Skip to main content
Log in

Revised molecular phylogeny, global biogeography, and diversification of palms subfamily Coryphoideae (Arecaceae) based on low copy nuclear and plastid regions

  • Regular Paper – Taxonomy/Phylogenetics/Evolutionary Biology
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

A Correction to this article was published on 19 January 2023

This article has been updated

Abstract

Coryphoideae are palmate-leaved palms from the family Arecaceae consisting of 46 genera representing 421 species. Although several phylogenetic analyses based on different genomic regions have been carried out on Coryphoideae, a fully resolved molecular phylogenetic tree has not been reported yet. To achieve this, we applied two phylogenetic reconstruction methods: Maximum Likelihood and Bayesian Inference, using amplified sampling by retrieving chloroplast and nuclear DNA sequences from NCBI and adding newly produced sequences from Indian accession into the dataset. The same dataset (chloroplast + nuclear DNA sequences) was used to estimate divergence times and the evolutionary history of Coryphoideae with a Bayesian uncorrelated, lognormal relaxed-clock approach and a Statistical Divergence-Vicariance Analysis method, respectively. The phylogenetic analyses based on a combined chloroplast and nuclear DNA sequence dataset showed well-resolved relationships within the subfamily. Both phylogenetic trees divide Coryphoideae into two main groups: CSPT (Crysophileae, Sabaleae, Phoeniceae, and Trachycarpeae) and the Syncarpous group. These main groups are segregated into eight tribes (Trachycarpeae, Phoeniceae, Sabaleae, Crysophileae, Borasseae, Corypheae, Caryoteae, and Chuniophoeniceae) and four subtribes (Rhapidine, Livistoninae, Hyphaeninae, and Lataniinae) with strong support-values. Most previously unresolved and doubtful relationships within tribes Trachycarpeae and Crysophilieae are now resolved and well-supported. The reconstructed phylogenetic trees support all previous systematic revisions of the subfamily. All Indian sampled species of Arenga, Bentinckia, Hyphaene, and Trachycarpus show close relation with their respective congeneric species. Molecular dating results and integration of biogeography suggest that Coryphoideae originated in Laurasia at ~95.12 Ma and then diverged into the tropical and subtropical regions of the whole world. This study offers the correct combination of nuclear and plastid regions to test the current and future systematic revisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

References

  • Allen SE (2015) Fossil palm flowers from the Eocene of the Rocky Mountain region with affinities to Phoenix L. (Arecaceae: Coryphoideae). Int J Plant Sci 176:586–596

    Article  Google Scholar 

  • Asmussen CB, Chase MW (2001) Coding and noncoding plastid DNA in palm systematics. Am J Bot 88:1103–1117

    Article  CAS  PubMed  Google Scholar 

  • Asmussen CB, Dransfield J, Deickmann V, Barfod AS, Pintaud JC, Baker WJ (2006) A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny. Bot J Linn Soc 151:15–38

    Article  Google Scholar 

  • Bacon CD, Baker WJ, Simmons MP (2012) Miocene dispersal drives island radiations in the palm tribe Trachycarpeae (Arecaceae). Syst Biol 61:426–442

    Article  PubMed  Google Scholar 

  • Bacon CD, Baker WJ (2011) Saribus resurrected. Palms 55:109–116

  • Baker WJ, Savolainen V, Asmussen-Lange CB, Chase MW, Dransfield J, Forest F, Harley MM, Uhl NW, Wilkinson M (2009) Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. Syst Biol 58:240–256

    Article  PubMed  Google Scholar 

  • Baker WJ, Norup MV, Clarkson JJ, Couvreur TLP, Dowe JL, Lewis CE, Pintaud JC, Savolainen V, Wilmot T, Chase MW (2011) Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae). Ann Bot 108:1417–1432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker WJ, Couvreur TLP (2013a) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. historical biogeography. J Biogeogr 40:274–285

    Article  Google Scholar 

  • Baker WJ, Couvreur TLP (2013b) Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. II. Historical biogeography. J Biogeogr 40:286–298

    Article  Google Scholar 

  • Baker WJ, Dransfield J (2016) Beyond Genera Palmarum: progress and prospects in palm systematics. Bot J Linn Soc 182:207–233

    Article  Google Scholar 

  • Barrett CF, Baker WJ, Comer JR, Conran JG, Lahmeyer SC, Leebens-Mack JH, Li J, Lim GS, MayfieldJones DR, Perez L, Medina J, Pires JC, Santos C, Stevenson DW, Zomlefer WB, Davis JI (2016) Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. New Phytol 209:855–870

