Skip to main content
Log in

In vitro compatibility of Pimpinella anisum and Origanum vulgare essential oils with nematophagous fungi and their effects against Nacobbus aberrans

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

The soil nematode Nacobbus aberrans (Thorne & Allen) is one of the recurrent biotic adversities in crops growing under cover, and its presence in the horticultural area of Río Cuarto, Argentina, is reported from the 1980s to the present day. The use of botanical extracts in combination with biological control agents could be a promising method for the control of this nematode. Nematicidal effects of Pimpinella anisum (anise) and Origanum vulgare (oregano) essential oils (EOs) against second-stage juveniles (J2) of N. aberrans were evaluated in vitro. Fisher LSD tests evidenced significant nematicidal (α = 0.05) effects of the two EOs tested, with LD100 of 200 and 600 µL L−1 for anise and oregano, respectively. Compatibility assays between EOs and five nematophagous fungi were microscopically and macroscopically performed on soil extract solid medium (SESM) conditioned at different water activities (0.99 and 0.98 aw) and incubated at 30, 25 and 20 °C. Purpureocillium lilacinum SR14 was the fungal strain that showed compatibility at levels of spore germination, viability of propagules and growth rate under the different anise oil doses, temperatures and aw assayed. In conclusion, the integrated application of anise EO with the nematophagous fungus, which combines two action mechanisms, could generate, on the one hand, a rapid larval mortality effect caused by the EO and, on the other hand, a parasitic effect that has the advantage of remaining in time under variable environmental conditions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

EOs:

Essential oils

J1s:

Egg stage of Nacobbus aberrans

J2s:

Second-stage juveniles of Nacobbus aberrans

SESM:

Soil extract solid medium

PDA:

Potato dextrose agar

MB:

Methyl bromide

DMSO:

Dimethyl sulfoxide

DPPH:

2,2 Diphenyl-1-picrylhydracyl

GA:

Gallic acid

CFU:

Colony-forming unit

LD(50–75–100) :

Lethal doses

a w :

Water activity

C :

Concentration

t :

Time

T :

Temperature

NF:

Nematophagous fungi

Purpureocillium lilacinum :

SR7, SR14, SR38

Metarhizium robertsii :

SR51

Plectosphaerella plurivora :

SRA14

References

  • Al-Banna L, Darwish RM, Aburjai T (2003) Effect of plant extracts and essential oils on root-knot nematode. Phytopathol Mediterr 42:123–128

    CAS  Google Scholar 

  • Asensio CM, Nepote V, Grosso NR (2011) Chemical stability of extra-virgin olive oil added with oregano essential oil. J Food Sci 76:445–450

    Google Scholar 

  • Ayuda-Durán B, González-Manzano S, Miranda-Vizuete A, Dueñas M, Santos-Buelga C, González-Paramás AM (2019) Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS ONE 14:e0199483

    PubMed  PubMed Central  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    CAS  PubMed  Google Scholar 

  • Barra PS, Nesci A, Etcheverry MG (2013) In vitro compatibility of natural and food grade fungicide and insecticide substances with Purpureocillium lilacinum and their effect against Aspergillus flavus. J Stor Prod Res 54:67–73

    CAS  Google Scholar 

  • Benencia R, Ramos D, Salusso F (2016) Inserción de horticultores bolivianos en Río Cuarto. Procesos de inmigración, trabajo y conformación de economías étnicas. Mundo Agrario 17:1–16

    Google Scholar 

  • Caboni P, Saba M, Tocco G, Casu L, Murgia A, Maxia A, Menkissoglu-Spiroudi A, Ntalli N (2013) Nematicidal activity of mint aqueous extracts against the root-knot nematode Meloidogyne incognita. J Agric Food Chem 61:9784–9788

    CAS  PubMed  Google Scholar 

  • Carlsen SCK, Fomsgaard IS (2008) Biologically active secondary metabolites in white clover (Trifolium repens L.) – a review focusing on contents in the plant, plant–pest interactions and transformation. Chemoecology 18:129–170

    CAS  Google Scholar 

  • Carranza CS, Bergesio MV, Barberis CL, Chiacchiera SM, Magnoli CE (2014) Survey of Aspergillus section Flavi presence in agricultural soils and effect of glyphosate on nontoxigenic A. flavus growth on soil-based medium. J Appl Microbiol 116:1229–1240

    CAS  PubMed  Google Scholar 

  • Chitwood DJ (2002) Phytochemical based strategies for nematode control. Annu Rev Phytopathol 40:221–249

