Skip to main content
Log in

Molecular phylogeny and systematics of the tribe Chorisporeae (Brassicaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Sequence data from nuclear (ITS) and chloroplast (trnL-F) regions for 89 accessions representing 56 out of 64 species from all five genera of the tribe Chorisporeae (plus Dontostemon tibeticus) have been studied to test the monophyly of the tribe and its component genera, clarify its boundaries, and elucidate its phylogenetic position in the family. Both data sets showed strong support for the monophyly of the Chorisporeae as currently delimited, though the position of its tentative member D. tibeticus was not resolved by ITS. Parrya and Pseudoclausia are poly- and paraphyletic with regard to each other, and Chorispora is either polyphyletic or at least paraphyletic (comprising Diptychocarpus) within a weakly supported monophyletic clade. The incongruence in branching pattern among the markers was most likely caused by hybridization and possibly influenced by incomplete lineage sorting. The present results suggest uniting Pseudoclausia, Clausia podlechii, and Achoriphragma with Parrya and transferring P. beketovii and P. saposhnikovii to Leiospora (Euclidieae). We also obtained support for splitting Chorispora into two geographically defined groups, one of which is closer to Diptychocarpus. Both data sets revealed a close relationship of the Chorisporeae to Dontostemoneae, while ITS also indicated affinity to Hesperideae. Therefore, the position of Chorisporeae needs further verification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Shehbaz IA (1984) The tribes of Cruciferae (Brassicaceae) in the southeastern United States. J Arnold Arbor 65:343–373

    Google Scholar 

  • Al-Shehbaz IA (1988) The genera of Anchonieae (Hesperideae) (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 69:193–212

    Google Scholar 

  • Al-Shehbaz IA (2000) What is Nasturtium tibeticum (Brassicaceae)? Novon 10:334–336

    Article  Google Scholar 

  • Al-Shehbaz IA (2010) Parrya R. Brown. In: Flora of North America Editorial Committee (eds) Flora of North America, vol 7. Oxford University Press, New York, pp 511–514

  • Al-Shehbaz IA, Warwick SI (2007) Two new tribes (Dontostemoneae and Malcolmieae) in the Brassicaceae (Cruciferae). Harvard Pap Bot 12:429–433

    Article  Google Scholar 

  • Al-Shehbaz IA, Beilstein MA, Kellogg EA (2006) Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Pl Syst Evol 259:89–120

    Article  Google Scholar 

  • Al-Shehbaz IA, Grant JR, Lipkin R, Murray DF, Parker CL (2007) Parrya nauruaq (Brassicaceae), a new species from Alaska. Novon 17:275–278

    Article  Google Scholar 

  • Appel O, Al-Shehbaz IA (2003) Cruciferae. In: Kubitzki K, Bayer C (eds) The families and genera of vascular plants 5. Springer, Berlin & Heidelberg, pp 75–174

    Google Scholar 

  • Aras S, Duran A, Yenilmez G (2003) Isolation of DNA for RAPD analysis from dry leaf material of some Hesperis L. specimens. Pl Molec Biol Reporter 21:461a–461f

    Article  Google Scholar 

  • Avetisian VE (1990) A review of the system of Brassicaceae of flora of Caucasus. Bot J (Moscow & Leningrad) 75:1029–1032

    Google Scholar 

  • Bailey CD, Koch MA, Mayer M, Mummenhoff K, SLJr O’Kane, Warwick SI, Windham MD, Al-Shehbaz IA (2006) Towards a global phylogeny of the Brassicaceae. Mol Biol Evol 23:2142–2160

    Article  PubMed  CAS  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619

    Article  CAS  Google Scholar 

  • Beilstein MA, Al-Shehbaz IA, Mathews S, Kellogg EA (2008) Brassicaceae phylogeny inferred from phytochrome A and ndhF sequence data: tribes and trichomes revisited. Am J Bot 95:1307–1327

    Article  CAS  Google Scholar 

  • Beilstein MA, Nagalingum NS, Clements MD, Manchester SR, Mathews S (2010) Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc Natl Acad Sci USA 107:18724–18728

    Article  PubMed  CAS  Google Scholar 

  • Bentham G, Hooker JD (1862) Genera plantarum 1. Ranunculaceas-Cornaceas, London

