Skip to main content

Advertisement

Log in

Genetic Evaluation of the Efficacy of In Situ and Ex Situ Conservation of Parashorea chinensis (Dipterocarpaceae) in Southwestern China

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The majority of research in genetic diversity yields recommendations rather than actual conservation achievements. We assessed the efficacy of actual in situ and ex situ efforts to conserve Parashorea chinensis (Dipterocarpaceae) against the background of the geographic pattern of genetic variation of this species. Samples from seven natural populations, including three in a nature reserve, and one ex situ conservation population were studied. Across the natural populations, 47.8% of RAPD loci were polymorphic; only 20.8% on average varied at the population level. Mean population genetic diversity was 0.787 within natural populations and 1.410 for the whole species. Significant genetic differentiation among regions and isolation by distance were present on larger scales (among regions). AMOVA revealed that the majority of the among-population variation occurred among regions rather than among populations within regions. Regression analysis, Mantel test, principal coordinates analysis, and cluster analysis consistently demonstrated increasing genetic isolation with increasing geographic distance. Genetic differentiation within the region was quite low compared to that among regions. Multilocus spatial autocorrelation analysis of these three populations revealed random distribution of genetic variation in two populations, but genetic clustering was detected in the third population. The ex situ conserved population contained a medium level of genetic variation compared with the seven natural populations; it contained 77.1% of the total genetic variation of this species and 91% of the moderate to high frequency RAPD fragments (f > 0.05). Exclusive bands were detected in natural populations, but none were found in the ex situ conserved population. The populations protected in the nature reserve contained most of the genetic variation of the whole species, with 81.4% of the total genetic variation and 95.7% of the fragments with moderate to high frequency (f > 0.05) of this species conserved. The results show that the ex situ conserved population does not contain enough genetic variation to meet the need of release in the future, and that more extensive ex situ sampling in natural populations TY, NP, HK, and MG is needed. The in situ conserved population contains representative genetic variation to maintain long-term survival and evolutionary processes of P. chinensis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich, P. R., Hamrick, J. K., Chavarriaga, P., and Kochert, G. (1998). Microsatellite analysis of demographic genetic structure in fragment populations of tropical tree Symphonia globulifera. Mol. Ecol. 7:933–944.

    Article  PubMed  Google Scholar 

  • Allnutt, T. R., Newton, A. C., Lara, A., Premoli, A., Armesto, J. J., Vergara, R., and Gardner, M. (1999). Genetic variation in Fitzroya cupressoides (alerce), a threatened South American conifer. Mol. Ecol. 8:975–987.

    Article  PubMed  Google Scholar 

  • Ashton, P. S. (1982). Flora Malesiana, Series I, Vol. 9(2). Martinum Nijhoff. The Netherlands.

  • Avise, J. C. (1989). A role for molecular genetics in the recognition and conservation of endangered species. Trends Ecol. Evol. 4:1–10.

    Article  Google Scholar 

  • Bawa, K. S., and Ashton, P. S. (1991). Conservation of rare trees in tropical rain forests: A genetic perspective. In Falk, D. A., and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, Oxford, pp. 62–74.

    Google Scholar 

  • Black-Samuelsson, S., and Andersson, S. (1997). Relationship between reaction norm variation and RAPD diversity in Vicia dumetorum (Fabaceae). Int. J. Plant Sci. 158:593–601.

    Article  Google Scholar 

  • Boulton, A. M., Ramirez, M. G., and Blair, C. P. (1998). Genetic structure in a coastal dune spider (Geolycosa pikei) on Long Island, New York Barrier Islands. Biol. J. Lin. Soc. 64:69–82.

    Article  Google Scholar 

  • Brown, A. H. D., and Briggs, J. D. (1991). Sampling strategies for genetic variation in ex situ collection of endangered plant species. In Falk, D. A., and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, Oxford, pp. 99–122.

    Google Scholar 

  • Chalmers, K. J., Waugh, R., Sprent, J. I., Simons, A. J., and Powell, W. (1992). Detection of genetic variation between and within populations of Gliricidia sepium and G. maculata using RAPD markers. Heredity 69:465–472.

    PubMed  Google Scholar 

  • Chung, M. G., Chung, M. Y., Oh, G. S., and Epperson, B. K. (2000). Spatial genetic structure in a Neolitsea sericea population (Lauraceae). Heredity 85:490–497.

