Skip to main content
Log in

Genome size and chromosome number in Echinops (Asteraceae, Cardueae) in the Aegean and Balkan regions: technical aspects of nuclear DNA amount assessment and genome evolution in a phylogenetic frame

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

This work focuses on the representatives of genus Echinops (Asteraceae, Cardueae) in the Aegean and Balkan regions, from the perspective of their genome evolution. Chromosome numbers were determined by orcein staining in 14 populations of nine taxa, and DNA contents were assessed by flow cytometry in 24 populations of nine taxa. A molecular phylogeny based on the internal transcribed spacer (ITS) and trnL-trnF and including first sequences for two taxa (Echinops sphaerocephalus subsp. taygeteus and E. spinosissimus subsp. neumayeri) provided a framework for discussing genome changes. From a methodological point of view, similar C-DNA value estimates were obtained when measuring, for a same population, fresh leaves from adult plants collected in the field and from cultivated seedlings. Conversely, despite giving the appearance of being correct (e.g., low coefficient of variation), genome size assessed using silica gel-preserved material differs significantly from values obtained for the same populations with fresh material. Nevertheless, silica gel-preserved material may still provide rough estimates of genome size for, e.g., inferring ploidy level. Suitable—non-silica gel-based—DNA amounts assessed for 23 populations range from 2C = 6.52 pg (E. spinosissimus subsp. neumayeri) to 2C = 9.37 pg (E. bannaticus). Chromosome counts were established for the first time for Echinops graecus (2n = 32), E. sphaerocephalus subsp. albidus (2n = 32), E. sphaerocephalus subsp. taygeteus (2n = ca. 30), and E. spinosissimus subsp. neumayeri (2n = 28). Genome size and chromosome number are confirmed as crucial parameters for deciphering lineage diversification within the genus Echinops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bainard JD, Husband BC, Baldwin SJ, Fazekas AJ, Gregory TR, Newmaster SG, Kron P (2011) The effects of rapid desiccation on estimates of plant genome size. Chromosome Res 19:825–842

    PubMed  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond Ser B 181:109–135

    CAS  Google Scholar 

  • Bobrov EG (1997) Echinops L. In: Shishkin BK, Bobrov EG (eds) Flora of the URRS, vol 27. Dehra Dun, Bishen Singh, Mahendra Pal Singh, Koeltz Scientific Books, Koenigstein, pp 1–70

    Google Scholar 

  • Chase MW, Hanson L, Albert VA, Whitten WM, Williams NH (2005) Life history evolution and genome size in subtribe Oncidiinae (Orchidaceae). Ann Bot 95:191–199

    PubMed  CAS  Google Scholar 

  • Chrtek J, Zahrádníček J, Krak K, Fehrer J (2009) Genome size in Hieracium subgenus Hieracium (Asteraceae) is strongly correlated with major phylogenetic groups. Ann Bot 104:161–178

    PubMed  CAS  Google Scholar 

  • Cires E, Cuesta C, Peredo EL, Revilla MA, Fernández Prieto JA (2009) Genome size varition and morphological differentiation within Ranunculus parnassifolius group (Ranunculaceae) from calcareous screes in the Northwest of Spain. Plant Syst Evol 281:193–208

    Google Scholar 

  • Cullings KW (1992) Design and testing of a plant-specific PCR primer for ecological and evolutionary studies. Mol Ecol 1:233–240

    CAS  Google Scholar 

  • Díaz-Uriarte R (2010) Package PHYLOGR, http://cran.es.r-project.org

  • Doležel J (1991) Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem Anal 2:143–154

    Google Scholar 

  • Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    PubMed  Google Scholar 

  • Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plant 31:113–120

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148

    Google Scholar 

  • Garcia S, Canela MÁ, Garnatje T, McArthur ED, Pellicer J, Sanderson SC, Vallès J (2008) Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae). Biol J Linn Soc 94:631–649

    Google Scholar 

  • Garcia S, Sanz M, Garnatje T, Kreitschitz A, McArthur DE, Vallès J (2004) Variation of DNA amount in 47 populations of the subtribe Artemisiinae and related taxa (Asteraceae, Anthemideae): karyological, ecological, and systematic implications. Genome 47:1004–1014

    PubMed  CAS  Google Scholar 

  • Garcia-Jacas N, Susanna A, Ilarlsan R (1996) Aneuploidy in the Centaureinae (Compositae): is n = 7 the end of the series? Taxon 45:39–42