    Google Scholar 

  • Blattner FR (1999) Direct amplification of the entire ITS region from poorly preserved plant material using recombinant PCR. Biotechnology 27:1180–1185

    CAS  Google Scholar 

  • Botschantzev VP (1955) De Cruciferis notae criticae. Notul Syst Herb Inst Bot Acad Sci USSR 17:160–178

    Google Scholar 

  • Botschantzev VP (1972) On Parrya R Br., Neuroloma Andrz. and some other genera (Cruciferae). Bot J (Moscow & Leningrad) 57:664–673

    Google Scholar 

  • Botschantzev VP (1980) Two new genera of the family Cruciferae. Bot J (Moscow & Leningrad) 65:425–427

    Google Scholar 

  • Busch NA (1939) Cruciferae. In: Komarov VL, Busch NA (eds) Flora URSS 8, 14–606. Academy of Sciences Press, Moscow & Leningrad

    Google Scholar 

  • Carlsen T, Bleeker W, Hurka H, Elven R, Brochmann C (2009) Biogeography and phylogeny of Cardamine (Brassicaceae). Ann Mo Bot Gard 96:215–236

    Article  Google Scholar 

  • Couvreur TLP, Franzke A, Al-Shehbaz IA, Bakker FT, Koch MA, Mummenhoff K (2010) Molecular phylogenetics, temporal diversification and principles of evolution in the mustard family (Brassicaceae). Mol Biol Evol 27:55–71

    Article  PubMed  CAS  Google Scholar 

  • Czerepanov SK (1995) Vascular plants of Russia and adjacent states (the former USSR). Cambridge University Press, Cambridge

    Google Scholar 

  • Dierschke T, Mandáková T, Lysak MA, Mummenhoff K (2009) A bicontinental origin of polyploid Australian/New Zealand Lepidium species (Brassicaceae)? Evidence from genomic in situ hybridization. Ann Bot 104(4):681–688

    Article  PubMed  CAS  Google Scholar 

  • Dorofeyev VI (2004) System of family Cruciferae B. Juss. (Brassicaceae Burnett). Turczaninowia 7(3):43–52

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small amounts of fresh leaf tissue. Phylochem Bull 19:11–15

    Google Scholar 

  • Dvořák F (1968) Study of the characters of the genus Parrya R. Br. Přirod Fak Univ Purk Brno 497:343–359

    Google Scholar 

  • Dvořák F (1969) Parrya microcarpa Ledeb. Fl. Ross. 1, 1842: 132. Feddes Repert 80(4–6):315–322

  • Dvořák F (1972) Study of the evolutional relationship of the tribe Hesperideae. Folia Fac Sci Nat Univ Purkynianae Brun Biol 13(4):1–82

    Google Scholar 

  • Franzke A, Pollmann K, Bleeker W, Kohrt R, Hurka H (1998) Molecular systematics of Cardamine and allied genera (Brassicaceae): ITS and non-coding chloroplast DNA. Folia Geobot 33:225–240

    Article  Google Scholar 

  • Franzke A, Hurka H, Janssen D, Neuffer B, Friesen N, Markov M, Mummenhoff K (2004) Molecular signals for late tertiary/early quaternary range splits of an Eurasian steppe plant: Clausia aprica (Brassicaceae). Mol Ecol 13:2789–2795

    Article  PubMed  CAS  Google Scholar 

  • Franzke A, German D, Al-Shehbaz IA, Mummenhoff K (2009) Arabidopsis’s family ties: molecular phylogeny and age estimates in the Brassicaceae. Taxon 58(2):425–437

    Google Scholar 

  • German DA (2009) A check-list and the system of the Cruciferae of Altai. Komarovia 6(2):80–88

    Google Scholar 

  • German DA, Al-Shehbaz IA (2008a) Five additional tribes (Aphragmeae, Biscutelleae, Calepineae, Conringieae and Erysimeae) in the Brassicaceae (Cruciferae). Harvard Pap Bot 13:165–170

    Article  Google Scholar 

  • German DA, Al-Shehbaz IA (2008b) Dendroarabis, a new Asian genus of Brassicaceae. Harvard Pap Bot 13:289–291

    Article  Google Scholar 

  • German DA, Al-Shehbaz IA (2010) Nomenclatural novelties in miscellaneous Asian Brassicaceae (Cruciferae). Nordic J Bot 28:646–651