    Article  PubMed  Google Scholar 

  • Chung, M. Y., Chung, J. M., Chung, M. G., and Epperson, B. K. (1998). Spatial genetic structure in populations of Cymbidium goeringii (Orchidaceae). Genes Gene. Syst. 73:281–285.

    Article  Google Scholar 

  • Dizon, A. E., Lockyer, C., Perrin, W. F., Demester, D. P., and Sisson, J. (1992). Rethinking the stock concept. Conserv. Biol. 6:24–32.

    Article  Google Scholar 

  • Doligez, A., and Joly, D. H. I. (1997). Genetic diversity and spatial structure within a natural stand of a tropical forest tree species, Carapa procera (Meliaceae) in French Guiana. Heredity 79:72–82.

    Article  Google Scholar 

  • Doligez, A., Baril, C., and Joly, D. H. I. (1998). Fine-scale spatial structure with nonuniform distribution of individuals. Genetics 148:905–919.

    PubMed  Google Scholar 

  • Doyle, J. J., and Doyle, D. J. (1990). Isolation of plant DNA from fresh tissue. Focus 12:13–15.

    Google Scholar 

  • Ellstrand, N. C., and Elam, D. R. (1993). Population genetic consequences of small population size: Implications for plant conservation. Ann. Rev. Ecol. Syst. 24:217–242.

    Google Scholar 

  • Epperson, B. K., and Alvarez-Buylla, E. R. (1997). Limited seed dispersal and genetic structure in life stage of Cecropia obtusifolia. Evolution 51:275–282.

    Google Scholar 

  • Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred metric distances among DNA haplotypes: Applications to human mitochondrial DNA restriction data. Genetics 13:479–491.

    Google Scholar 

  • Fu, L. G. (1992). Chinese Plant Red Book: Rare and Endangered Plants, Science Press, Beijing, pp. 242–260.

    Google Scholar 

  • Gemmill, C. E. C., Ranker, T. A., Ragone, D., Perlman, R., and Wood, K. R. (1998). Conservation genetics of the endangered endemic Hawaii genus Brighamia (Campanulaceae). Am. J. Bot. 85:528–539.

    Google Scholar 

  • Gillies, A. C. M., Cornelius, J. P., Newton, A. C., Navarro, C., Hernandez, M., and Wilson, J. (1997). Genetic variation in Costa Rican populations of the tropical timber species Cedrela odorata L. assessed using RAPDs. Mol. Ecol. 6:1133–1146.

    Article  Google Scholar 

  • Godt, M. J. W., and Hamrick, J. L. (1998). Allozyme diversity in the endangered pitcher plant Sarracenia rubra ssp. alabamensis (Sarraceniaceae) and its close relative S. rubra ssp. rubra. Am. J. Bot. 85:802–810.

    Google Scholar 

  • Gustafson, D. J., Gibson, D. J., and Nickrent, D. L. (1999). Random amplified polymorphic DNA variation among remnant big bluestem (Andropogon gerardii Vitman) populations from Arkansas Grand Prairie. Mol. Ecol. 8:1693–1701.

    Article  PubMed  Google Scholar 

  • Hamrick, J. L., Murawski, D. A., and Nason, J. D. (1993). The influence of seed dispersal mechanisms on the genetic structure of tropical tree populations. Vegetatio 107/109:281–287.

    Google Scholar 

  • Hamrick, J. L., and Nason, J. D. (1996). Consequence of dispersal in plants. In Rhodes, O. E., Jr., Chesser, R. K., and Smith, M. H. (eds.), Population Dynamics in Ecological Space and Time, University of Chicago Press, Chicago, pp. 203–206.

    Google Scholar 

  • Harada, K., Kinoshita, A., Shukor, N. A. A., Tachida, H., and Yamazaki, T. (1994). Genetic variation estimated in three Shorea species by RAPD analysis. Jpn. J. Genet. 69:713–718.

    Article  PubMed  Google Scholar 

  • Hawkes, J. G. (1976). Sampling gene pools. In Simmons, J. B., Benzer, Brandham, D. C., Lucas, G. L., and Parry, V. T. H. (eds.), Conservation of Threatened Plants, Plenum, New York, pp. 145–154.

    Google Scholar 

  • Jin, Y., He, T. H., and Lu, B. R. (2003). Fine-scale genetic structure in wild soybean population (Glycine soja Sieb. et Zucc) and the implication for conservation. New Phytol. 159:513–520.

    Article  Google Scholar 

  • Kang, S. S., and Chung, M. G. (1997). Spatial genetic structure in populations of Chimaphila japonica and Pyrola japonica (Pyrolaceae). Ann. Botan. Fennici 34:15–20.

