Skip to main content

Advertisement

Log in

Minimum temperature and evapotranspiration in Central Amazonian floodplains limit tree growth of Nectandra amazonum (Lauraceae)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Tree growth of Nectandra amazonum (Lauraceae) in the Central Amazonian floodplains does not respond to the annual long-term flooding but responds to variation of minimum temperature and potential evapotranspiration.

Abstract

During the last two decades, the Central Amazon region has been impacted by increasingly frequent and more severe floods and droughts and increasing temperature. Little is known about the effects of these climate trends on tree growth in floodplain forests. In this study, we analysed Nectandra amazonum (Lauraceae), an evergreen and flood-adapted tree species, dominant not only in the nutrient-rich Amazonian floodplains (várzea), but also occurring in other environments within and outside the Amazon basin. For the period from 2001 to 2017, intra- and interannual climate–growth relationships of N. amazonum were analysed applying a combination of conventional dendrochronological (cross-dating) and densiometric techniques to construct a robust tree-ring chronology. Six wood parameters were derived from the chronology (ring width, width of earlywood and latewood and corresponding wood density values) and correlated with local climate and hydrologic data. The analysed 32 trees did not show correlation between wood parameters and variation of the hydrological regime. Climate–growth relationships indicated that potential evapotranspiration and minimum temperature play an important role in tree growth mainly during the period of transition between the dry and the wet seasons, and during the aquatic phase affecting physiological processes such as photosynthesis and respiration, respectively. We discuss these results in the background of changing hydroclimatic conditions induced by climate and land-use change in the Amazon basin. Based on our findings, we emphasize the need for more dendroclimatic studies in the tropics applying a multiproxy approach. This will deepen our understanding of tree growth responses, helping to elucidate the dynamic processes of tropical forests that grow under global change impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aleixo I, Norris D, Hemerik L, Barbosa A, Prata E, Costa F, Poorter L (2019) Amazonian rainforest tree mortality driven by climate and functional traits. Nat Clim Chang 9:384–388. https://doi.org/10.1038/s41558-019-0458-0

    Article  Google Scholar 

  • Alves ES, Angyolossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species, I: growth rings and vessels. IAWA J 21:3–30. https://doi.org/10.1163/22941932-90000233

    Article  Google Scholar 

  • Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, Ziaco E, Pacala S (2015) Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349:528–532. https://doi.org/10.1126/science.aab1833

    Article  CAS  PubMed  Google Scholar 

  • Aragão LEOC, Malhi Y, Roman-Cuesta RM, Saatchi S, Anderson LO, Shimabukuro YE (2007) Spatial patterns and fire response of recent Amazonian droughts. Geophys Res Lett 34:L07701. https://doi.org/10.1029/2006GL028946

    Article  Google Scholar 

  • Aragão LEOC, Anderson LO, Fonseca MG et al (2018) 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat Commun 9:536. https://doi.org/10.1038/s41467-017-02771-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assahira C, Piedade MTF, Trumbore SE, Wittmann F, Cintra BBL, Batista ES, Resende AF, Schöngart J (2017) Tree mortality of a flood-adapted species in response of hydrographic changes caused by an Amazonian river dam. Forest Ecol Manag 396:113–123. https://doi.org/10.1016/j.foreco.2017.04.016

    Article  Google Scholar 

  • Ayres JMC (1993) As matas de várzea do Mamirauá: Médio Rio Solimões. Estudos Mamiraua, CNPq, Sociedade Civil de Mamirauá, Brasília

  • Ballantyne A, Smith W, Anderegg W, Kauppi P, Sarmiento J, Tans P, Shevliakova E, Pan Y, Poulter B, Anav A, Friedlingstein P, Houghton R, Running S (2017) Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat Clim Change 7:148–152. https://doi.org/10.1038/nclimate3204

    Article  CAS  Google Scholar 

  • Barichivich J, Gloor E, Peylin P, Brienen R, Schöngart J, Espinoza JC, Pattnayak KC (2018) Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci Adv 4:2375–2548. https://doi.org/10.1126/sciadv.aat8785

    Article  Google Scholar 

  • Barros CF, Ferreira-Marcon ML, Callado CH, Lima HRP, Cunha M, Marquete O, Costa CG (2006) Tendências ecológicas na anatomia da madeira de espécie da comunidade arbórea da Reserva Biológica de Poço das Antas, Rio de Janeiro. Brasil Rodriguésia 57(3):443–460. https://doi.org/10.2307/23498739

