Skip to main content

Advertisement

Log in

Inferring ancestral distribution area and survival vegetation of Caragana (Fabaceae) in Tertiary

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Caragana, a leguminous genus mainly restricted to temperate Central and East Asia, occurs in arid, semiarid, and humid belts, and has forest, grassland, and desert ecotypes. Based on the previous molecular phylogenetic tree and dating, biogeographical analyses of extant species area and ecotype were conducted by means of four ancestral optimization approaches: S-DIVA, Lagrange, Mesquite, and BBM. The results indicate the ancestral attributes of Caragana as an arid origin from the Junggar Basin and arid belt of climate and vegetation in the middle Miocene. The ancestral ecotype was most likely adapted to steppe habitats. Uplift and expansion of the Qinghai-Xizang (Tibet) Plateau (QTP) and retreat of the Paratethys Sea are believed to have led to this origin, and also the subsequent diversification and adaptive radiation in the genus. The direction of radiation is suggested in brief to have been from the Central Asian Junggar to East Asia and Tibet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • An ZS, Kutzbach JE, Prell WL, Port SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66

  • Antonellia A, Nylanderb AAJ, Perssona C, Sanmartin I (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proc Natl Acad Sci USA 106:9749–9754

    Article  Google Scholar 

  • Bendiksby M, Schumacher T, Gussarova G, Nais J, Mat-Salleh K, Sofiyanti N, Madulid D, Smith SA, Barkman T (2010) Elucidating the evolutionary history of the Southeast Asian, holoparasitic, giant-flowered Rafflesiaceae: pliocene vicariance, morphological convergence and character displacement. Molec Phylogenet Evol 57:620–633

    Article  CAS  PubMed  Google Scholar 

  • Bytebier B, Antonelli A, Bellstedt DU et al (2011) Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc Roy Soc London, Ser B, Biol Sci 278(1703):188–195

    Article  Google Scholar 

  • Coleman M, Hodges K (1995) Evidence for Tibetan Plateau uplift before 14 Myr age from new minimum estimate for east–west extension. Nature 374:49–52

    Article  CAS  Google Scholar 

  • Couvreur TLP, Pirie MD, Chatrou LW, Richard M, Saunders K, Yvonne CFSu, Richardson JM, Erkens RHJ (2011) Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. J Biogeogr 38:664–680

    Article  Google Scholar 

  • Emadzade K, Horandl E (2011) Northern Hemisphere origin, transoceanic dispersal, and diversification of Ranunculeae DC. (Ranunculaceae) in the Cenozoic. J Biogeogr 38:517–530

    Article  Google Scholar 

  • Givnish TJ, Systma KJ (1997) Molecular evolution and adaptive radiation. Cambridge University Press, NY

    Google Scholar 

  • Glor RE (2010) Phylogenetic insights on adaptive radiation. Annual Rev Ecol Evol Syst 41:251–270

    Article  Google Scholar 

  • Greve C, Hutterer R, Groh K, Haase M, Misof B (2010) Evolutionary diversification of the genus Theba (Gastropoda: Helicidae) in space and time: a land snail conquering islands and continents. Molec Phylogenet Evol 57:572–584

    Article  CAS  PubMed  Google Scholar 

  • Grubov VI (1999) Plants of Central Asia, vol 1. Science Publishers, New Hampshire

  • Guo SX (1983) Note on phytogeographic provinces and ecological environment of Late Cretaceous and Tertiary floras in China. In: Lu YH (ed) Palaeobiogeographic provinces of China. Science Press, Beijing, pp 164–177

    Google Scholar 

  • Guo ZT, Sun B, Zhang ZS, Peng SZ, Xiao GQ, Ge JY, Hao QZ, Qiao YS, Liang MY, Liu JF, Yin QZ, Wei JJ (2008) A major reorganization of Asian climate by the early Miocene. Climate Past 4:153–174

    Article  Google Scholar 

  • Gussarova G, Popp M, Vitek E, Brochmann C (2008) Molecular phylogeny and biogeography of the bipolar Euphrasia (Orobanchaceae): recent radiations in an old genus. Molec Phylogenet Evol 48:444–460

    Article  CAS  PubMed  Google Scholar 

  • Harris N (2006) The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol 241:4–15

