Skip to main content
Log in

Adaptive evolution of context-dependent style curvature in some species of the Malvaceae: a molecular phylogenetic approach

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The evolution of floral movement responding to pollination environments has long intrigued biologists. This has been mostly demonstrated in different species, but has as yet few explanations at the family level. Style curvature occurs in 23 species of eight genera among our observed and surveyed 52 species of 13 genera in the Malvaceae. To analyze the origin of style curvature in these species, we mapped this and correlated characters onto molecular phylogenetic trees that were constructed using the combination of the chloroplast DNA sequences of ndhF and the rpl16 intron. The results showed that style curvature evolved at least five times in species with herkogamous flowers. The occurrence of style curvature was associated with a shift to annual or perennial herbs with herkogamous flowers, which have similar ecological distributions with unpredictable pollinator environments. Style curvature appears to have evolved to facilitate delayed selfing if outcrossing fails under unpredictable pollination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackerly DD (2003) Community assembly, niche conservation, and adaptive evolution in changing environments. Int J Plant Sci 164:S165–S184

    Article  Google Scholar 

  • Akpan GA (2000) Cytogenetic characteristics and the breeding system in six Hibiscus species. Theor Appl Genet 100:315–318

    Article  Google Scholar 

  • Alverson WS, Whitlock BA, Nyffeler R, Bayer C, Baum DA (1999) Phylogeny of the core Malvales: evidence from ndhF sequence data. Am J Bot 86:1474–1486

    Article  PubMed  CAS  Google Scholar 

  • Archibald JK, Mort ME, Wolfe AD (2005) Phylogenetic relationships within Zaluzianskya (Scrophulariaceae s.s., tribe Manuleeae): classification based on DNA sequences from multiple genomes and implications for character evolution and biogeography. Syst Bot 30:196–215

    Article  Google Scholar 

  • Armbruster WS, Baldwin BG (1998) Switch from specialized to generalized pollination. Nature 394:632

    Article  CAS  Google Scholar 

  • Barrett SCH (1998) The evolution of mating strategies in flowering plants. Trends Plant Sci 3:335–341

    Article  Google Scholar 

  • Barrett SCH (2003) Mating strategies in flowering plants: the outcrossing-selfing paradigm and beyond. Philos Trans R Soc Lond B 358:991–1004

    Article  Google Scholar 

  • Barrett SCH (2008) Major evolutionary transitions in flowering plant reproduction: an overview. Int J Plant Sci 169:1–5

    Article  Google Scholar 

  • Barrett SCH, Harder LD (2005) The evolution of polymorphic sexual systems in daffodils (Narcissus). New Phytol 165:45–53

    Article  PubMed  Google Scholar 

  • Baum DA, Small RL, Wendel JF (1998) Biogeography and floral evolution of Baobabs (Adansonia, Bombacaceae) as inferred from multiple data sets. Syst Biol 47:181–207

    Article  PubMed  CAS  Google Scholar 

  • Baum DA, Smith SD, Yen A, Alverson WS, Nyffeler R, Whitlock BA, Oldham RL (2004) Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. Am J Bot 91:1863–1871

    Article  PubMed  CAS  Google Scholar 

  • Bayer C, Fay MF, de Bruijn AY, Savolainen V, Morton CM, Kubritzki K, Alverson WS, Chase MW (1999) Support for an expanded family concept of Malvaceae within a recircumscribed order Malvales: a combined analysis of plastid atpB and rbcL DNA sequences. Biol J Linn Soc 129:267–303

    Google Scholar 

  • Buttrose MS, Grant WJR, Lott JNA (1977) Reversible curvature of style branches of Hibiscus trionum L., a pollination mechanism. Aust J Bot 25:567–570

    Article  Google Scholar 

  • Bynum MR, Smith WK (2001) Floral movements in response to thunderstorms improve reproductive effort in the alpine species Gentiana algida (Gentianaceae). Am J Bot 88:1088–1095