    Google Scholar 

  • Garnatje T, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Vallès J (2011) GSAD: a genome size in the Asteraceae database. Cytometry Part A 79A:401–404

    CAS  Google Scholar 

  • Garnatje T, Garcia S, Canela MÁ (2007) Genome size variation from a phylognetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Plant Syst Evol 264:117–134

    CAS  Google Scholar 

  • Garnatje T, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Vallès J (2009) Cheirolophus intybaceus (Asteraceae, Centaureinae) o la constància del valor 2C. Collect Bot 28:7–17

    Google Scholar 

  • Garnatje T, Vallès J, Garcia S, Hidalgo O, Sanz M, Canela MA, Siljak-Yakovlev S (2004a) Genome size in Echinops L. and related genera (Asteraceae, Cardueae): karyological, ecological and phylogenetic implications. Biol Cell 96:117–124

    PubMed  CAS  Google Scholar 

  • Garnatje T, Vilatersana R, Susanna A, Vallès J, Siljak-Yakovlev S (2004b) Contribution to the karyological knowledge of Echinops (Asteraceae, Cardueae) and related genera. Bot J Linn Soc 145:337–344

    Google Scholar 

  • Georghiou K, Delipetrou P (2010) Patterns and traits of the endemic plants of Greece. Bot J Linn Soc 162:130–422

    Google Scholar 

  • Greilhuber J, Temsch E, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 67–101

    Google Scholar 

  • Greuter W (2003) The Euro + Med treatment of Cardueae (Compositae)—generic concepts and required new names. Willdenowia 33:49–61

    Google Scholar 

  • Greuter W (2006–2009) Compositae (pro parte majore), In: Greuter W, Raab-Straube E. von (eds) Compositae. Euro + Med Plantbase—the information resource for Euro-Mediterranean plant diversity. Published on the Internet http://ww2.bgbm.org/EuroPlusMed/ (Accesed 1 March 2011)

  • Gukasyan AG, Safarian AB (1990) Chromosome numbers of some representatives of Armenian flora. Biol Zh Arm 43:259–260

    Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hayek A (1927) Prodomus florae peninsulae balcanicae, vol 2. Verlag, Berlin

    Google Scholar 

  • Hedge IC (1975) Echinops L. In: Davis PH (ed) Flora of Turkey and the East Aegean Islands, vol 5. Edinburgh University Press, Edinburgh, pp 609–622

    Google Scholar 

  • Hidalgo O, Garcia-Jacas N, Garnatje T, Romaschschenko K, Susanna A, Siljak-Yakovlev S (2008) Extreme environmental conditions and phylogenetic inheritance: systematics of Myopordon and Oligochaeta (Asteraceae, Cardueae-Centaureinae). Taxon 57:769–778

    Google Scholar 

  • Hidalgo O, Garcia-Jacas N, Susanna A, Siljak-Yakovlev S (2007) Karyological evolution in Rhaponticum and related genera. Bot J Linn Soc 153:193–201

    Google Scholar 

  • Hidalgo O, Mathez J, Garcia S, Garnatje T, Pellicer J, Vallès J (2010) Genome size study in the Valerianaceae: first results and new hypotheses. J Bot. doi:10.1155/2010/797246

    Google Scholar 

  • Jäger EJ (1987) Arealkarten der Asteraceen-Tribus als Grundlage der ökogeographischen Sippencharakteristik. Bot Jahrb Syst 108:481–497

    Google Scholar 

  • Kožuharov SI (1976) Echinops L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 4. Cambridge University Press, Cambridge, pp 212–214

    Google Scholar 

  • Kraaijeveld K (2010) Genome size and species diversification. Evol Biol 37:227–233

    PubMed  Google Scholar 

  • Lavergne S, Muenke NJ, Molofsky J (2010) Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Ann Bot 105:109–116

    PubMed  CAS  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophyta). Ann Bot 95:207–217

    PubMed  CAS  Google Scholar 

  • Magyari EK, Chapman JC, Gaydarska B, Marinova E, Deli T, Huntley JP, Allen JRM, Huntley B (2008) The “oriental” component of the Balkan flora: evidence of presence on the Thracian Plain during the Weichselian late-glacial. J Biogeogr 35:865–883

    Google Scholar 

  • Médail F, Quézel P (1997) Hot-spots analysis for conservation of plant biodiversity in the Mediterranean Basin. Ann Mo Bot Gard 84:112–127