    Article  PubMed  Google Scholar 

  • Barrow SC (1998) A monograph of Phoenix L. (Palmae: Coryphoideae). Kew Bull 53:513–575

    Article  Google Scholar 

  • Bayton RP (2005) Borassus L. & the borassoid palms: systematics & evolution. Dissertation, University of Reading

  • Bellot S, Bayton RP, Couvreur TLP, Dodsworth S, Eiserhardt WL, Guignard MS, Pritchard HW, Roberts L, Toorop PE, Baker WJ (2020) On the origin of giant seeds: the macroevolution of the double coconut (Lodoicea maldivica) and its relatives (Borasseae, Arecaceae). New Phytol 228:1134–1148

    Article  PubMed  PubMed Central  Google Scholar 

  • Berry EW (1914) The Upper cretaceous and eocene floras of South Carolina and Georgia. Professional Papers US Geological Survey

  • Bjorholm S, Svenning JC, Baker WJ, Skov F, Balslev H (2006) Historical legacies in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. Bot J Linn Soc 51:113–125

    Article  Google Scholar 

  • Cano A, Perret M, Stauffer FW (2013) A revision of the genus Trithrinax (Cryosophileae, Coryphoideae, Arecaceae). Phytotaxa 136:1–53

    Article  Google Scholar 

  • Couvreur TL, Forest F, Baker WJ (2011) Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. BMC Biol 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Crisp MD, Isagi Y, Kato Y, Cook LG, Bowman DMJS (2010) Livistona palms in Australia: ancient relics or opportunistic immigrants? Mol Phylogenet Evol 54:512–523

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–775. doi: https://doi.org/10.1038/nmeth.2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE (2008a) Genera Palmarum –the evolution and classification of palms. Royal Botanic Gardens, Kew

    Google Scholar 

  • Dransfield J, Rakotoarinivo M, Baker WJ, Bayton RP, Fisher JB, Horn JW, Leroy B, Metz X (2008b) A new Coryphoid palm genus from Madagascar. Bot J Linn Soc 156:79–91

    Article  Google Scholar 

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with re-duced time and space complexity. BMC Bioinform 5:113–131

    Article  Google Scholar 

  • Farris JD, Kallersjo M, Kluge AG, Bult C (1994) Testing significance of incongru-ence. Cladistics 10:315–319

    Article  Google Scholar 

  • Faurby S, Eiserhardt WL, Baker WJ, Svenning J (2016) An all-evidence species-level supertree for the palms (Arecaceae). Mol Phylogenet Evol 100:57–69

    Article  PubMed  Google Scholar 

  • Futey MK, Gandolfo MA, Zamaloa MC, Cúneo R, Cladera G (2012) Arecaceae fossil fruits from the Paleocene of Patagonia, Argentina. Bot Rev 78:205–234

    Article  Google Scholar 

  • Galeano G, Bernal R (2013) Sabinaria, a new genus of palms (Cryosophileae, Coryphoideae, Arecaceae) from the Colombia-Panama border. Phytotaxa 144:27–44

  • Gohn GS, Dowsett HJ, Sohl NF (1992) Biostratigraphy of the Middendorf Formation (Upper Cretaceous) in a corehole at Myrtle Beach, South Carolina. U.S. Geological Survey Bulletin 2030:1–12

  • Govaerts R, Dransfield J (2005) World Checklist of Palms Royal Botanic Gardens, Kew

  • Harley MM (2006) A summary of fossil records for Arecaceae. Bot J Linn Soc 151:39–67

    Article  Google Scholar 

  • Heckenhauer J, Barfuss MHJ, Samuel R (2016) Universal multiplexable matK primers for DNA barcoding of angiosperms. Appl Plant Sci 4:1500137

    Article  Google Scholar 

  • Henderson JA, Bacon DC (2011) Lanonia (Arecaceae: Palmae), a New Genus from Asia, with a revision of the species. Syst Bot 36:883–895

  • Hodel DR (2007) A review of the genus Pritchardia. Palms 51:S1–S53

  • Ho SY (2007) Calibrating molecular estimates of substitution ratesand divergence times in birds. J Avian Biol 38:409–414

    Article  Google Scholar 

  • Ho SY, Phillips MJ (2009) Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol 58:367–380

    Article  PubMed  Google Scholar 

  • Humphreys AM, Govaerts R, Ficinski SZ, Nic Lughadha E, Vorontsova MS (2019) Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat Ecol Evol 3:1043–1047