    Article  PubMed  CAS  Google Scholar 

  • Church SA (2003) Molecular phylogenetics of Houstonia (Rubiaceae): descending aneuploidy and breeding system evolution in the radiation of the lineage across North American. Mol Phylogenet Evol 27:223–238

    Article  PubMed  CAS  Google Scholar 

  • Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP (2009) Phylogenetic biome conservatism on a global scale. Nature 458:754–756

    Article  PubMed  CAS  Google Scholar 

  • Cronn RC, Small RL, Haselkorn T, Wendel JF (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725

    Article  PubMed  CAS  Google Scholar 

  • Culley TM (2002) Reproductive biology and delayed selfing in Viola pubescens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. Int J Plant Sci 163:113–122

    Article  Google Scholar 

  • Cunningham CW (1997) Can three incongruence tests predict when data should be combined? Mol Phylogenet Evol 14:733–740

    CAS  Google Scholar 

  • Darwin C (1876) The effects of cross and self-fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Darwin C (1862) On the various contrivances by which British and foreign orchids are fertilized by insects. John Murray, London

    Google Scholar 

  • Edwards J, Whitaker D, Klionsky S, Laskowski MJ (2005) A record-breaking pollen catapult. Nature 435:164

    Article  PubMed  CAS  Google Scholar 

  • Elle E, Hare JD (2002) Environmentally induced variation in floral traits affects the mating system in Datura wrightii. Funct Ecol 16:79–88

    Article  Google Scholar 

  • Feng KM (1984) Flora. Science Press, Beijing (in Chinese)

    Google Scholar 

  • Fetscher AE (2001) Resolution of male-female conflict in a hermaphroditic flower. Proc R Soc B: Biol Sci 268:525–529

    Article  CAS  Google Scholar 

  • Forbis TA, Floyd SK, de Queiroz A (2002) The evolution of embryo size in angiosperms and other seed plants: implications for the evolution of seed dormancy. Evolution 56:2112–2125

    PubMed  Google Scholar 

  • Friedman J, Barrett SCH (2008) A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int J Plant Sci 169:49–58

    Article  Google Scholar 

  • Goodwillie C (1999) Multiple origins of self-compatibility in Linanthus section Leptosiphon (Polemoniaceae): phylogenetic evidence from internal-transcribed-spacer sequence data. Evolution 53:1387–1395

    Article  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Syst 36:47–79

    Article  Google Scholar 

  • Groeneveld KM (1989) World Wildlife Fund (Australia) project 65, conservation biology of the endangered species Hibiscus insularis: final report, January 1989. Commonwealth of Australia

  • Herlihy CR, Eckert CG (2002) Genetic cost of reproductive assurance in a self-fertilizing plant. Nature 416:320–323

    Article  PubMed  CAS  Google Scholar 

  • Holsinger KE (1996) Pollination biology and the evolution of mating systems in flowering plants. Evol Biol 29:107–149

    Google Scholar 

  • Ihlen PG, Ekman S (2002) Outline of phylogeny and character evolution in Rhizocarpon (Rhizocarpaceae, lichenized Ascomycota) based on nuclear ITS and mitochondrial SSU ribosomal DNA sequences. Biol J Linn Soc 77:535–546

    Article  Google Scholar 

  • Jobson RW, Playford J, Cameron KM, Albert VA (2003) Molecular phylogenetics of Lentibulariaceae inferred from plastid rps16 intron and trnL-F DNA sequences: implications for character evolution and biogeography. Syst Bot 28:157–171

    Google Scholar 

  • Johnson LA, Soltis DE (1998) Assessing congruence: empirical examples from molecular data. In: Soltis DE, Soltis PS, Doyle JJ (eds) Molecular systematics of plants 2: DNA sequencing. Kluwer, Boston, pp 297–348

    Chapter  Google Scholar 

  • Kalisz S, Vogler DW (2003) Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84:2928–2942