    Google Scholar 

  • Muratovic E, Hidalgo O, Garnatje T, Siljak-Yakovlev S (2010) Molecular phylogeny and genome size in European lilies (genus Lilium, Liliaceae). Adv Sci Lett 3:180–189

    CAS  Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125

    PubMed  CAS  Google Scholar 

  • Nylander JAA (2004) MrModeltest, version 2. Program distributed by the author, Evolutionary Biology Centre, Uppsala University

  • Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82:75–83

    Google Scholar 

  • Palomino G, Doležel J, Méndez I, Rubluo A (2003) Nuclear genome size analysis of Agave tequilana Weber. Caryologia 56:37–46

    Google Scholar 

  • Pellicer J, Canela MÁ, Garcia S, Garnatje T, Korobkov AA, Twibell JD, Vallès J (2010) Genome size dynamics in Artemisia L. (Asteraceae): following the track of polyploidy. Plant Biol 12:820–830

    PubMed  CAS  Google Scholar 

  • Petit RJ, Brewer S, Bordács S et al (2002) Identification of refugia and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manage 156:49–74

    Google Scholar 

  • Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C (2008) Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). J Biogeogr 35:1016–1029

    Google Scholar 

  • Price HJ, Bachmann K (1976) Mitotic cell time and DNA content in annual and perennial Microserinidinae (Compositae, Chicoriaceae). Plant Syst Evol 126:323–330

    Google Scholar 

  • Rechinger KH (1943) Flora Aegaea: Flora der Inseln und Halbinseln des Ägäischen Meeres. Springer, Vienna

    Google Scholar 

  • Rechinger KH (ed) (1979) Flora des Iranischen Hochlandes und der umrahmeden Gebirge. Compositae III-Cynareae, Akademische Druck-u, Verlaganstalt, Graz

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    PubMed  CAS  Google Scholar 

  • Sánchez-Jiménez I, Lazkov GA, Hidalgo O, Garnatje T (2010) Molecular systematics of Echinops L. (Asteraceae, Cynareae): a phylogeny based on ITS and trnL-trnF sequences with emphasis on sectional delimitation. Taxon 59:698–708

    Google Scholar 

  • Sánchez-Jiménez I, Pellicer J, Hidalgo O, Garcia S, Garnatje T, Vallès J (2009) Chromosome numbers in three Asteraceae tribes from inner Mongolia (China), with genome size data for Cardueae. Folia Geobot 44:307–322

    Google Scholar 

  • Sheidai M, Nasirzadeh A, Kheradnam M (2000) Karyotypic study of Echinops (Asteraceae) in Fars Province, Iran. Bot J Linn Soc 134:453–463

    Google Scholar 

  • Siljak-Yakovlev S, Solic ME, Catrice O, Brown SC, Papes D (2005) Nuclear DNA content and chromosome number in some diploid and tetraploid Centaurea (Asteraceae: Cardueae) from the Dalmatia region. Plant Biol 7:397–404

    PubMed  CAS  Google Scholar 

  • Siljak-Yakovlev S, Stevanovic V, Tomasevic M, Brown SC, Stevanovic B (2008) Genome size variation and polyploidy in the resurrection plant genus Ramonda: cytogeography of living fossils. Environ Exp Bot 62:101–112

    CAS  Google Scholar 

  • Siljak-Yakovlev S, Pustahija F, Solic EM, Bogunic F, Muratovic E, Basic N, Catrice O, Brown SC (2010) Towards a genome size and chromosome number database of Balkan Flora: C-values in 343 taxa with novel values for 242. Adv Sci Lett 3:190–213

    CAS  Google Scholar 

  • Slovák M, Urfus T, Vít P, Marhold K (2009) The Balkan endemic Picris hispidissima (Compositae): morphology, nuclear DNA content and relationship to the polymorphic P. hieracioides. Plant Syst Evol 278:187–201

    Google Scholar 

  • Soltis DE, Soltis PS, Collier TG, Edgerton ML (1991) The Heuchera group (Saxifragaceae): evidence for chloroplast transfer and paraphyly. Am J Bot 78:1091–1112

    CAS  Google Scholar 

  • Stevanovic V, Tan K, Iatrou G (2003) Distribution of the endemic Balkan flora on serpentine I.—obligate serpentine endemics. Plant Syst Evol 242:149–170

    Google Scholar 

  • Suda J, Trávníček P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—New prospects for plant research. Cytom Part A 69A:273–280