    Article  Google Scholar 

  • Hrbek T, Meyer A (2003) Closing of the tethys sea and the phylogeny of Eurasian killifishes (Cyprinodontiformes: Cyprinodontidae). J Evol Biol 16:17–36

    Article  CAS  PubMed  Google Scholar 

  • Komarov VL (1908) Generis Caragana monographia. Acta Horti Petrop 29:179–388

    Google Scholar 

  • Komarov VL (1947) VL Komarov Opera selecta. Academic Science URSS, Moscow, pp 159–342

    Google Scholar 

  • Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annual Rev Ecol Evol Syst 41:321–350

    Article  Google Scholar 

  • Li JJ, Fang XM (1998) Research on the uplift of the Qinghai-Xizang Plateau and environmental changes. China Sci Bull 43:1569–1574

    Google Scholar 

  • Li GJ, Petke T, Chen J (2011) Increasing Nd isotopic ratio of Asian dust indicates progressive uplift of the north Tibetan Plateau since the middle Miocene. Geology 39:199–202

    Article  CAS  Google Scholar 

  • Linder PH (2008) Plant species radiations: where, when, why? Philos Trans, Ser B 363:3097–3105

    Article  Google Scholar 

  • Liu YX, Chang ZY, Yakolev GP (2010) Caragana. In: Wu ZY, Raven PH (eds) Flora of China, vol 10. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Maddison WP, Maddison DR (2009) MESQUITE: a modular system for evolutionary analysis. Version 2.6. Available at: http://mesquiteproject.org

  • Moore RJ (1968) Chromosome numbers and phylogeny in Caragana (Leguminosae). Canad J Bot 46:1513–1522

    Article  Google Scholar 

  • Morley RJ (2003) Interplate dispersal paths for megathermal angiosperms. Perspect Pl Ecol Evol Syst 6:5–20

    Article  Google Scholar 

  • Nylander JAA, Olsson U, Alström P et al (2008) Accounting for phylogenetic uncertainty in biogeography: a Bayesian approach to dispersal–vicariance analysis of the thrushes (Aves: Turdus). Syst Biol 57:257–268

    Article  PubMed  Google Scholar 

  • Pepper M, Fujita MK, Moritz C, Keogh JS (2011) Palaeoclimate change drove diversification among isolated mountain refugia in the Australian arid zone. Molec Ecol 20:1529–1545

    Article  Google Scholar 

  • Quade J, Cerling TE, Bowman JR (1989) Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan. Nature 342:163–165

    Article  Google Scholar 

  • Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386:788–795

    Article  CAS  Google Scholar 

  • Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 57:4–14

    Article  PubMed  Google Scholar 

  • Ronquist F (2004) Bayesian inference of character evolution. Trends Ecol Evol 19:475–481

    Article  PubMed  Google Scholar 

  • Sanchir C (1979) Genus Caragana Lam., systematics, geography, phylogeny and economic significance in study on flora and vegetation of P. R. Mongolia, vol 1. Academic Press, Ulan Bator

    Google Scholar 

  • Sanderson MJ (1998) Reappraising adaptive radiation. Amer J Bot 85:1650–1655

    Article  Google Scholar 

  • Sarnat EM, Moreau CS (2011) Biogeography and morphological evolution in a Pacific island ant radiation. Molec Ecol 20:114–130

    Article  Google Scholar 

  • Shi YF, Tang MC, Ma YZ (1998) The relation of second rising in Qinghai-Xizang Plateau and Asia Monsoon. Sci China D 28:263–271

    Google Scholar 

  • Shi YF, Li JJ, Li BY, Yao TD, Wang SM, Li SJ, Cui ZJ, Wang FB, Pan BT, Fang XM, Zhang QS (1999) Uplift of the Qinghai-Xizang (Tibetan) Plateau and East Asia environmental change during late Cenozoic. Acta Geogr Sin 54:10–21

    Google Scholar 

  • Song ZC, Li HM, Zheng YH, Liu GW (1983) Miocene floristic regions of China. In: Lu YH (ed) Palaeobiogeographic provinces of China. Science Press, Beijing, pp 178–184

    Google Scholar 

  • Spalik K, Piwczynski M, Danderson CA, Kurzyna-Młynik R, Bone TS, Downie SR (2010) Amphitropic amphiantarctic disjunctions in Apiaceae subfamily Apioideae. J Biogeogr 37:1977–1994