    Article  Google Scholar 

  • Batista ES, Schöngart J (2018) Dendroecology of Macrolobium acaciifolium (Fabaceae) in Central Amazonian floodplain forests. Acta Amazon 48:311–320. https://doi.org/10.1590/1809-4392201800302

    Article  Google Scholar 

  • Brando PM, Nepstad DC, Davidson EA, Trumbore SE, Ray D, Camargo P (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc Lond B Biol Sci 363:1839–1848. https://doi.org/10.1098/rstb.2007.0019

    Article  PubMed  PubMed Central  Google Scholar 

  • Brienen RJW, Zuidema PA (2005) Relating tree growth rainfall in Bolivian rain forest: a test for six species using tree-ring analysis. Oecologia 146:1–12. https://doi.org/10.1007/s00442-005-0160-y

    Article  PubMed  Google Scholar 

  • Brienen RJW, Helle G, Pons TL, Guyot J-L, Gloor E (2012) Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Niño-Southern Oscillation variability. PNAS 109(42):16957–16962. https://doi.org/10.1073/pnas.1205977109

    Article  PubMed  PubMed Central  Google Scholar 

  • Brienen RJW, Schöngart J, Zuidema PA (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. In: Goldstein G, Santiago LS (eds) Tropical tree physiology: adaptations and responses in a changing environment. Springer International Publishing, pp 439–461

    Chapter  Google Scholar 

  • Bunn A (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124. https://doi.org/10.1016/j.dendro.2008.01.002

    Article  Google Scholar 

  • Clark DA, Piper SC, Keeling CD, Clark DB (2003) Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984–2000. PNAS 100:5852–5857. https://doi.org/10.1073/pnas.0935903100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark DB, Clark DA, Oberbauer SF (2010) Annual wood production in a tropical rain forest in NE Costa Rica linked to climatic variation but not to increasing CO2. Global Change Bio 16:747–759. https://doi.org/10.1111/j.1365-2486.2009.02004.x

    Article  Google Scholar 

  • Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Springer, Netherlands

    Book  Google Scholar 

  • Costa MH, Botta A, Cardille J (2003) Effects of large-scale change in land cover on the discharge of the Tocantins River, Amazonia. J Hydrol 283:206–217. https://doi.org/10.1016/S0022-1694(03)00267-1

    Article  Google Scholar 

  • De Simone O, Haase K, Müller E, Junk WJ, Gonsior GA, Schmidt W (2002) Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Funct Plant Biol 29:1025–1035. https://doi.org/10.1071/PP01239

    Article  PubMed  Google Scholar 

  • Dodd SR, Nancy KW (1988) Cyclophytic effects on wood structure in Pinus radiata D. Don. I. Densitometry and grain angle. Can J For Res 18:406–412. https://doi.org/10.1139/x88-060

    Article  Google Scholar 

  • Dünisch O, Montóia VR, Bauch J (2003) Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17:244–250. https://doi.org/10.1007/s00468-002-0230-2

    Article  Google Scholar 

  • Erfanian A, Wang G, Fomenko L (2017) Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST. Sci Rep 7:5811. https://doi.org/10.1038/s41598-017-05373-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshete G, Stahl G (1999) Tree rings as indicator of growth periodicity of acacias in the Rift Valley of Ethiopia. Forest Ecol Manag 116:107–117. https://doi.org/10.1016/S0378-1127(98)00442-3

    Article  Google Scholar 

  • Espinoza JC, Ronchail J, Marengo JA, Segura H (2019) Contrasting North-South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim Dyn 52:5413–5430. https://doi.org/10.1007/s00382-018-4462-2x

    Article  Google Scholar 

  • Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochim Cosmochim Acta 68:3295–3305. https://doi.org/10.1016/j.gca.2004.01.006

    Article  CAS  Google Scholar 

  • Ferreira ATB, Tomazello Filho M (2009) Caracterização dos anéis de crescimento de árvores de Pinus caribaea var. hondurensis Barr. et Golf. por densitometria de raios X. Sci Forest 37(83):287–298

    Google Scholar 

  • Foley JA, Botta A, Coe MT, Costa MH (2002) El Niño-Southern Oscillation and the climate, ecosystems and rivers of Amazonia. Global Biogeochem Cycles 16:1132. https://doi.org/10.1029/2002GB001872