    Google Scholar 

  • Kjolner, S., Sastad, M., Taberlet, P., and Brochmann, C. (2004) Amplified fragment length polymorphism versus random amplified polymorphic DNA markers: Clonal diversity in Saxifraga cernua. Mol. Ecol. 13:81–86.

    Article  PubMed  Google Scholar 

  • Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001). MEGA 2: Molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245.

    Article  PubMed  Google Scholar 

  • Lee, S. L., Ang, K. C., and Norwati, M. (2000a). Genetic diversity of Dryobalanops aromatica Gaertn. F. (Dipterocarpaceae) in Peninsular Malaysia and its pertinence to genetic conservation and tree improvement. Forest Gene. 7:211–219.

    Google Scholar 

  • Lee, S. L., Wickneswari, R., Mahani, M. C., and Zakri, A. H. (2000b). Genetic diversity of a tropical tree species, Shorea leprosula Miq. (Dipterocarpaceae), in Malaysia: Implications for conservation of genetic resources and tree improvement. Biotropica 32:213–224.

    Google Scholar 

  • Li, Q. M., Xu, Z. F., and He, T. H. (2002). ex situ genetic conservation of endangered Vatica guangxiensis (Dipterocarpaceae) in China. Biol. Conserv. 106:151–156.

    Article  Google Scholar 

  • Lim, S. L., Wickneswari, R., Lee, S. L., and Latif, A. (2002). Genetic variation of Dryobalanops aromatica in Peninsular Malaysia using microsatellite markers. Forest Gene. 9:119–125.

    Google Scholar 

  • Lynch, M., and Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3:91–99.

    PubMed  Google Scholar 

  • Maki, M., and Horie, S. (1999). Random amplified polymorphic DNA (RAPD) markers reveal less genetic variation in the endangered plant Cerastium fischerianum var. molle than in the widespread conspecific C. fischerianum var. fischerianum (Caryophyllaceae). Mol. Ecol. 8:145–150.

    Article  Google Scholar 

  • Manuder, M., Culham, A., Bordeu, A., Allainguillaume, J., and Wilkinson, M. (1999). Genetic diversity and pedigree for Sophora toromiro (Leguminosae), a tree extinct in the wild. Mol. Ecol. 8:725–738.

    Article  Google Scholar 

  • Marshall, D. R., and Brown, A. H. D. (1975). Optimum sampling strategies in genetic conservation. In Frankel, O. H. J., and Hawkes, G. (eds.), Crop Genetic Resource for Today and Tomorrow, Cambridge University Press, Cambridge, UK, pp. 53–80.

    Google Scholar 

  • Murawski, D. A., and Bawa, K. S. (1994). Genetic structure and mating system of Stemonoporus oblongifolius (Dipterocarpaceae) in Sri Lanka. Am. J. Bot. 81:155–160.

    Google Scholar 

  • Murawski, D. A., Gunatilleke, I. A. U. N., and Bawa, K. S. (1994). The effect of selective logging on mating patterns of Shorea megistophylla (Dipterocarpaceae) from Sri Lanka. Conserv. Biol. 8:997–1002.

    Article  Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    Google Scholar 

  • Newton, A. C., Allnut, T. R., Gillies, A. C. M., Lowe, A. J., and Ennios, R. A. (1999). Molecular phylogeography, intraspecific variation and the conservation of tree species. Trends Ecol. Evol. 14:140–145.

    Article  PubMed  Google Scholar 

  • Parani, M., and Parida, A. (1997). Allozyme and RAPD polymorphism in Tylophora indica (Burm.f.) Merr. J. Plant Biochem. Biotech. 6:29–33.

    Google Scholar 

  • Parker, P. G., Snow, A. A., Schug, M. D., Bootton, G. C., and Fuerst, P. A. (1998). What molecules can tell us about populations: Choosing and using a molecular marker. Ecology 79:361–382.

    Google Scholar 

  • Peakall, R., and Smouse, P. E. (2001). GenAlEx V5: Genetic analysis in Excel. Population genetic software for teaching and research. Australian National University, Canberra. http://www.anu.edu.au/BoZo/GenAlEx.

  • Peakall, R., Ruibal, M., and Lindenmayer, D. B. (2003). Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195.

    PubMed  Google Scholar 

  • Rousset, F. (1997). Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228.