    Article  Google Scholar 

  • Kalisz S, Vogler D, Fails B, Finer M, Shepard E, Herman T, Gonzales R (1999) The mechanism of delayed selfing in Collinsia verna (Scrophulariaceae). Am J Bot 86:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Kalisz S, Vogler DW, Hanley KM (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430:884–887

    Article  PubMed  CAS  Google Scholar 

  • Klips RA, Snow AA (1997) Delayed autonomous self-pollination in Hibiscus laevis (Malvaceae). Am J Bot 84:48–53

    Article  Google Scholar 

  • Koopman MM, Baum DA (2008) Phylogeny and biogeography of tribe Hibisceae (Malvaceae) on Madagascar. Syst Bot 33:364–374

    Article  Google Scholar 

  • Kress WJ, Liu AZ, Newman M, Li QJ (2005) The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of Gingers. Am J Bot 92:167–178

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Xu Z, Xia Y, Kress WJ, Zhang L, Deng X, Gao J, Bai Z (2001) Flexible style that encourages outcrossing. Nature 410:432

    Article  PubMed  CAS  Google Scholar 

  • Liu KW, Liu ZJ, Huang LQ, Li LQ, Chen LJ, Tang GD (2006) Self-fertilization strategy in an orchid. Nature 441:945–946

    Article  PubMed  CAS  Google Scholar 

  • Maddison WP, Maddison DR (2000) MacClade version 4: analysis of phylogeny and character evolution. Sinauer, Sunderland

    Google Scholar 

  • Nasrallah ME, Liu P, Sherman-Broyles S, Boggs NA, Nasrallah JB (2004) Natural variation in expression of self-incompatibility in Arabidopsis thaliana: Implications for the evolution of selfing. Proc Natl Acad Sci USA 101:16070–16074

    Article  PubMed  CAS  Google Scholar 

  • Peter CI, Johnson SD (2006) Doing the twist: a test of Darwin’s cross-pollination hypothesis for pollinium reconfiguration. Biol Lett 2:65–68

    Article  PubMed  Google Scholar 

  • Pfeil BE, Brubaker CL, Craven LA, Crisp MD (2002) Phylogeny of Hibiscus and the tribe Hibisceae (Malvaceae) using chloroplast DNA sequences of ndhF and the rpl16 intron. Syst Bot 27:333–350

    Google Scholar 

  • Pfeil BE, Brubaker CL, Craven LA, Crisp MD (2004) Paralogy and orthology in the Malvaceae rpb2 gene family: investigation of gene duplication in Hibiscus. Mol Biol Evol 21:1428–1437

    Article  PubMed  CAS  Google Scholar 

  • Qu R, Li X, Luo Y, Dong M, Xu H, Chen X, Dafni A (2007) Wind-dragged corolla enhances self-pollination: a new mechanism of delayed self-pollination. Ann Bot 100:1155–1164

    Article  PubMed  Google Scholar 

  • Ruan CJ, Qin P, He ZX (2004) Delayed autonomous selfing in Kosteletzkya virginica (Malvaceae). S Afr J Bot 70:640–645

    Google Scholar 

  • Ruan CJ, Qin P, Xi YG (2005) Floral traits and pollination modes in Kosteletzkya virginica (Malvaceae). Belg J Bot 138:39–46

    Google Scholar 

  • Ruan CJ, Zhou LJ, Zeng FY, Han RM, Qin Q, Lutts S, Saad L, Mahy G (2008) Contribution of delayed autonomous selfing to reproductive success in Kosteletzkya virginica (Malvaceae). Belg J Bot 141:3–13

    Google Scholar 

  • Ruan CJ, Li H, Mopper S (2009a) Kosteletzkya virginica displays mixed mating system responding to pollinator environment despite strong inbreeding depression. Plant Ecol 203:183–193

    Article  Google Scholar 

  • Ruan CJ, Mopper S, Teixeira da Silva JA, Qin P, Shan Y (2009b) Context-dependent style curvature within flowers offers reproductive assurance under unpredictable pollinator environments. Plant Syst Evol 277:207–215