    Article  CAS  Google Scholar 

  • Fontana C, Santini-Junior L, Olmedo GM, Botosso PC, Tomazello-Filho M, Oliveira JM (2019) Assessment of the dendrochronological potential of Licaria bahiana Kurz, an endemic laurel of lowland Atlantic forests in Brazil. Acta Bot Bras 33:454–464. https://doi.org/10.1590/0102-33062019abb0028

    Article  Google Scholar 

  • Furch K (1997) Chemistry of várzea and igapó soils and nutrient inventory of their floodplain forests. In: Junk WJ (ed) The Central Amazon floodplain: ecology of a pulsing system. Ecological studies, 126. Springer Verlag, Berlin, pp 47–68

    Chapter  Google Scholar 

  • Furch K, Klinge H (1989) Chemical relationship between vegetation, soil and water in contrasting inundation areas of Amazonia. In: Proctor J (ed) Mineral nutrients in tropical forest and savanna ecosystems. Blackwell, Oxford, pp 189–204

    Google Scholar 

  • Gloor M, Brienen RJW, Galbraith D, Feldpausch TR, Schöngart J, Guyot J-L, Espinoza JC, Lloyd J, Phillips OL (2013) Intensification of the Amazon hydrological cycle over the last two decades. Geophys Res Lett 40:1729–1733. https://doi.org/10.1002/grl.50377

    Article  Google Scholar 

  • Gloor M, Barichivich J, Ziv G, Brienen R, Schöngart J, Peylin P, Cintra BBL, Feldpausch T, Phillips O, Baker J (2015) Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests. Global Biogeochem Cycles 29:1384–1399. https://doi.org/10.1002/2014GB005080

    Article  CAS  Google Scholar 

  • Godoy-Veiga M, Slotta F, Alecio PC, Ceccantini G, Buckeridge MS, Locosselli GM (2019) Improved tree-ring visualization using autofluorescence. Dendrochronologia 55:33–42. https://doi.org/10.1016/j.dendro.2019.03.003

    Article  Google Scholar 

  • Goes Ribeiro MN (1976) Aspectos climatológicos de Manaus. Acta Amazónica 6(2):229–233

    Article  Google Scholar 

  • Gouveia NA, Gherardi DFM, Aragão LEOC (2019) The role of the Amazon river plume on the intensification of the hydrological cycle. Geophys Res Lett 46:12221–12229. https://doi.org/10.1029/2019GL084302

    Article  Google Scholar 

  • Granato-Souza D, Adenesky-Filho E, Esemann-Quadros K (2017) Dendrochronology and climatic signals in the wood of Nectandra oppositifolia from a dense rain forest in southern Brazil. J For Res 30:545–553. https://doi.org/10.1007/s11676-018-0687-5

    Article  Google Scholar 

  • Granato-Souza D, Stahle DW, Torbenson MCA, Howard IM, Barbosa AMC, Feng S, Fernandes K, Schöngart J (2020) Multidecadal changes in wet season precipitation totals over the eastern amazon. Geophys Res Lett 47(8):e2020GL087478. https://doi.org/10.1029/2020GL087478

    Article  Google Scholar 

  • Hansen N (2004) Zur retrospektiven Lokalisation von Zuwachszonen in subtropischen Laubhölzern mittels der Methode der Hochfrequenz-Densitometrie. Freiburger forstliche Forschung, Schriftenreihe 27

  • Helama S, Bégin Y, Vartiainen M, Peltola H, Kolström T, Meriläinen J (2012) Quantifications of dendrochronological information from contrasting microdensitometric measuring circumstances of experimental wood samples. Appl Radiat Isot 70(6):1014–1023. https://doi.org/10.1016/j.apradiso.2012.03.025

    Article  CAS  PubMed  Google Scholar 

  • Hoorn C, Bogotá GR, Romero-Baez M, Lammertsma EI, Flantua SGA, Dantas EL, Dino R, Carmo DA, Chemale F Jr (2017) The Amazon at sea: onset and stages of the Amazon River froma marine record, with special reference to Neogene plant turnover in the drainage basin. Glob Planet Change 153:51–65. https://doi.org/10.1016/j.gloplacha.2017.02.005

    Article  Google Scholar 

  • Horna V, Zimmermann R, Müller E, Parolin P (2010) Sap flow and stem respiration. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer Verlag, Dordrecht, pp 223–242

    Chapter  Google Scholar 

  • Irion G, Junk W, Mello JN (1997) The large Central Amazonian River floodplains near Manaus: geological, climatological, hydrological and geomorphological aspects. In: The Central Amazon Floodplain, Springer, Berlin, pp 23–46

