Skip to main content
Log in

Biosystematics of Chamaecrista sect. Absus subsect. Baseophyllum (Leguminosae-Caesalpinioideae) based on allozyme and morphometric analyses

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

We carried out genetic and morphometric analyses in 33 populations belonging to all nine described and one putative taxa of Chamaecrista subsect. Baseophyllum. Genetic variability was low in all taxa. Morphological and genetic data are consistent with the status of C. depauperata and C. coriacea. However, divergence between C. cytisoides var. cytisoides and all the other six conspecific varieties is higher than the divergence between it and the other two species. Our data support the recognition of eight species in the subsection Baseophyllum. Chamaecrista coriacea and C. depauperata are supported in their original circumscription. However, the varieties ascribed to C. cytisoides are best treated as six different species. We propose five new combinations in order to raise varieties of C. cytisoides to specific rank: C. blanchetii, C. brachystachya, C. confertiformis, C. decora, C. unijuga. We also propose synonimization of one variety, C. cytisoides var. micrantha, under C. brachystachya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avise JC (1994). Molecular markers, natural history and evolution. Chapman & Hall, New York

    Google Scholar 

  • Baatout H, Marrakchi M and Combes D (1991). Genetic divergence and allozyme within and among populations of Hedysarum spinosissimum subsp. capitatum and subsp. spinosissimum (Papilionaceae). Taxon 40: 239–252

    Article  Google Scholar 

  • Bentham G (1840). Leguminosae. J Bot (Hooker ) 2: 78

    Google Scholar 

  • Bentham G (1870) Cassia. In: Martius (ed) F. Brasiliensis 15: 82–176

  • Bentham G (1871). Revision of the genus Cassia. Trans Linn Soc London 27: 503–591

    Google Scholar 

  • Boonkerd T, Pechsri S and Baum BR (2005). A phenetic study of Cassia sensu lato (Leguminosae-Caesalpinioideae: Cassieae: Cassiinae) in Thailand. Pl. Syst Evol 232: 153–165

    Article  Google Scholar 

  • Borba EL, Felix JM, Semir J and Solferini VN (2000). Pleurothallis fabiobarrosii, a new Brazilian species: morphological and genetic data with notes on the taxonomy of Brazilian rupicolous Pleurothallis. Lindleyana 15: 2–9

    Google Scholar 

  • Borba EL, Felix JM, Solferini VN and Semir J (2001). Fly-pollinated Pleurothallis (Orchidaceae) species have high genetic variability: evidence from isozyme markers. Amer J Bot 88: 419–428

    Article  CAS  Google Scholar 

  • Borba EL, Shepherd GJ, van den Berg C and Semir J (2002). Floral and vegetative morphometrics of five Pleurothalis (Orchidaceae) species: correlation with taxonomy, phylogeny, genetic variability and pollination systems. Ann Bot 90: 219–230

    Article  PubMed  CAS  Google Scholar 

  • Brune W, Alfenas AC and Junghans TG (1998). Identificações específicas de enzimas em géis. In: Alfenas, AC (eds) Eletroforese de isoenzimas e proteinas afins: fundamentos e aplicações em plantas e microorganismos, pp 201–328. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Casiva PV, Saidman BO, Vilardi JC and Cialdella AM (2002). First comparative phenetic studies of Argentinean species of Acacia (Fabaceae), using morphometric, isozymal, and RAPD approaches. Amer J Bot 89: 843–853

    Article  CAS  Google Scholar 

  • Chamberlain J (1998). Isozyme variation in Calliandra calothyrsus (Leguminosae): its implications for species delimitation and conservation. Amer J Bot 85: 37–47

    Article  Google Scholar 

  • Clayton JW and Tretiak DN (1972). Amine-citrate buffers for pH control in starch gel eletrophoresis. J Biol Board Canada 29: 1169–1172

    CAS  Google Scholar 

  • Conceição AS (2000) O gênero Chamaecrista Moench (Leguminosae-Caesalpinioideae) em Catolés, Abaíra, Chapada Diamantina-BA-Brasil. M.Sc. Thesis, Universidade Federal de Pernambuco, Recife