    CAS  PubMed  Google Scholar 

  • Dallyn H, Fox A (1980) Spoilage of material of reduced water activity by xerophilic fungi. In: Gould GH, Corry EL (eds) Microbial growth and survival in extreme environments. Academic Press, London, UK, pp 129–139

    Google Scholar 

  • Dambolena JS, Zunino MP, Lucini EI, Olmedo RN, Banchio E, Bima PJ, Zydaglo JA (2010) Total phenolic content, radical scavenging properties, and essential oil composition of Origanum species from different populations. J Agric Food Chem 58:1115–1120

    CAS  PubMed  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2012) Infostat. Universidad Nacional de Córdoba, Córdoba, FCA

    Google Scholar 

  • Doucet ME (1989) The genus Nacobbus Thorne Allen, 1944 in Argentina. 1. Study of a population of N. aberrans (Thorne, 1935) Thorne & Allen, 1944 on Chenopodium album L. from Rio Cuarto, province of Cordoba. Rev Nématol 12:17–26

    Google Scholar 

  • Doucet ME, Lax P (2005) El género Nacobbus Thorne & Allen, 1944 en la Argentina. 6. La especie N. aberrans (Thorne, 1935) Thorne & Allen, 1944 (Nematoda: Tylenchida) y su relación con la agricultura. Academia Nacional de Agronomía y Veterinaria. TOMO LIX 5–45

  • El-Gindi AY, Hamida AO, Youseff MM, Ameen HA, Asmahan ML (2005) Evaluation of the nematicidal effects of aqueous and volatile oil extracts of some plants on the root-knot nematode Meloidogyne incognita. Pak J Nematol 23:233–239

    Google Scholar 

  • EPPO, CABI (1997) Quarantine Pests for Europe, 2nd edn. CAB International, Wallingford (GB)

  • Faria M, Biaggioni Lopes R, Aguiar Souza D, Wraight SP (2015) Conidial vigor versus viability as predictors of virulence of entomopathogenic fungi. J Invertebr Pathol 125:68–72

    PubMed  Google Scholar 

  • Ganga Visalakshy PN, Krishnamoorthy A, Manoj Kumar A (2006) Compatibility of plant oils and additives with Paecilomyces farinosus, a potential entomopathogenic fungus. J Food Sci Agric Environ 4:333–335

    Google Scholar 

  • Gholivand MB, Rahimi Nasrabadi M, Batooli H, Haghir Ebrahimabadi A (2010) Chemical composition and antioxidant activities of the essential oil and methanol extracts of Psammogeton canescens. Food Chem Toxicol 48:24–28

    CAS  PubMed  Google Scholar 

  • Hallmann J, Davies KG, Sikora R (2009) Biological control using microbial pathogens, endophytes and antagonists. In: Perry RN, Moens M, Starr JL (eds) Root-knot Nematodes. Wallingford, UK, CAB International, pp 380–411

    Google Scholar 

  • Ibrahim SK, Traboulsi AF, El-Haj S (2006) Effect of essential oils and plant extracts on hatching, migration and mortality of Meloidogyne incognita. Phytopathol Med 45:238–246

    CAS  Google Scholar 

  • InterNos (2019) Cómo trabaja el cinturón hortícola de Río Cuarto? May 23, 2019. El Semiárido. https://www.elsemiarido.com/como-trabaja-el-cinturon-horticola-de-rio-cuarto/

  • Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Gregoire JC, Jaques Miret JA, MacLeod A, Navajas Navarro M, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Kaluski T, Niere B (2018) Pest categorisation of Nacobbus aberrans. EFSA J 16:5249

    Google Scholar 

  • Jiang Z, Akhtar Y, Bradbury R, Zhang X, Isman MB (2009) Comparative toxicity of essential oils of Litsea pungens and Litsea cubeba and blends of their major constituents against the cabbage looper, Trichoplusia ni. J Agric Food Chem 57:4833–4837

    CAS  PubMed  Google Scholar 

  • Kadota Y, Shirasu K, Zipfel C (2015) Regulation of the NADPH oxidase RBOHD during plant immunity. Plant Cell Physiol 56:1472–1480

    CAS  PubMed  Google Scholar 

  • Koul O (2008) Phytochemicals and insect control: An antifeedant approach. Crit Rev Plant Sci 27:1–24

    CAS  Google Scholar 

  • Lahlou M (2004) Methods to study the phytochemistry and bioactivity of essential oils. Phytother Res 18:435–448