    Article  Google Scholar 

  • German DA, Friesen N, Neuffer B, Al-Shehbaz IA, Hurka H (2009) Contribution to ITS phylogeny of the Brassicaceae, with a special reference to some Asian taxa. Pl Syst Evol 283:33–56

    Article  Google Scholar 

  • Grundt HH, Popp M, Brochmann C, Oxelman B (2004) Polyploid origins in a circumpolar complex in Draba (Brassicaceae) inferred from cloned nuclear DNA sequences and fingerprints. Mol Phylogenet Evol 32:695–710

    Article  PubMed  CAS  Google Scholar 

  • Hayek A (1911) Entwurf eines Cruciferensystems auf phylogenetischer Grundlage. Beih Bot Centralbl 27:127–335

    Google Scholar 

  • Holmgren PK, Holmgren NH (1998) [continuously updated]. Index Herbariorum: a global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. <http://sweetgum.nybg.org/ih/>

  • Jaén-Molina R, Caujapé-Castells J, Reyes-Betancort JA, Akhani H, Fernández-Palacios O, Pérez de Paz J, Febles-Hernández R, Marrero-Rodríguez Á (2009) The molecular phylogeny of Matthiola R. Br. (Brassicaceae) inferred from ITS sequences, with special emphasis on the Macaronesian endemics. Mol Phylogenet Evol 53:972–981

    Article  PubMed  Google Scholar 

  • Janchen E (1942) Das System der Cruciferen. Österr Bot Ztg 91:1–28

    Article  Google Scholar 

  • Jordon-Thaden I, Hase I, Al-Shehbaz IA, Koch MA (2010) Molecular phylogeny and systematics of the genus Draba (Brassicaceae) and identification of its most closely related genera. Mol Phylogenet Evol 55(2):524–540

    Article  PubMed  CAS  Google Scholar 

  • Kamelin RV (1998) Materials on the history of the flora of Asia: the Altai Mountain Country. Altai University Press, Barnaul

    Google Scholar 

  • Kamelin RV (2002) The Cruciferae (brief survey of the system). Altai University Press, Barnaul

  • Khosravi AR, Mohsenzadeh S, Mummenhoff K (2009) Phylogenetic relationships of Old World Brassicaceae from Iran based on nuclear ribosomal DNA sequences. Biochem Syst Ecol 37:106–115

    Article  CAS  Google Scholar 

  • Koch M, Al-Shehbaz IA (2002) Molecular data indicate complex intra- and intercontinental differentiation of American Draba (Brassicaceae). Ann Missouri Bot Gard 89:88–109

    Article  Google Scholar 

  • Koch M, Al-Shehbaz IA (2004) Taxonomic and phylogenetic evaluation of the American ‘‘Thlaspi’’ species: Identity and relationship to the Eurasian genus Noccaea (Brassicaceae). Syst Bot 29:375–384

    Article  Google Scholar 

  • Koch MA, Al-Shehbaz IA (2009) Molecular systematics and evolution. In: Gupta SK (ed) Biology and breeding of crucifers. CRC, Boca Raton, pp 1–18

    Chapter  Google Scholar 

  • Koch M, Al-Shehbaz IA, Mummenhoff K (2003) Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Ann Mo Bot Gard 90:151–171

    Article  Google Scholar 

  • Koch M, Dobeš C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitschell-Olds T (2005) Evolution of the trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. Mol Biol Evol 22(4):1032–1043

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Dobeš C, Kiefer C, Schmickl R, Klimeš L, Lysak M (2007) Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24(1):63–73

    Article  PubMed  CAS  Google Scholar 

  • Koch MA, Karl R, Kiefer C, Al-Shehbaz IA (2010) Colonizing the American continent—systematics of the genus Arabis in North America (Brassicaceae). Am J Bot 97:1040–1057

    Article  Google Scholar 

  • Lihová J, Aguilar JF, Marhold K, Feliner GN (2004) Origin of the disjunct tetraploid Cardamine amporitana (Brassicaceae) assessed with nuclear and chloroplast sequence data. Am J Bot 91:1231–1242

    Article  Google Scholar 

  • Lihová J, Marhold K, Kudoh H, Koch MA (2006a) Worldwide phylogeny and biogeography of Cardamine flexuosa (Brassicaceae) and its relatives. Am J Bot 93:1206–1221

