Skip to main content
Log in

Genetic structure and diversity in relation to the recently reduced population size of the rare conifer, Pseudotsuga japonica, endemic to Japan

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

A Correction to this article was published on 28 August 2018

This article has been updated

Abstract

Rare species consisting of small populations are subject to random genetic drift, which reduces genetic diversity. Thus, determining the relationship between population size and genetic diversity would provide key information for planning a conservation strategy for rare species. We used six microsatellite markers to investigate seven extant populations of the rare conifer Pseudotsuga japonica, which is endemic to the Kii Peninsula and Shikoku Island regions that are geographically separated by the Kii Channel in southwest Japan. The population differentiation of P. japonica was relatively high (FST = 0.101) for a coniferous species, suggesting limited gene flow among populations. As expected, significant regional differentiation (AMOVA; p < 0.05) indicated genetic divergence across the Kii Channel. A strong positive correlation between census population size and the number of rare alleles (r = 0.862, p < 0.05) was found, but correlations with major indices of genetic diversity were not significant (allelic richness: r = 0.649, p = 0.104, expected heterozygosity: r = 0.361, p = 0.426). The observed order of magnitude of correlation with three genetic diversity indices corresponded with the theoretically expected order of each index’ sensitivity (i.e., the rate of decline per generation) to the bottleneck event. Thus, features that exhibit a faster response, i.e., the number of rare alleles, would have been subject to deleterious effects of the recent decline in population size, which is presumably caused by the development of extensive artificial plantations of other tree species over the last several decades. Finally, we propose a conservation plan for P. japonica based on our findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 28 August 2018

    In the original publication, below was published with incorrect FIS values for three populations Kawamatakannnonn, Ootousan and Senbonyama

References

  • Amarasinghe V, Carlson JE (2002) The development of microsatellite markers for genetic analysis in Douglas-fir. Can J For Res 32:1904–1915

    Article  CAS  Google Scholar 

  • Arroyo J, Aparicio A, Albaladejo RG, Muñoz J, Braza R (2008) Genetic structure and population differentiation of the Mediterranean pioneer spiny broom Calicotome villosa across the Strait of Gibraltar. Biol J Linn Soc 93:39–51

    Article  Google Scholar 

  • Billington HL (1991) Effect of population size on genetic variation in a dioecious conifer. Conserv Biol 5:115–119

    Article  Google Scholar 

  • Brookfield J (1996) A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    Article  CAS  PubMed  Google Scholar 

  • Busch V, Reisch C (2016) Population size and land use affect the genetic variation and performance of the endangered plant species Dianthus seguieri ssp. glaber. Conserv Genet 17:425–436

    Article  Google Scholar 

  • Chung MY, López-Pujol J, Chung MG (2014) Comparative genetic structure between Sedum ussuriense and S. kamtschaticum (Crassulaceae), two stonecrops co-occurring on rocky cliffs. Am J Bot 101:946–956

    Article  PubMed  Google Scholar 

  • Chybicki IJ, Oleksa A, Kowalkowska K (2012) Variable rates of random genetic drift in protected populations of English yew: implications for gene pool conservation. Conserv Genet 13:899–911

    Article  Google Scholar 

  • Cruzan MB (2001) Population size and fragmentation thresholds for the maintenance of genetic diversity in the herbaceous endemic Scutellaria montana (Lamiaceae). Evolution 55:1569–1580

    Article  CAS  PubMed  Google Scholar 

  • del Castillo RF, Trujillo-Argueta S, Sánchez-Vargas N, Newton AC (2011) Genetic factors associated with population size may increase extinction risks and decrease colonization potential in a keystone tropical pine. Evol Appl 4:574–588

    Article  PubMed  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • England PR, Luikart G, Waples RS (2010) Early detection of population fragmentation using linkage disequilibrium estimation of effective population size. Conserv Genet 11:2425–2430

    Article  Google Scholar 

  • Environment Agency of Japan (2000) Threatened wildlife of japan-red data book, vol 8 vascular plants. Japan Wildlife Research Center, Tokyo (in Japanese)

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) ARLEQUIN version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farjon A (1990) Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Koeltz Scientific Books, Konigstein

    Google Scholar 

  • Felsenstein J (2010) PHLIP (Phylogeny Inference Package), version 3.69. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Franklin IR (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary–ecological perspective. Sinauer Associates, Sunderland, pp 135–149