    CAS  PubMed  Google Scholar 

  • Lax P, Becerra A, Soteras F, Cabello M, Doucet ME (2011) Effect of the arbuscular mycorrhizal fungus Glomus intraradices on the false root-knot nematode Nacobbus aberrans in tomato plants. Biol Fertil Soils 47:591–597

    Google Scholar 

  • Magan N (2001) Physiological approaches to improving the ecological fitness of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Wallingford, pp 239–251

    Google Scholar 

  • Marro N, Lax P, Cabello M, Doucet ME, Becerra AG (2014) Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 57:668–674

    Google Scholar 

  • Matidieri MS, Polack LA (2012) Guía de reconocimiento de enfermedades, plagas y enemigos naturales de tomate y pimiento. 2° Ed. San Pedro: Ediciones INTA

  • Ntalli NG, Caboni P (2012) Botanical nematicides: a review. J Agric Food Chem 60:9929–9940

    CAS  PubMed  Google Scholar 

  • Ntalli NG, Ferrari F, Giannakou IO, Menkissoglu-Spiroudi U (2010a) Phytochemistry and nematicidal activity of the essential oils from 8 Greek Lamiaceae aromatic plants and 13 terpene components. J Agric Food Chem 58:7856–7863

    CAS  PubMed  Google Scholar 

  • Ntalli NG, Ferrari F, Giannakou IO, Menkissoglu-Spiroudi U (2010b) Synergistic and antagonistic interactions of terpenes against Meloidogyne incognita and nematicidal activity of essential oils from 7 plants Indigenous in Greece. Pest Manag Sci 67:341–351

    PubMed  Google Scholar 

  • Ntalli NG, Menkissoglu-Spiroudi U, Giannakou IO (2010c) Nematicidal activity of powder and extracts of Melia azedarach fruits against Meloidogyne incognita. Ann Appl Biol 156:309–317

    Google Scholar 

  • Oka Y, Nacar S, Putievsky E, Ravid U, Yaniv Z, Spiegel Y (2000) Nematicidal activity of essential oils and their components against the root-knot nematode. Phytopathology 90:710–715

    CAS  PubMed  Google Scholar 

  • Olmedo RH, Asensio CM, Grosso NR (2015) Thermal stability and antioxidant activity of essential oils from aromatic plants farmed in Argentina. Ind Crop Prod 69:21–28

    CAS  Google Scholar 

  • Parrilla J (2018) ¿Qué comemos los argentinos?: los increíbles resultados de los controles del SENASA sobre frutas y verduras. https://www.infobae.com/sociedad/2018/07/30/que-comemos-los-argentinos-los-increibles-resultados-de-los-controles-del-senasa-sobre-frutas-y-verduras/

  • Passone MA, Etcheverry M (2014) Antifungal impact of volatile fractions of Peumus boldus and Lippia turbinata on Aspergillus section Flavi and residual levels of these oils in irradiated peanut. Int J Food Microbiol 168–169:17–23

    PubMed  Google Scholar 

  • Passone MA, Girardi NS, Etcheverry M (2013) Antifungal and antiaflatoxigenic activity by vapor contact of three essential oils, and effects of environmental factors on their efficacy. Int J Food Sci Technol 53:434–444

    CAS  Google Scholar 

  • Passone MA, Resnik SL, Etcheverry MG (2005) In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B1 accumulation by peanut Aspergillus section Flavi. J Appl Microbiol 99:682–691

    CAS  PubMed  Google Scholar 

  • Peraza Padilla W, Orozco Aceves M, Esquivel Hernández A (2014) Evaluación in vitro de hongos nematofagos en zonas arroceras de Costa Rica contra el nematodo agallador Meloidogyne javanica. Agron Costarric 38:19–32

    Google Scholar 

  • Pérez MP, Navas-Cortésb JA, Pascual-Villalobosa MJ, Castillob P (2003) Nematicidal activity of essential oils and organic amendments from Asteraceae against root-knot nematodes. Plant Pathol 52:395–401

    Google Scholar 

  • Popa VI, Dumitru M, Volf I, Anghel N (2008) Review. Lignin and polyphenols as allelochemicals. Ind Crop Prod 27:144–149

    CAS  Google Scholar 

  • Prakash B, Singh P, Yadav S, Singh SC, Dubey NK (2013) Safety profile assessment and efficacy of chemically characterized Cinnamomum glaucescens essential oil against storage fungi insect, aflatoxin secretion and as antioxidant. Food Chem Toxicol 53:160–167