    Article  Google Scholar 

  • Lihová J, Shimizu KK, Marhold K (2006b) Allopolyploid origin of Cardamine asarifolia (Brassicaceae): incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Mol Phylogenet Evol 39:759–786

    Article  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Beaulieu JM, Meister A, Leitch IJ (2009) The dynamic ups and downs in genome size evolution in Brassicaceae. Mol Biol Evol 21:85–98

    Google Scholar 

  • Mandáková T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570

    Article  PubMed  Google Scholar 

  • Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA (2010) Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell 22:2277–2290

    Article  PubMed  Google Scholar 

  • Marhold K, Lihová J (2006) Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. Pl Syst Evol 259:143–174

    Article  Google Scholar 

  • Meyer CA (1831) Classis XV. Tetradynamia. In: Ledebour CF (ed), Flora Altaica, vol 3. Typis et impensis G. Reimeri, Berolini, pp 1–219

  • Mummenhoff K, Linder P, Friesen N, Bowman JL, Lee JY, Franzke A (2004) Molecular evidence for bicontinental hybridogenous genome constitution in Lepidium sensu stricto (Brassicaceae) species from Australia and New Zealand. Am J Bot 91:254–261

    Article  CAS  Google Scholar 

  • Mummenhoff K, Polster A, Mühlhausen A, Theissen G (2009) Lepidium as a model system for studying the evolution of fruit development in Brassicaceae. J Exper Bot 60:1503–1513

    Article  CAS  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Ovczinnikov PN, Yunussov SY (1978) Cruciferae. In: Ovczinnikov PN (ed) Flora of Tajik SSR 5. Science Press, Leningrad, pp 7–273

    Google Scholar 

  • Pakhomova MG (1974) Cruciferae. In: Vvedensky AI, Pakhomova MG (eds) Conspectus floraeAsiae Mediae 4. Uzbek Academia of Sciences Press, Tashkent, pp 34–217

    Google Scholar 

  • Prantl K (1891) Cruciferae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien 3(2), Leipzig, 145–206

  • Ronquist R, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Schmickl R, Jorgenson M, Brysting A, Koch MA (2010) The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol Biol 10:98

    Article  PubMed  Google Scholar 

  • Schulz OE (1936) Cruciferae. In: Engler A, Harms H (eds) Die natürlichen Pflanzenfamilien 17b, 227–658. Verlag von Wilhelm Engelmann, Leipzig

    Google Scholar 

  • Shimizu-Inatsugi R, Lihová J, Iwanaga H, Kudoh H, Marhold K, Savolainen O, Watanabe K, Yakubov VV, Shimizu KK (2009) The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Mol Ecol 18:4024–4048

    Article  PubMed  CAS  Google Scholar 

  • Soják J (1982) Einige Bemerkungen zur Flora der UdSSR, vol 1. Sborn Národn Muz Praze, Rada B 1–2:101–109

    Google Scholar 

  • Swofford DL (2003) PAUP*: Phylogenetic analysis using parsimony (* and other methods). Version 4b10. Sinauer Associates. Sunderland, Massachusetts

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Vassiljeva AN (1969) Critical notes on the genus Parrya R. Br. Notul Syst Herb Inst Bot Acad Sci KazSSR 6:27–31

    Google Scholar 

  • Vassiljeva AN (1974) Commentationes de systematica generis Neuroloma Andrz. Notul Syst Herb Inst Bot Acad Sci KazSSR 8:27–31

    Google Scholar 

  • Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-ROM. Pl Syst Evol 259:237–248

    Article  Google Scholar 

  • Warwick SI, Sauder C (2005) Phylogeny of tribe Brassiceae (Brassicaceae) based on chloroplast restriction site polymorphisms and nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Canad J Bot 83:467–483

    Article  CAS  Google Scholar 

  • Warwick SI, Al-Shehbaz IA, Sauder C, Harris JG, Koch M (2004a) Phylogeny of Braya and Neotorularia (Brassicaceae) based on nuclear ribosomal internal transcribed spacer and chloroplast trnL intron sequences. Canad J Bot 82:376–392