    Google Scholar 

  • Susanna A, Garcia-Jacas N, Hidalgo O, Vilatersana R, Garnatje T (2006) The Cardueae revisited: insights from ITS, trnL-F and matK nuclear and chloroplast DNA analysis. Ann Mo Bot Gard 93:150–171

    Google Scholar 

  • Swift H (1950) The constance of desoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA 36:643–654

    PubMed  CAS  Google Scholar 

  • Temsch EM, Greilhuber J (2010) Genome size in Dipsacaceae and Morina longifolia (Morinaceae). Plant Syst Evol 289:45–56

    Google Scholar 

  • Vilatersana R, Susanna A, Garcia-Jacas N, Garnatje T (2000) Karyology, generic delineation and dysploidy in the genera Carthamus, Carduncellus and Phonus (Asteraceae). Bot J Linn Soc 134:425–438

    Google Scholar 

  • Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet 19:609–614

    PubMed  CAS  Google Scholar 

  • Watanabe K (2002) Index to chromosome numbers in the Asteraceae. http://www-asteraceae.cla.kobe-u.ac.jp/index.html (Accessed May 2011)

  • Watanabe K (2004) Index to chromosome numbers in the Asteraceae on the web. Compositae Newsl 41:64

    Google Scholar 

  • Zhu S, Greuter W (2011) Asteraceae. Tribe Echinopeae [draft]. In: Wu ZY, Raven PH, Hong DY (eds) In preparation, flora of China (Asteraceae), vol 20–21. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis

Download references

Acknowledgments

We thank Dr. K. Tan, Dr. J. Vigo, and Dr. F. Pustahija for their help in collecting material, M. Veny for taking care of the living plants, M. Mumbrú, Dr. J. Comas, and Dr. R. Álvarez for their support in the flow cytometry assessments, and an anonymous reviewer for useful comments. Alastair Plant is also acknowledged for the revision of the English in the manuscript. This work was supported by the MICINN of the Spanish Government (projects CGL2007-64839-C02-01, CGL2007-64839-C02-02, CGL2010-22234-C02-01/BOS, and CGL2010-22234-C02-02/BOS) and the GReB (Grup de Recerca en Biodiversitat i Biosistemàtica Vegetals; Generalitat de Catalunya, project 2009SGR439). I.S.-J. received a FPU grant from the Ministerio de Educación and O.H. a Juan de la Cierva postdoctoral grant from the Ministerio de Ciencia e Innovación, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismael Sánchez-Jiménez.

Appendix

Appendix

Taxa and GenBank accession numbers [ITS; trnL-trnF] of sequences included in the phylogenetic analysis. Data of sequences firstly published in this article are written in bold; the origin of remaining material is indicated in Sánchez-Jiménez et al. (2010).