    PubMed  Google Scholar 

  • Seitz, A. (1995). Gene flow and the genetic structure of populations of central European animal species. Verhandlung der Deutschen Zoologischen Gesellschaft 88:61–76.

    Google Scholar 

  • Smouse, P. E., and Peakall, R. (1999). Spatial autocorrelation analysis of individual multiallelic and multilocus genetic structure. Heredity 82:561–573.

    Article  PubMed  Google Scholar 

  • Soulé, M. E. (1987). Viable Populations for Conservation. Cambridge University Press, New York.

    Google Scholar 

  • Stewart, C. N., and Excoffier, L. (1996). Assessing population genetic structure and variability with RAPD data: Application to Vaccinum macrocarpon (American cranberry). J. Evol. BioI. 9:153–171.

    Article  Google Scholar 

  • Storme, V., Vanden, B. A., Ivens, B., Halfmaeten, D., Van Slychen, J., Castiglione, S., Grassi, F., Fossati, T., Cottell, J. E., Tabbener, H. E., Lefevre, F., Saintagne, C., Fluch, S., Krystufek, V., Burg, K., Bordacs, S., Borovics, A., Gebhardt, K., Vornam, B., Pohl, A., Alba, N., Agundez, D., Maestro, C., Notivol, E., Bovenschen, J., van Dam, B. C., van der Schoot, J., Vosman, B., Boerjan, W., Smulders, M. J. M. (2004). Ex-situ conservation of black poplar in Europe: Genetic diversity in nine gene bank collections and their value for nature development. Theor. Appl. Genet. 108:969–981.

    Article  PubMed  Google Scholar 

  • Templeton, A. R. (1982). The crisis of partial extinction. Nat. Area J. 2:25–38.

    Google Scholar 

  • Templeton, A. R. (1991). Off-site breeding of animals and implication for plant conservation strategies. In Falk, D. A., and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, Oxford, pp. 182–208.

    Google Scholar 

  • Ueno, S., Tomaru, N., Yoshimaru, H., Manabe, T., and Yamamoto, S. (2000). Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol. Ecol. 9:647–656.

    Article  PubMed  Google Scholar 

  • Wickneswari, R., Norwati, M., Tsumura, Y., Kawahara, T., Yoshimaru, H., and Yoshimura, K. (1996). Genetic diversity of tropical tree species: Genetic variation of Hopea species (Dipterocarpaceae) using RAPD markers. Conference of Global Environmental Research Project on Tropical Forest Ecosystem Project, National Institute of Environmental Sciences, Tsukaba, Japan.

  • Wickneswari, R., Zawawi, I., Lee, S. L., and Norwati, M. (1994). Genetic diversity of remnant and planted populations of Hopea odorata Roxb. In Peninsular Malaysia, Proceedings International Workshop, BioRefor, Kangar, Malaysia.

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18:6531–6535.

    PubMed  Google Scholar 

  • Wright, S. (1943). Isolation by distance. Genetics 28:114–138.

    Google Scholar 

  • Xu, Z. F., and Yu, P. H. (1982). The study of the adaptation for low temperature of introduced dipterocarps. Acta Botan. Yunnan. 4:297–301.

    Google Scholar 

  • Yeh, F. C., Chong, D. K. X., and Yang, R. C. (1995). RAPD variation within and among natural populations of trembling aspen (Populus tremuloides Michx.) from Alberta. J. Hered. 86:454–460.

    PubMed  Google Scholar 

  • Yeh, F. C., Yang, R. C., and Boyle, T. J. B. (1999). POPGENE Version 3. 22. Available from http://www.ualberta.ca/~fyeh/.

  • Ying, S. H., and Shuai, J. G. (1990). Study on fruiting behavior, seedling establishment, and population age classes of Parashorea chinensis. Acta Botan. Yunnan. 12:415–420.

    Google Scholar 

  • Zhu, H. (1992). A comparison of morphological characters of the populations of Parashorea chinensis from different regions. Guihaia 12:269–271.

    Google Scholar 

  • Zhu, H. (1996). On the floristic occurrence of the dipterocarp forest of Xishuangbanna. In Reports of Tropical Plant Research, 4 edn. Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, pp. 36–52. Yunnan University Press, Kunming, China.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianhua He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., He, T. & Xu, Z. Genetic Evaluation of the Efficacy of In Situ and Ex Situ Conservation of Parashorea chinensis (Dipterocarpaceae) in Southwestern China. Biochem Genet 43, 387–406 (2005). https://doi.org/10.1007/s10528-005-6778-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-005-6778-y

Keywords

Navigation