    Article  CAS  Google Scholar 

  • Warwick SI, Al-Shehbaz IA, Sauder C, Murray DF, Mummenhoff K (2004b) Phylogeny of Smelowskia and related genera (Brassicaceae) based on nuclear ITS DNA and chloroplast trnL intron sequences. Ann Mo Bot Gard 91:99–123

    Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006a) Brassicaceae: checklist and database on CD-ROM. Pl Syst Evol 259:249–258

    Article  Google Scholar 

  • Warwick SI, Sauder CA, Al-Shehbaz IA (2006b) Molecular phylogeny, morphology and cytological diversity of Sisymbrium (Brassicaceae). In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution: phanerogams (Angiosperm–Dicotyledons), vol 1C. Oxford and IBH, New Delhi with Science, USA, pp 219–250

  • Warwick SI, Sauder CA, Al-Shehbaz IA, Jacquemoud F (2007) Phylogenetic relationships in the tribes Anchonieae, Chorisporeae, Euclidieae, and Hesperideae (Brassicaceae) based on nuclear ribosomal ITS DNA sequences. Ann Mo Bot Gard 94:56–78

    Article  Google Scholar 

  • Warwick SI, Mummenhoff K, Sauder CA, Koch MA, Al-Shehbaz IA (2010) Closing the gaps: phylogenetic relationships in the Brassicaceae based on DNA sequence data of nuclear ribosomal ITS region. Pl Syst Evol 285:209–232

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols. Academic, New York, pp 315–322

    Google Scholar 

  • Yue JP, Sun H, Al-Shehbaz IA, Li JH (2006) Support for an expanded Solms-laubachia (Brassicaceae): evidence from sequences of chloroplast and nuclear genes. Ann Mo Bot Gard 93:402–411

    Article  Google Scholar 

  • Yue JP, Sun H, Li J-H, Al-Shehbaz IA (2008) A synopsis of an expanded Solms-laubachia (Brassicaceae), and the description of four new species from western China. Ann Mo Bot Gard 95:520–538

    Article  Google Scholar 

  • Yue JP, Sun H, Baum DA, Li JH, Al-Shehbaz IA, Ree R (2009) Molecular phylogeny of Solms-laubachia (Brassicaceae) s.l., based on multiple nuclear and plastid DNA sequences, and its biogeographic implications. J Syst Evol 47(5):204–411

    Article  Google Scholar 

  • Zhao B, Liu L, Tan D, Wang J (2010) Analysis of phylogenetic relationships of Brassicaceae species based Chs sequences. Biochem Syst Ecol 38:731–739

    Article  CAS  Google Scholar 

  • Zhou TY, Lu LL, Yang G, Al-Shehbaz IA (2001) Brassicaceae (Cruciferae). In: Wu ZY, Raven PH (eds) Flora of China 8, Science Press, Beijing, and Missouri Botanical Garden Press, St Louis, 1–193

Download references

Acknowledgments

Financial support for stay of the first author at the Department of Functional Genomics and Proteomics of Masaryk University was provided by the South Moravian Region (project “Brain”). This work was supported by research grants from the Grant Agency of the Czech Academy of Science (IAA601630902) and the Czech Ministry of Education (MSM0021622415). Fieldwork was supported by the National Geographic Foundation of the USA (grant no. 8773-10). We thank the curators and directors of the herbaria, as well as A.Y. Korolyuk, A.L. Ebel, G.A. Lazkov, S.V. Smirnov, H. Hurka, H. Moazzeni, and K. Mummenhoff, for supplying plant material. Two anonymous reviewers are highly appreciated for valuable comments and notes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry A. German.

Electronic supplementary material

Below is the link to the electronic supplementary material.

606_2011_452_MOESM1_ESM.pdf

Supplementary material 1 Results of parsimony analysis of ITS including the strict consensus of 10,000 MPTs and results of bootstrap and jackknife analyses. (PDF 96 kb)

606_2011_452_MOESM2_ESM.pdf

Supplementary material 2 Results of parsimony analysis of trnL-F including the strict consensus of 10,000 MPTs and results of bootstrap and jackknife analyses. (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

German, D.A., Grant, J.R., Lysak, M.A. et al. Molecular phylogeny and systematics of the tribe Chorisporeae (Brassicaceae). Plant Syst Evol 294, 65–86 (2011). https://doi.org/10.1007/s00606-011-0452-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0452-0

Keywords

Navigation