  • Conceição AS (2006) Filogenia do gênero Chamaecrista (Leguminosae-Caesalpinioideae) e taxonomia do grupo Baseophyllum. Ph.D. Thesis, Universidade Estadual de Feira de Santana, Feira de Santana

  • Conceição AS, Queiroz LP and Lewis GP (2001). Novas espécies de Chamaecrista Moench (Leguminosae-Caesalpinioideae) da Chapada Diamantina, Bahia, Brasil. Sitientibus série Ciências Biológicas 1: 112–119

    Google Scholar 

  • Corrias B, Rossi W, Arduino P, Cianchi R and Bullini L (1991). Orchis longicornu Poiret in Sardinina: genetic, morphological and chorological data. Webbia 45: 71–101

    Google Scholar 

  • Costa CBN (2007) Mecanismos de isolamento reprodutivo em espécies simpátricas: biologia reprodutiva de Chamaecrista (Leguminosae-Caesalpinioideae) em Mucugê, Bahia. Ph.D. Thesis, Universidade Estadual de Feira de Santana, Feira de Santana

  • Crawford DJ (1989). Enzyme electrophoresis and plant systematics. In: Soltis, DE and Soltis, PS (eds) Isozymes in plant biology, pp 146–164. Dioscorides Press, Portland

    Google Scholar 

  • Elisens WJ, Boyd RD and Wolfe AD (1992). Genetic and morphological divergence among varieties of Aphanostephus skirrhobasis (Asteraceae-Astereae) and related species with different chromosome numbers. Syst Bot 17: 380–394

    Article  Google Scholar 

  • Gilles BE (1984). A comparison between quantitative and biochemical variation in the wild barley Hordeum murinum. Evolution 38: 34–41

    Article  Google Scholar 

  • Goldman DH, van den Berg C and Griffith MP (2004). Morphometric circumscription of species and infraspecific taxa in Calopogon R. Br. (Orchidaceae). Pl Syst Evol 274: 37–60

    Google Scholar 

  • Hamrick J L and Godt M J (1992). Allozyme diversity in plant species. In: Brown, AHD, Clegg, MT, Kahler, AL and Weir, BS (eds) Plant population genetics, breeding and genetic resources, pp 43–63. Sinauer, Sunderland

    Google Scholar 

  • Henderson A (2006). Traditional morphometrics in plant systematics and its role in palm systematics. Bot J Linn Soc 151: 103–111

    Article  Google Scholar 

  • Irwin HS and Barneby RC (1978). Monographic studies in Cassia (Leguminosae). III. Sections Absus and Grimaldia. Mem New York Bot Gard 30: 1–300

    Google Scholar 

  • Irwin HS and Barneby RC (1982). The American Cassinae: a synoptical revision of Leguminosae tribe Cassieae subtribe Cassinae in the New World. Mem New York Bot Gard 35: 1–918

    Google Scholar 

  • Lambert SM, Borba EL, Machado MC and Andrade SCS (2006a). Allozyme diversity and morphometrics of Melocactus paucispinus (Cactaceae) and evidence for hybridization with M. concinnus in the Chapada Diamantina, North-eastern Brazil. Ann Bot 97: 389–403

    Article  CAS  Google Scholar 

  • Lambert SM, Borba EL and Machado MC (2006b). Allozyme diversity and morphometrics of the endangered Melocactus glaucescens (Cactaceae), and investigation of the putative hybrid origin of Melocactus × albicephalus (Melocactus ernestii × M. glaucescens) in north-eastern Brazil. Pl Spec Biol 21: 93–108

    Article  Google Scholar 

  • Leht M and Jaaska V (2002). Cladistic and phenetic analysis of relationships in Vicia subgenus Vicia (Fabaceae) by morphology and isozymes. Pl Syst Evol 232: 237–260

    Article  CAS  Google Scholar 

  • Levene H (1949). On a matching problem arising in genetics. Ann Math Statist 20: 91–94