  • Irmler U (1986) Temperature dependent generation cycle for the cicindelid beetle Pentacomia egregia Chaud. (Coleoptera, Carabidae, Cicindelidae) of the Amazon valley. Amazoniana 9(3):431–439

    Google Scholar 

  • Junk WJ (1989) Flood tolerance and tree distribution in Central Amazonian floodplains. In: Nielsen L, Nielsen IC, Baisley H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic Press, London, pp 47–64

    Chapter  Google Scholar 

  • Junk WJ, Bayley PB, Sparks RE (1989) The Flood pulse concept in river-floodplain systems. In: Dodge DP (ed) Proceedings of the International Large River Symposium. Can Spec Publ of Fish and Aquat Sci 106, pp 110–127

  • Klusek M, Melvin TM, Grabner M (2015) Multi-century long density chronology of living and sub-fossil trees from Lake Schwarzensee, Austria. Dendrochronologia 33:42–53. https://doi.org/10.1016/j.dendro.2014.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  • Lisi CS, Tomazello Filho M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L, Voigt ARA (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in southeast Brazil. IAWA J 29:189–207. https://doi.org/10.1163/22941932-90000179

    Article  Google Scholar 

  • Marengo JA, Espinoza JC (2016) Extreme seasonal droughts and floods in Amazonia: causes, trends and impacts. Intern J Climatol 36:1033–1050. https://doi.org/10.1002/joc.4420

    Article  Google Scholar 

  • Marengo JA, Tomasella J, Soares WR, Alves LM, Nobre CA (2012) Extreme climatic events in the Amazon basin—climatological and hydrological context of recent floods. Theor Appl Climatol 107:73–85. https://doi.org/10.1007/s00704-011-0465-1

    Article  Google Scholar 

  • Marengo JA, Souza CA Jr, Thonicke K, Burton C, Halladay K, Betts RA, Alves LM, Soares WR (2018) Changes in climate and land use over the Amazon Region: current and future variability and trends. Front Earth Sci 6:228. https://doi.org/10.3389/feart.2018.00228

    Article  Google Scholar 

  • Mariaux A (1967) Les cernes dans les bois tropicaux africains, nature et périodicité. Bois et Forêts des Tropiques 113:3–14

    Google Scholar 

  • Miina P (2000) Dependence of tree-ring, earlywood and latewood indices of Scots pine and Norway spruce on climatic factors in eastern Finland. Ecol Modell 132(5):259–273. https://doi.org/10.1016/S0304-3800(00)00296-9

    Article  Google Scholar 

  • Mikola P (1950) On variations in tree growth and their significance to growth studies. Commun Inst For Fenn 38(5):1–131

    Google Scholar 

  • Nepveu G (1976) Croissance et qualité du bois de Framiré. Evolution de la largeur de cerne et composantes densitométriques en function de l’âge. Bois et Fôrets des Tropiques 165:39–58

    Google Scholar 

  • Neves JRD, Piedade MTF, Resende AF, Feitosa YO, Schöngart J (2019) Impact of climatic and hydrological disturbances on black-water floodplain forests in Central Amazonia. Biotropica 51:484–489. https://doi.org/10.1111/btp.12667

    Article  Google Scholar 

  • Ohashi S, Okada N, Nobuchi T, Siripatanadilok S, Veenin T (2009) Detecting invisible growth rings of trees in seasonally dry forests in Thailand: isotopic and wood anatomical approaches. Trees 23:813–822. https://doi.org/10.1007/s00468-009-0322-3

    Article  Google Scholar 

  • Pagotto MA, DeSoto L, Carvalho A, Nabais C, Tomazello Filho M, Ribeiro A, Lisi CS (2017) Evaluation of X-ray densitometry to identify tree-ring boundaries of two deciduous species from semi-arid forests in Brazil. Dendrochronologia 42:94–103. https://doi.org/10.1016/j.dendro.2017.01.007

    Article  Google Scholar 

  • Parolin P (1997) Auswirkungen periodischer Vernässung und Überflutung auf Phänologie, Photosynthese und Blattphysiologie von Baumarten unterschiedlicher Wachstumsstrategie in zentralamazonischen Überschwemmungsgebieten. Ph.D. thesis, University of Hamburg

  • Parolin P (2002) Seasonal changes of specific leaf mass and leaf size in trees of Amazonian floodplains. Phyton 42:169–185

    Google Scholar 

  • Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Annal Bot 103:359–376. https://doi.org/10.1093/aob/mcn216