Echinops albicaulis Kar. & Kir. [AY538638; GU134528]; E. angustilobus S.Moore [GU116505; GU134531]; E. arachniolepis Rech.f. [GU116486; GU134532]; E. bannaticus Rochel ex Schrad. [JQ291287; JQ291297]; E. cephalotes DC. [GU116487; GU134535]; E. ceratophorus Boiss. [GU116488; GU134536]; E. chantavicus Trautv. [GU116489; GU134537]; E. chardinii Boiss. & Buhse [GU116490; GU134538]; E. chloroleucus Rech.f. [GU116491; GU134539]; E. cyanocephalus Boiss. & Hausskn. [GU116492; GU134540]; E. dahuricus Fisch. [GU116493; GU134541]; E. dasyanthus Regel & Schmalh. [GU116494; GU134542]; E. dichrous Boiss. & Hausskn. [GU116495; GU134543]; E. dubjanskyi Iljin [GU116496; GU134544]; E. ecbatanus Bornm. ex Rech.f. [(AF319073, AF319127); GU134545]; E. echinatus Roxb. [GU116497; GU134546]; E. elbursensis Rech.f. [GU116498; GU134547]; E. elymaiticus Born [GU116499; GU134548]; E. emiliae Schwarz ex P.H.Davis [AY538641; GU134549]; E. endotrichus Rech.f. [GU116500; GU134550]; E. exaltatus Schrad. [GU116501; GU134551]; E. fastigiatus Kamelin & Tscherneva [GU116502; GU134552]; E. fontqueri Pau [AY538632; GU134554]; E. freitagii Rech.f. [GU116504; GU134555]; E. gaillardotii Boiss. [GU116507; GU134557]; E. ghoranus Rech.f. [GU116508; GU134558]; E. glaberrimus DC. [GU116509; GU134559]; E. gmelinii Turcz. [GU116510; GU134560]; E. graecus Mill. [JQ291289; JQ291299]; E. griffithianus Boiss. [GU116512; GU134562]; E. hedgei Kit Tan [AY538648; GU134563]; E. heteromorphus Bunge [AY538630; GU134564]; E. hoehnelii Schweinf. [GU116506; GU134565]; E. hololeucus Rech.f. [GU116513; GU134567]; E. humilis M.Bieb [GU116514; GU134568]; E. hystrichoides Kit Tan [GU116515; GU134570]; E. ilicifolius Bunge [GU116516; GU134571]; E. integrifolius Kar. & Kir. [GU116517; GU134572]; E. cf. karatavicus [AY538633; AY772325]; E. karatavicus Regel & Schmalh. [GU116518; GU134573]; E. knorringianus Iljin [GU116519; GU134574]; E. kotschyi Boiss. [GU116520; GU134575]; E. latifolius Tausch. [GU116521; GU134576]; E. leucographus Bunge [GU116522; GU134577]; E. lipskyi Iljin [GU116523; GU134578]; E. longifolius A.Rich [GU116524; GU134579]; E. maracandicus Bunge [GU116526; GU134581]; E. macrocephalus Sibth. & Sm. [GU116543; GU134584]; E. nanus Bunge [GU116528; GU134585]; E. nitens Bornm. [GU116529; GU134586]; E. nizvanus Rech.f. [GU116530; GU134587]; E. nuratavicus A.D.Li [GU116531; GU134588]; E. obliquilobus Iljin [AY538640; GU134602]; E. onopordum P.H.Davis [AY538642; GU134589]; E. orientalis Trautv. [GU116532; GU134590]; E. ossicus K.Koch [AY538644; GU134556]; E. parviflorus Boiss. & Buhse [GU116533; GU134591]; E. persicus Steven ex Fisch. [AY538639; AY772324]; E. platylepis Trautv. [AY538635; GU134569]; E. polygamus Bunge [GU116534; GU134593]; E. przewalskyi Iljin (LE) [GU116535; GU134594]; E. przewalskyi Iljin (XINA41JV) [GU116537; GU134596]; E. pungens Trautv. [GU116538; GU134597]; E. ritro L. (SJ9) [JQ291292; JQ291302]; E. ritro L. (SJ45) [JQ291291; JQ291301]; E. ritro subsp. meyeri (DC.) Kožuharov [GU116527; GU134582]; E. ritro L. subsp. ritro [GU116544; GU134599]; E. ritro L. subsp. siculus (Strobl) Greuter [AY538652; GU134604]; E. ritrodes Bunge [GU116539; GU134598]; E. setifer Iljin [GU116540; GU134603]; E. sphaerocephalus L. subsp. albidus (Boiss. & Spruner) Kožuharov [JQ291286; JQ291296]; E. sphaerocephalus L. subsp. sphaerocephalus [JQ291293; JQ291303]; E. sphaerocephalus L. subsp. taygeteus (Boiss. & Heldr.) Kožuharov [JQ291295; JQ291305]; E. spiniger Iljin [GU116542; GU134607]; E. spinosissimus Turra [AY826283; AY772326]; E. spinosissimus subsp. bithynicus (Boiss.) Greuter [JQ291288; JQ291298]; E. spinosissimus Turra subsp. macrolepis (Boiss.) Greuter [GU116547; GU134615]; E. spinosissimus Turra subsp. neumayeri (Vis.) Kožuharov [JQ291290; JQ291300]; E. spinosissimus Turra subsp. spinosissimus [JQ291294; JQ291304]; E. strigosus L. [AY538653; GU134528]; E. szovitsii DC. [AY538650; GU134610]; E. talassicus Golosk. [AY538631; GU134611]; E. tjanschanicus Bobrov [GU116545; GU134612]; E. tournefortii Ledeb. [AY538646; GU134613]; E. transcaucasicus Iljin [GU116546; GU134614].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Jiménez, I., Hidalgo, O., Canela, M.Á. et al. Genome size and chromosome number in Echinops (Asteraceae, Cardueae) in the Aegean and Balkan regions: technical aspects of nuclear DNA amount assessment and genome evolution in a phylogenetic frame. Plant Syst Evol 298, 1085–1099 (2012). https://doi.org/10.1007/s00606-012-0618-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-012-0618-4

Keywords

Navigation