    Google Scholar 

  • Fuerst PA, Maruyama T (1986) Considerations on the conservation of alleles and of genic heterozygosity in small managed populations. Zoo Biol 5:171–179

    Article  Google Scholar 

  • Gao LZ (2005) Microsatellite variation within and among populations of Oryza officinalis (Poaceae), an endangered wild rice from China. Mol Ecol 14:4287–4297

    Article  CAS  PubMed  Google Scholar 

  • Gernandt DS, Liston A (1999) Internal transcribed spacer region evolution in Larix and Pseudotsuga (Pinaceae). Am J Bot 86:711–723

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Gustafsson S, Sjögren-Gulve P (2002) Genetic diversity in the rare orchid Gymnadenia odoratissima and a comparison with the more common congener, G. conopsea. Conserv Genet 3:225–234

    Article  CAS  Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. For Ecol Manage 197:323–335

    Article  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New For 6:95–124

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Resour 2:618–620

    Article  CAS  Google Scholar 

  • Hayashi Y (1952) The natural distribution of important trees, indigenous to Japan: conifers reports 2. Bull For For Prod Res Inst 55:1–251 (in Japanese)

    Google Scholar 

  • Hayashi Y (1960) Taxonomical and phytogeographical study of Japanese conifers. Norin-Shuppan, Tokyo (in Japanese)

    Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Hermann RK (1982) The genus Pseudotsuga: historical records and nomenclature. Forest Research Laboratory, Special Publication 2a Oregon State University, Corvallis

    Google Scholar 

  • Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216

    Article  Google Scholar 

  • Hurlbert SH (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  PubMed  Google Scholar 

  • Ilves A, Lanno K, Sammul M, Tali K (2013) Genetic variability, population size and reproduction potential in Ligularia sibirica (L.) populations in Estonia. Conserv Genet 14:661–669

    Article  Google Scholar 

  • Iwaizumi MG, Tsuda Y, Ohtani M, Tsumura Y, Takahashi M (2013) Recent distribution changes affect geographic clines in genetic diversity and structure of Pinus densiflora natural populations in Japan. Forest Ecol Manage 304:407–416

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jaramillo-Correa JP, Grivet D, Terrab A, Kurt Y, De-Lucas AI, Wahid N, Vendramin GG, González-Martínez SC (2010) The Strait of Gibraltar as a major biogeographic barrier in Mediterranean conifers: a comparative phylogeographic survey. Mol Ecol 19:5452–5468

    Article  CAS  PubMed  Google Scholar 

  • Khasa DP, Jaramillo-Correa JP, Jaquish B, Bousquet J (2006) Contrasting microsatellite variation between subalpine and western larch, two closely related species with different distribution patterns. Mol Ecol 15:3907–3918

    Article  CAS  PubMed  Google Scholar 

  • Koskinen MT, Hirvonen H, Landry PA, Primmer CR (2004) The benefits of increasing the number of microsatellites utilized in genetic population studies: an empirical perspective. Hereditas 141:61–67

    Article  PubMed  Google Scholar 

  • Krutovsky KV, St. Clair JB, Saich R, Hipkins VD, Neale DB (2009) Estimation of population structure in coastal Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers. Tree Genet Genomes 5:641–658

    Article  Google Scholar 

  • Langella O (1999) Populations 1.2.30: a population genetic software. CNRS UPR9034

  • Leimu R, Mutikainen PIA, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952

    Article  Google Scholar 

  • Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto A, Uchida K, Taguchi Y, Tani N, Tsumura Y (2010) Genetic diversity and structure of natural fragmented Chamaecyparis obtusa populations as revealed by microsatellite markers. J Plant Res 123:689–699

    Article  PubMed  Google Scholar 

  • Mori I, Kumazaki M (1990) Sensasu ni Miru Nihon no Ringyou (Census of Japanese forestry). Zenkoku-Nourin-Toukei-Kyoukai-Rengoukai, Tokyo (in Japanese)

    Google Scholar 

  • Nakamura J, Mitsushio H, Kuroda T, Yoshikawa O (1972) Palynostratigraphical study, part i the quaternary system in Kochi prefecture. Res Rep Kochi University 21:87–113

    Google Scholar 

  • Nasu T (1981) Fauna and flora of the Japanese islands in the last glacial time. Quat Res 20:191–205 (in Japanese with English summary)

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular-data II: gene-frequency data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in excel: population genetic software for teaching and research. Mol Ecol Resour 6:288–295