    Article  PubMed  Google Scholar 

  • Jeanson ML (2011) Systematics of tribe Caryoteae (Arecaceae). Dissertation, Museum National d’Histoire Naturelle, Paris

  • Kar RK (1985) The fossil floras of Kachchh – IV. Tertiary palynostratigraphy. J Palaeosciences 34:1–279

    Article  Google Scholar 

  • Kar RK, Bhattacharya M (1992) Palynology of Rajpardi lignite, Cambay Basin and Gujra Dam and Akri lignite, Kutch Basin. J Palaeosciences 39:250–263

    Article  Google Scholar 

  • Kvacek J, Herman AB (2004) Monocotyledons from the early campanian (cretaceous) of Grünbach, Lower Austria. Rev Palaeobot Palynol 128:323–353

    Article  Google Scholar 

  • Lewis CE, Doyle JJ (2002) A phylogenetic analysis of tribe Areceae (Arecaceae) using two low-copy nuclear genes. Plant Syst Evol 236:1–17

    Article  CAS  Google Scholar 

  • Loo AHB, Dransfield J, Chase MW, Baker WJ (2006) Low-copy nuclear DNA, phylogeny and the evolution of dichogamy in the betel nut palms and their relatives (Arecinae; Arecaceae). Mol Phylogenet Evol 39:598–618

    Article  CAS  PubMed  Google Scholar 

  • Lyson TR, Miller IM, Bercovici AD, Weissenburger K, Fuentes AJ, Clyde WC, Hagadorn JW, Butrim MJ, Johnson KR, Fleming RF, Barclay RS, Maccracken SA, Lloyd B, Wilson GP, Krause DW, Chester SGB (2019) Exceptional continental record of biotic recovery after the cretaceous–paleogene mass extinction. Science 366:977–983

    Article  CAS  PubMed  Google Scholar 

  • Mai DH (1976) Fossile Früchte und Samen des Geiseltales aus den Mitteleozän. Abh Zentr Geol Inst Palaontol Abh 26:93–149

    Google Scholar 

  • Manchester SR, Lehman TM, Wheeler EA (2010) Fossil palms (Arecaceae, Coryphoideae) associated with juvenile herbivorous dinosaurs in the upper cretaceous aguja formation, big Bend National Park, Texas. Int J Plant Sci 171:679–689

    Article  Google Scholar 

  • Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE), pp 1–8

  • Moore HE (1973) Palms in the tropical forest ecosystems of Africa and South America. In: Meggers BJ, Ayensu ES, Duckworth WD (eds) Tropical forest ecosystems in Africa and South America: a comparative review. Smithsonian Institute Press, Washington, pp 63–88

    Google Scholar 

  • Nelson Sutherland CH (2008) Catálogo de las plantas vasculares de Honduras, espermatofitas. Tegucigalpa. Honduras, Secretaría de Recursos Naturales y Ambiente (SERNA)

  • Olmstead RG, Michaels HJ, Scott KM, Palmer JD (1992) Monophyly of the Asteridae and identification of their major lineages inferred from DNA sequences of rbcL. Ann Missouri Bot Gard 79:249–265

    Article  Google Scholar 

  • Palmweb (2022) Palmweb: Palms of the World Online. Published on the internet. https://www.palmweb.org/node/2. Acccessed on 02 July 2022

  • Pan AD, Jacobs BF, Dransfield J, Baker WJ (2006) The fossil history of palms (Arecaceae) in Africa and new records from the late oligocene (28–27 Mya) of north-western Ethiopia. Bot J Linn 151:69–81

    Article  Google Scholar 

  • Paterson A, Brubaker C, Wendel J (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127. doi: https://doi.org/10.1007/BF02670470

    Article  CAS  Google Scholar 

  • POWO (2022) Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. https://powo.science.kew.org/. Acccessed on 02 July 2022

  • Rambaut A FigTree v1.4. http://tree.bio.ed.ac.uk/software/figtree/. Accessed on 02 September 2022.