    Google Scholar 

  • Tao JR (1992) The Tertiary vegetation and flora and floristic regions in China. Acta Phytotax Sin 31:25–43

    Google Scholar 

  • Thiv M, Thulin M, Hjertson M, Kropf M, Linder HP (2010) Evidence for a vicariant origin of Macaronesian–Eritreo/Arabian disjunctions in Campylanthus Roth (Plantaginaceae). Molec Phylogenet Evol 54:607–616

    Article  CAS  PubMed  Google Scholar 

  • Willis KJ, McElwain JC (2002) The evolution of plants. Oxford University Press, Oxford

    Google Scholar 

  • Winkler IS, Mitter C, Scheffer SJ (2009) Repeated climate-linked host shifts have promoted diversification in a temperate clade of leaf-mining flies. Proc Natl Acad Sci 106:18103–18108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu ZY (ed) (1980) Vegetation of China. Science Press, Beijing

    Google Scholar 

  • Wu ZY, Wu SG (1998) A proposal for new floristic kingdom (realm)—the E. Asiatic kingdom, its delimitation and characteristics. In: Zhang AL, Wu SG (eds) Floristic characteristics and diversity of Eastern Asian Plants. China Higher Education Press, Beijing and Springer-Verlag, Hongkong

  • Xiang XG, Wang W, Li RQ et al (2014) Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspect Pl Ecol Evol Syst 16:101–110

    Article  Google Scholar 

  • Yu Y, Harris AJ, He X (2010) S-DIVA (Statistical Dispersal–Vicariance Analysis): a tool for inferring biogeographic histories. Molec Phylogenet Evol 56:848–850

    Article  PubMed  Google Scholar 

  • Zhang ML (1997a) The geographic distribution of the genus Caragana in Qinghai-Xizang Plateau and Himalayas. Acta Phytotax Sin 35:136–147

    Google Scholar 

  • Zhang ML (1997b) A reconstructing phylogeny in Caragana (Fabaceae). Acta Bot Yunnan 19:331–341

    Google Scholar 

  • Zhang ML (1998) A preliminary analytic biogeography in Caragana (Fabaceae). Acta Bot Yunnan 20:1–11

    CAS  Google Scholar 

  • Zhang ML (2004) Ancestral area analysis of the genus Caragana (Leguminosae). Acta Bot Sin 46:253–258

    Google Scholar 

  • Zhang ML (2005) A dispersal and vicariance analysis of the genus Caragana Fabr. J Integr Pl Biol 47:897–904

    Article  Google Scholar 

  • Zhang ML, Fritsch PW (2010) Evolutionary response of Caragana (Fabaceae) to Qinghai-Tibetan Plateau uplift and Asian interior aridification. Pl Syst Evol 288:191–199

    Article  Google Scholar 

  • Zhang ZS, Wang HJ, Guo ZT, Jiang DB (2007) What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeogr Palaeoclimatol Palaeoecol 245:317–331

    Article  Google Scholar 

  • Zhang ML, Fritsch PW, Cruz BC (2009) Phylogeny of Caragana (Fabaceae) based on DNA sequence data from rbcL, trnStrnG, and ITS. Molec Phylogenet Evol 50:547–559

    Article  CAS  PubMed  Google Scholar 

  • Zhao YZ (1993) Taxonomic study of the genus Caragana from China. Acta Sci Nat Univ Inner Mongolia 24:631–653

    Google Scholar 

  • Zhao YZ (2008) Classification and floristic geography of Caragana Fabr. in the world. Inner Mongolia University Press, Hohot

    Google Scholar 

  • Zhong DL, Ding L (1996) The uplifting process and mechanism of Qinghai-Xizang (Tibet) Plateau. Sci China D 26:289–295

    Google Scholar 

  • Zubakov VA, Borzenkova II (1990) Global palaeoclimate of the Late Cenozoic. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

We are grateful to two anonymous reviewers and editor-in-chief Prof. Marcus Koch for their valuable comments for improving the manuscript. Funding was provided by China National Key Basic Research Program (2012FY111500, 2014CB954201), and Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingli Zhang.

Additional information

Handling editor: Yunpeng Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xue, J., Zhang, Q. et al. Inferring ancestral distribution area and survival vegetation of Caragana (Fabaceae) in Tertiary. Plant Syst Evol 301, 1831–1842 (2015). https://doi.org/10.1007/s00606-015-1196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1196-z

Keywords

Navigation