    Article  Google Scholar 

  • Ruan CJ, Teixeira da Silva JA, Qin P (2010) Style curvature and its adaptive significance in the Malvaceae. Plant Syst Evol 288:13–23

    Article  Google Scholar 

  • Schemske DW, Bradshaw HD Jr (1999) Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci USA 96:11910–11915

    Article  PubMed  CAS  Google Scholar 

  • Seed L, Vaughton G, Ramsey M (2006) Delayed autonomous selfing and inbreeding depression in the Australian annual Hibiscus trionum var. vesicarius (Malvaceae). Aust J Bot 54:27–34

    Article  Google Scholar 

  • Seelanan T, Schnabel A, Wendel JF (1997) Congruence and consensus in the cotton tribe (Malvaceae). Syst Bot 22:259–290

    Article  Google Scholar 

  • Small RL (2004) Phylogeny of Hibiscus sect. Muenchhusia (Malvaceae) based on chloroplast rpl16 and ndhF, and nuclear ITS and GBSSI sequences. Syst Bot 29:385–392

    Article  Google Scholar 

  • Stearns SC (2000) Life history evolution: successes, limitations, and prospects. Naturwissenschaften 87:476–486

    Article  PubMed  CAS  Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap, Cambridge

    Google Scholar 

  • Stephens WC (1948) Kansas wild flowers. University of Kansas Press, Lawrence, KS

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland

    Google Scholar 

  • Tang Y, Gilbert MG, Dorr LJ (2007) Floral of China. Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis

    Google Scholar 

  • Tate JA, Aguilar JF, Wagstaff SJ (2005) Phylogenetic relationships within the tribe Malveae (Malvaceae, subfamily Malvoideae) as inferred from ITS sequence data. Am J Bot 92:584–602

    Article  PubMed  CAS  Google Scholar 

  • Till-Bottraud I, Wu L, Harding J (1990) Rapid evolution of life history traits in populations of Poa annua L. J Evol Biol 3:205–224

    Article  Google Scholar 

  • Truyens S, Arbo MM, Shore JS (2005) Phylogenetic relationships, chromosome and breeding system evolution in Turnera (Turneraceae): inferences from its sequence data. Am J Bot 92:1749–1758

    Article  PubMed  CAS  Google Scholar 

  • Upchurch P (2008) Gondwanan break-up: legacies of a lost world? Trends Ecol Evol 23:229–236

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang D, Renner SS, Chen Z (2004) A new self-pollination mechanism. Nature 431:39–40

    Article  PubMed  CAS  Google Scholar 

  • Webb CJ, Lloyd DG (1986) The avoidance of interference between the presentation of pollen and stigmas in angiosperms. II. Herkogamy. N Z J Bot 24:163–178

    Google Scholar 

  • Weller SG, Sakai AK (1999) Using phylogenetic approaches for the analysis of plant breeding system evolution. Annu Rev Ecol Syst 30:167–199

    Article  Google Scholar 

  • Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium): character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bot 17:115–143

    Article  Google Scholar 

  • Zeng FY, Zhou LJ, Ruan CJ (2008) Comparative study on floral traits and breeding system of Hibiscus syriacus and H. trionum (in Chinese with English abstract). Guihaia 28:750–754

    Google Scholar 

Download references

Acknowledgments

The authors thank Q.X. Hu, Z.S. Wang and M.W. Wang for their help in investigations on style curvature and floral structures. Funding for this work was provided by the National Natural Science Foundation of China (grant no. 30500071 to C.-J. Ruan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Jiang Ruan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, CJ., Chen, SC., Li, Q. et al. Adaptive evolution of context-dependent style curvature in some species of the Malvaceae: a molecular phylogenetic approach. Plant Syst Evol 297, 57 (2011). https://doi.org/10.1007/s00606-011-0499-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-011-0499-y

Keywords

Navigation