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Potter KM, Jetton RM, Dvorak WS, Hipkins VD, Rhea R, Whittier WA (2012) Widespread inbreeding and unexpected geographic patterns of genetic variation in eastern hemlock (Tsuga canadensis), an imperiled North American conifer. Conserv Genet 13:475–498

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shiraishi S, Watanabe A (1995) Identification of chloroplast genome between Pinus densiflora Sieb. et Zucc. and Pinus thunbergii Parl. based on the polymorphism in rbcL gene. J Jpn For Soc 77:429–436 (in Japanese with English summary)

    Google Scholar 

  • Slavov GT, Howe GT, Yakovlev I, Edwards KJ, Krutovskii KV, Tuskan GA, Carlson JE, Strauss SH, Adams WT (2004) Highly variable SSR markers in Douglas-fir: mendelian inheritance and map locations. Theor Appl Genet 108:873–880

    Article  CAS  PubMed  Google Scholar 

  • Strauss SH, Doerksen AH, Byrne JR (1990) Evolutionary relationships of Douglas-fir and its relatives (genus Pseudotsuga) from DNA restriction fragment analysis. Can J Bot 68:1502–1510

    Article  CAS  Google Scholar 

  • Takahashi T, Tani N, Taira H, Tsumura Y (2005) Microsatellite markers reveal high allelic variation in natural populations of Cryptomeria japonica near refugial areas of the last glacial period. J Plant Res 118:83–90

    Article  CAS  PubMed  Google Scholar 

  • Tanaka N, Nakazono E, Tsuyama I, Matsui T (2009) Assessing impact of climate warming on potential habitats of ten conifer species in Japan. Glob Environ Res 14:153–164 (in Japanese)

    Google Scholar 

  • Terrab A, Schönswetter P, Talavera S, Vela E, Stuessy TF (2008) Range-wide phylogeography of Juniperus thurifera L., a presumptive keystone species of western Mediterranean vegetation during cold stages of the Pleistocene. Mol Phyl Evol 48:94–102

    Article  CAS  Google Scholar 

  • Tollefsrud MM, Sønstebø JH, Brochmann C, Johnsen Ø, Skrøppa T, Vendramin GG (2009) Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102:549–562

    Article  CAS  PubMed  Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Victory ER, Glaubitz JC, Rhodes OE Jr, Woeste KE (2006) Genetic homogeneity in Juglans nigra (Juglandaceae) at nuclear microsatellites. Am J Bot 93:118–126

    Article  CAS  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed  Google Scholar 

  • Wei XX, Yang ZY, Li Y, Wang XQ (2010) Molecular phylogeny and biogeography of Pseudotsuga (Pinaceae): insights into the floristic relationship between Taiwan and its adjacent areas. Mol Phylogenet Evol 55:776–785

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458

    Article  Google Scholar 

  • Wright S (1938) Size of population and breeding structure in relation to evolution. Science 87:430–431

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eug 15:323–354

    Article  CAS  Google Scholar 

  • Yamamoto S (1992) Preliminary studies on the species composition, stand structure and regeneration characteristics of an old-growth Pseudotsuga japonica forest at the Sannoko on the Kii Peninsula, southwestern Japan. Jpn J For Environ 34:50–58

    Google Scholar 

  • Yamanaka T (1975) Ecology of Pseudotsuga japonica and other coniferous forests in eastern Shikoku. Mem Natl Sci Mus 8:119–136 (in Japanese with English summary)

    Google Scholar 

  • Young AG, Merriam HG, Warwick SI (1993) The effects of forest fragmentation on genetic variation in Acer saccharum Marsh (sugar maple) populations. Heredity 71:277–289

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of the Kansai Regional Breeding Office of the Forest Tree Breeding Center for collecting leaf samples. We are particularly grateful to Koji Hashimoto for support with sampling at most sites. We also thank Dr. Naoyuki Nishimura (Gunma University) for advising us to collect leaf samples from a permanent plot managed by his research group. We are also grateful to the education board of Kawakami village for permitting us to collect sampling materials, and to Mayumi Shimoyama for DNA extraction from all samples. Finally, we are grateful to the anonymous reviewers for the insightful and constructive comments, which improved the manuscript greatly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Tamaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamaki, S., Isoda, K., Takahashi, M. et al. Genetic structure and diversity in relation to the recently reduced population size of the rare conifer, Pseudotsuga japonica, endemic to Japan. Conserv Genet 19, 1243–1255 (2018). https://doi.org/10.1007/s10592-018-1092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-018-1092-5

Keywords

Navigation