  • Rambaut A, Drummond A(2016) TreeAnnotator v.2.4.3. http://beast.community/treeannotator Accessed on 02 September 2022

  • Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA (2018) Posterior summarisation in bayesian phylogenetics using Tracer 1.7. Syst Biol syy032. https://doi.org/10.1093/sysbio/syy032

  • Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends Plant Sci 10:550–558

    Article  CAS  PubMed  Google Scholar 

  • Roncal J, Francisco-Ortega J, Asmussen CB, Lewis CE (2005) Molecular phylogenetics of tribe Geonomeae (Arecaceae) using nuclear DNA sequences of phosphoribulokinase and RNA polymerase II. Syst Bot 30:275–283

    Article  Google Scholar 

  • Roncal J, Zona S, Lewis CE (2008) Molecular phylogenetic studies of caribbean palms (Arecaceae) and their relationships to biogeography and conservation. Bot Rev 74:78–102

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2012) MRBAYES 3: bayesian phylogenetic infer-ence under mixed 451 models. Bioinformatics 19:1572–1574. doi:https://doi.org/10.1093/bioinformatics/btg180

    Article  CAS  Google Scholar 

  • Rozas J, Sa′nchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Saraswati PK, Sarkar U, Banerjee S (2012) Nummulites solitarius – nummulites burdigalensis lineage in Kutch with remarks on the age of Naredi formation. J Geol Soc India 79:476–482

    Article  Google Scholar 

  • Schrank E (1994) Palynology of the Yesomma formation in northern Somalia: a study of pollen, spores and associated phytoplankton from the late cretaceous Palmae Province. Palaeontographica Abteilung B 231:63–112

    Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplastDNA sequences for phylogenetic analysis. Am J Bot 92:142–166

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Mehrotra RC, Guleria JS (2012) Cocos sahnii Kaul: a Cocos nucifera L.-like fruit from the early eocene rainforest of Rajasthan, western India. J Biosci 37:769–776

    Article  PubMed  Google Scholar 

  • Soltis PS, Soltis DE, Smiley CJ (1992) An rbcL sequence from a Miocene Taxodium (bald cypress). Proc Natl Acad Sci USA 89:449–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A (2018) Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10 Virus evolution 4. vey016. https://doi.org/10.1093/ve/vey016

  • Swofford DL(2003) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland

  • Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence align-ments. Syst Biol 56:564–577. doi: https://doi.org/10.1080/10635150701472164

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Kumar S (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Mol Biol Evol 38:3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int J Plant Sci 162:S3–S17.

  • Tomlinson PB, Horn JW, Fisher JB (2011) Subfamily Coryphoideae, the anatomy of palms: Arecaceae – Palmae. Oxford Academic, London, pp 117–169

    Google Scholar 

  • Uhl NW, Dransfield J, Davis JI, Luckow MA, Hansen KS, Doyle JJ (1995) Phylogenetic relationships among palms: cladistic analyses of morphological and chloroplast DNA restriction site variation. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 623–661

    Google Scholar 

  • Vaidya G, Lohman DJ, Meier R(2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27:171–180. doi: https://doi.org/10.1111/j.1096-0031.2010.00329. x

  • Vajda V, Bercovici A (2014) The global vegetation pattern across the cretaceous–paleogene mass extinction interval: a template for other extinction events. Glob Planet Change 122:29–49

    Article  Google Scholar 

  • Van Hoeken-Klinkenberg PMJ (1964) A palynological investigation of some Upper cretaceous sediments in Nigeria. Pollen Spores 6:209–231

    Google Scholar 

  • Westerhold T, Röhl U, Frederichs T, Agnini C, Raffi I, Zachos JC, Wilkens RH (2017) Astronomical calibration of the Ypresian timescale: implications for seafloor spreading rates and the chaotic behavior of the solar system? Clim Past 13:1129–1152

    Article  Google Scholar 

  • Yu Y, Harris AJ, Blair C, He X (2005) RASP (reconstruct ancestral state in Phylogenies): a tool for historical biogeography. Mol Phylogenet Evol 87:46–49

    Article  Google Scholar 

  • Zheng Y, Wiens JJ (2015) Do missing data influence the accuracy of divergence-time estimation with BEAST? Mol Phylogenet Evol 85:41–49

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head of the Department of Botany, Shivaji University, Kolhapur and the Principal of Balwant College, Vita for providing the necessary facilities. Shrirang R. Yadav is thankful to Indian National Science Academy (INSA) for financial assistance.

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1A6A1A05011910).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mireya Burgos-Hernández or Jae Hong Pak.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to the order of figures 4, 5 were published incorrectly and corrected in this version.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadam, S.K., Tamboli, A.S., Mane, R.N. et al. Revised molecular phylogeny, global biogeography, and diversification of palms subfamily Coryphoideae (Arecaceae) based on low copy nuclear and plastid regions. J Plant Res 136, 159–177 (2023). https://doi.org/10.1007/s10265-022-01425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-022-01425-5

Keywords

Navigation