E.-S. (2012). The resilience and functional role of moss in boreal and arctic ecosystems. New Phytologist, 196, 49–67.

    Article  CAS  Google Scholar 

  • van der Wal, R., Pearce, I. S. K., & Brooker, R. W. (2005). Mosses and the struggle for light in a nitrogen-polluted world. Oecologia, 142, 159–168.

    Article  Google Scholar 

  • Vanderpoorten, A., Patiño, J., Désamoré, A., Laenen, B., Górski, P., Papp, B., Holá, E., Korpelainen, H., & Hardy, O. (2019). To what extent are bryophytes efficient dispersers? Journal of Ecology, 107, 2149–2154.

    Article  Google Scholar 

  • Vanneste, T., Michelsen, O., Graae, B. J., Kyrkjeeide, M. O., Holien, H., Hassel, K., Lindmo, S., Kapás, R. E., & De Frenne, P. (2017). Impact of climate change on alpine vegetation of mountain summits in Norway. Ecological Research, 32, 579–593.

    Article  Google Scholar 

  • von Arx, G., Graf Pannatier, E., Thimonier, A., & Rebetez, M. (2013). Microclimate in forests with varying leaf area index and soil moisture: Potential implications for seedling establishment in a changing climate. The Journal of Ecology, 101, 1201–1213.

    Article  Google Scholar 

  • Walker, M. D., Wahre, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll, A. B., Epstein, H. E., Jonsdottir, I. S., Klein, J. A., Magnusson, B., Molau, U., Oberbauer, S. F., Rewa, S. P., Robinson, C. H., Shaver, G. R., … Wookey, P. A. (2006). Plant community responses to experimental warming across the tundra biome. PNAS, 103, 1342–1346.

    Article  CAS  Google Scholar 

  • Wang, J., Vanderpoorten, A., Hagborg, A., Goffinet, B., Laenen, B., & Patiño, J. (2017). Evidence for a latitudinal diversity gradient in liverworts and hornworts. Journal of Biogeography44(3), 487–488.

  • Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., & Schewe, J. (2013). The inter-sectoral impact model intercomparison project ISI–MIP, project framework. PNAS, 111, 3228–3232.

    Article  CAS  Google Scholar 

  • Whitbeck, K. L., Oetter, D. R., Perry, D. A., & Fyles, J. W. (2016). Interactions between macroclimate, microclimate, and anthropogenic disturbance affect the distribution of aspen near its northern edge in Quebec: Implications for climate change related range expansions. Forest Ecology and Management, 368, 194–206.

    Article  Google Scholar 

  • Wu, J., & Shi, Y. (2016). Attribution index for changes in migratory bird distributions: The role of climate change over the past 50 years in China. Ecological Informatics, 31, 147–155.

    Article  Google Scholar 

  • Wu, P., & Jia, W. (2006). Geographical division and distribution type of Chinese bryophytes. Journal of Plant Resources and Environment, 15(1), 1–8.

  • Wu, Q., Wang, X., & Zhou, Q. (2014). Biomonitoring persistent organic pollutants in the atmosphere with mosses: Performance and application. Environment International, 66, 28–37.

    Article  CAS  Google Scholar 

  • Wu, Y., Huang, G., Gao, Q., & Cao, T. (2001). Research progress on the response and adaptability of bryophytes to environmental changes. Journal of Applied Ecology, 12(6), 943–946.

  • Xie, X., Guo, S., & Huang, H. (2003). Relationship between the distribution of bryophytes and environmental factors in Jinhua City, Zhejiang Province. Wuhan Botanical Research, 21(2), 129–136.

  • Xu, C. H., & Xu, Y. (2012). The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters, 5, 527–533.

    Article  Google Scholar 

  • Zaniewski, A. E., Lehmann, A., & Overton, J. M. (2002). Predicting species spatial distributions using presence-only data: A case study of native New Zealand ferns. Ecological Modelling, 157, 261–280.

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks were given to instructive comments from anonymous reviewers greatly improved this manuscript. Many thanks were also given to Pr. Shaohong Wu, Dr. Tao Pan, and Dr. Jie Pan for providing some climate data.

Funding

This work was supported by the National Science and Technology Basic Resources Survey Special Project [2019FY101606] and the National Science and Technology Support Program of China (2012BAC19B06).

Author information

Authors and Affiliations

Authors

Contributions

The author contributed to the study conception and design. All works (material preparation, data collection, and analysis, the draft of the manuscript) have been finished by Jianguo Wu. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianguo Wu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J. The danger and indeterminacy of forfeiting perching space of bryophytes from climate shift: a case study for 115 species in China. Environ Monit Assess 194, 233 (2022). https://doi.org/10.1007/s10661-021-09736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09736-1

Keywords

Navigation