    Article  Google Scholar 

  • Levin DA (2000). The origin, expansion and demise of plant species. Oxford University Press, New York

    Google Scholar 

  • Lewis GP (2005). Tribe Cassieae. In: Lewis, GP, Schrire, B, MacKinder, B and Lock, M (eds) Legumes of the world, pp 111–124. Royal Botanical Gardens, Kew

    Google Scholar 

  • Liston A (1992). Isozyme systematics of Astragalus sect. Leptocarpi subsect. Californici (Fabaceae). Syst Bot 17: 367–379

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) PCOrd-Multivariate analysis of ecological data, version 4.10. MjM Software, Gleneder Beach

  • Mitton JB (1978). Relationship between heterozygosity for enzyme loci and variation of morphological characters in natural populations. Nature 273: 661–662

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

    PubMed  Google Scholar 

  • Pereira ACS, Borba EL and Giulietti AM (2007). Genetic and morphological variability of the endangered Syngonanthus mucugensis Giul. (Eriocaulaceae), from the Chapada Diamantina, Brazil implications for conservation and taxonomy. Bot J Linn Soc 153: 401–416

    Article  Google Scholar 

  • Ridgway GJ, Sherburne SW and Lewis RD (1970). Polymorphism in the esterases of Atlantic herring. Transactions of the American Fisheries Society 99: 147–151

    Article  CAS  Google Scholar 

  • Riggins R, Pimentel RA and Walters DR (1977). Morphometrics of Lupinus nanus (Leguminosae) I. Variation in natural populations. Syst Bot 2: 317–325

    Article  Google Scholar 

  • Shaw CR and Prasad R (1970). Starch gel eletrophoresis of enzymes-a compilation of recipes. Biochem Genet 4: 297–320

    Article  PubMed  CAS  Google Scholar 

  • Silva-Pereira V (2007) Fluxo gênico e estrutura genética espacial em micro-escala em população de Chamaecrista blanchetii (Leguminosae) em campo rupestre na Chapada Diamantina, nordeste do Brasil. Ph.D. Thesis, Universidade Estadual de Feira de Santana, Feira de Santana

  • Sneath PHA and Sokal RR (1973). Numerical taxonomy. Freeman and Co, San Francisco

    Google Scholar 

  • Soltis DE, Haufler CH, Darrow DC and Gastony GJ (1983). Starch gel electrophoresis of ferns: a compilation of grinding buffers, gel and electrode buffers, and staining schedule. Amer Fern J 73: 9–27

    Article  Google Scholar 

  • Sotuyo S, Contreras JL, Delgado-Salinas A and Oyama K (2004). Genetic diversity and structure of the endemic Caesalpinia hintonii complex (Leguminosae: Caesalpinioideae) in Mexico. Pl Syst Evol 247: 131–143

    Article  CAS  Google Scholar 

  • StatSoft INS (2000). Statistica for windows (computer program manual). Salf Soft Inc, Tulsa

    Google Scholar 

  • Swofford DL and Selander RB (1989). BIOSYS-1: computer program for the analysis of allelic variation in population genetics and biochemical systematics. Illinois Natural History Survey, Champaign

    Google Scholar 

  • Thorpe JP (1982). The molecular clock hypothesis: biochemical evolution, genetic differentiation and systematics. Annual Rev Ecol Syst 13: 139–168

    Article  CAS  Google Scholar 

  • van der Bank H, van der Bank M, van Wyk B (2001). A review of the use of allozyme eletrophoresis in plant systematics. Biochem Syst & Ecol 29: 469–483

    Article  Google Scholar 

  • Wright S (1978). Evolution and the genetics of populations: variability within and among natural populations vol 4. University of Chicago Press, Chicago

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Conceição.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conceição, A.S., Queiroz, L.P., Lambert, S.M. et al. Biosystematics of Chamaecrista sect. Absus subsect. Baseophyllum (Leguminosae-Caesalpinioideae) based on allozyme and morphometric analyses. Plant Syst Evol 270, 183–207 (2008). https://doi.org/10.1007/s00606-007-0604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0604-4

Keywords

Navigation