    CAS  PubMed  Google Scholar 

  • PUNTAL (2018) Cinturón verde: buscan que ya no se usen agroquímicos. https://www.puntal.com.ar/rio-cuarto/Cinturon-verdebuscan-que-ya-no-se-usen-agroquimicos-20180203-0025.htm

  • Quiroga PR, Riveros C, Zygadlo JA, Nepote V (2011) Antioxidant activity of essential oil of oregano species from Argentina in relation to their chemical composition. Int J Food Sci Technol 46:2648–2655

    CAS  Google Scholar 

  • Ramos L, Berenstein G, Hughes EA, Zalts A, Montserrat JM (2015) Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci Total Environ 523:74–81

    CAS  PubMed  Google Scholar 

  • MBTOC, Report of the Methyl Bromide Technical Options Committee (2010) Montreal protocol on substances that deplete the ozone layer

  • Sato K, Kadota Y, Shirasu K (2019) Plant immune responses to parasitic nematodes. Front Plant Sci 10:1165

    PubMed  PubMed Central  Google Scholar 

  • SENASA (2006) Resolución-77-2006-SENASA - Servicio Nacional de Sanidad y Calidad Agroalimentaria. https://www.senasa.gob.ar/tags/bromuro-de-metilo

  • Simmonds MS (2003) Flavonoid-insect interactions: recent advances in our knowledge. Phytochemistry 64:21–30

    CAS  PubMed  Google Scholar 

  • Simmonds MSJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Heliocoverpa armigera. J Chem Ecol 27:965–977

    CAS  PubMed  Google Scholar 

  • Sosa AL, Rosso LC, Salusso FA, Etcheverry MG, Passone MA (2018) Screening and identification of horticultural soil fungi for their evaluation against the plant parasitic nematode Nacobbus aberrans. World J Microbiol Biotechnol 34:63

    PubMed  Google Scholar 

  • Stupino SA, Frangi JL, Sarandón SJ (2012) Caracterización de fincas hortícolas según el manejo de los cultivos, La Plata, Argentina. VII Congreso de Medio Ambiente, AUGM, La Plata, Argentina. https://www.congresos.unlp.edu.ar/index.php/CCMA/7CCMA

  • Stupino SA, Iermanó MJ, Gargoloff NA, Bonicatto MM (2014) La biodiversidad en los agroecosistemas. In: Sarandón SJ, Flores CC (eds) Agroecología: Bases Teóricas para el Diseño y Manejo de Agroecosistemas Sustentables. Colección Libros de Cátedra. Editorial de la Universidad Nacional de La Plata, Argentina, pp 131–158. https://sedici.unlp.edu.ar/handle/10915/37280

  • Tang ST, Halliwell B (2010) Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies? Biochem Biophys Res Commun 394:1–5

    CAS  PubMed  Google Scholar 

  • Timper P (2011) Utilization of biological control for managing plant-parasitic nematodes. In: Davies K, Spiegel Y (eds) Progress in biological control, biological control of plant-parasitic nematodes: building coherence between microbial ecology and molecular mechanisms. Springer, Berlin, pp 259–289

    Google Scholar 

  • Wu HJ, Pratley DL, Haig T (2001) Allelopathy in wheat (Triticum aestivum). Ann Appl Biol 139:1–9

    CAS  Google Scholar 

  • Xiong LG, Chen YJ, Tong JW, Gong YS, Huang JA, Liu ZH (2018) Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biol 14:305–315

    CAS  PubMed  Google Scholar 

  • Zouhar M, Douda O, Lhotsky D, Pavela R (2009) Effect of plant essential oils on mortality of the stem nematode (Ditylenchus dipsaci). Plant Protect Sci 45:66–73

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT), FONCYT-PICT/2016 N° 1005, 2017–2020 and Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto (SECYT- UNRC), PPI-2019 Res. 161, 2020–2022. The authors are grateful for the technical assistance of Dra. Marcela Palacio, Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, UNC.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the research; AS, NG, FS and LR conducted experiments. AS and NG analyzed the data; all authors discussed the results; AP, AS, and NG wrote the article; all authors read and approved the manuscript.

Corresponding author

Correspondence to María Alejandra Passone.

Ethics declarations

Conflict of interest

The authors have declared that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by M.B. Isman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sosa, A.L., Girardi, N.S., Rosso, L.C. et al. In vitro compatibility of Pimpinella anisum and Origanum vulgare essential oils with nematophagous fungi and their effects against Nacobbus aberrans. J Pest Sci 93, 1381–1395 (2020). https://doi.org/10.1007/s10340-020-01252-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-020-01252-4

Keywords

Navigation