    Article  Google Scholar 

  • Parolin P, Junk WJ, Piedade MTF (2001) Gas exchange of six tree species from Central Amazonian floodplains. Trop Ecol 42(1):15–24

    Google Scholar 

  • Parolin P, Armbrüster N, Junk WJ (2002) Seasonal changes of leaf nitrogen content in trees of Amazonian floodplains. Acta Amazon 32(2):231–240

    Article  CAS  Google Scholar 

  • Parolin P, De Simone O, Haase K, Waldhoff D, Rottenberger S, Kuhn U, Kesselmeier J, Schmidt W, Piedade MTF, Junk W (2004) Central Amazon floodplain forests: tree survival in a pulsing system. Bot Rev 70:357–380

    Article  Google Scholar 

  • Parolin P, Wittmann F, Schöngart J (2010) Tree phenology in Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer Verlag, Dordrecht, pp 105–126

    Chapter  Google Scholar 

  • Piedade MTF, Junk WJ, Parolin P (2000) The flood pulse and photosynthetic response of trees in white water floodplain (várzea) of the Central Amazon. Brazil Verh Internt Verein Limnol 27(4):1734–1739

    CAS  Google Scholar 

  • Piedade MTF, Ferreira CS, Oliveira Wittmann A, Buckeride M, Parolin P (2010) Biochemistry of Amazonian floodplain trees. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer Verlag, Dordrecht, pp 127–140

    Chapter  Google Scholar 

  • Pons TL, Helle G (2011) Identification of anatomically non-distinct annual rings in tropical trees using stable isotopes. Trees 25:83–93. https://doi.org/10.1007/s00468-010-0527-5

    Article  Google Scholar 

  • Poorter L, McDonald I, Alarcón A, Fichtler E, Licona J-C, Peña-Claros M, Sterck F, Villegas Z, Saas-Klaasen U (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rain forest tree species. New Phytol 185:481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x

    Article  PubMed  Google Scholar 

  • Rahman M, Islam M, Bräuning A (2018) Tree radial growth is projected to decline in South Asian moist forest trees under climate change. Glob Planet Change 170:106–119. https://doi.org/10.1016/j.gloplacha.2018.08.008

    Article  Google Scholar 

  • Ramírez Correa JA, Grajales ECM, Escobar MB (2010) Anillos Anuales y Clima en Rhizophora mangle L. de la Bahía de Cispatá, Colombia. Revista Facultad Nacional Agronomía, Medellín 63(2):5639–5650

    Google Scholar 

  • Reis-Avila G, Oliveira JM (2017) Lauraceae: a promising family for the advance of neotropical dendrochronology. Dendrochronologia 44:103–116. https://doi.org/10.1016/j.dendro.2017.04.002

    Article  Google Scholar 

  • Resende AF, Piedade MTF, Feitosa YO, Andrade VHF, Trumbore SE, Durgante FM, Macedo MO, Schöngart J (2020) Flood-pulse disturbances as a threat for long-living Amazonian trees. New Phytol. https://doi.org/10.1111/nph.16665

    Article  PubMed  Google Scholar 

  • Schinker M, Hansen N, Spiecker H (2003) High-frequency densitometry—a new method for the rapid evaluation of wood density variations. IAWA J 24(3):231–239. https://doi.org/10.1163/22941932-90001592

    Article  Google Scholar 

  • Schnackenburg P, Bräuning A, Helle G (2008) Detecting annual growth rhythms from high-frequency densitometry and carbon isotopes in tropical mountain rain forest trees in southern Ecuador. In: Elferts D, Brumelis G, Gärtner H, Helle G, Schleser G (eds). TRACE—tree rings in archaeology, climatology and ecology, Vol 6: Proceedings of the Dendrosymposium 2007, Riga, Latvia. GFZ Potsdam, Scientific Technical Report STR 08/05, Potsdam, pp 96–99

  • Schöngart J (2003) Dendrochronologische Untersuchungen in Überschwemmungs-wäldern der Várzea Zentralamazoniens. Göttinger Beiträge zur Land- und Forstwirtschaft in den Tropen und Subtropen 149, Erich Goltze Verlag, Göttingen

  • Schöngart J, Junk WJ (2007) Forecasting the flood-pulse in Central Amazonia by ENSO-indices. J Hydrol 335:124–132. https://doi.org/10.1016/j.jhydrol.2006.11.005

    Article  Google Scholar 

  • Schöngart J, Junk WJ (2020) Clima e hidrologia nas várzeas da Amazônia Central. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J (eds) Várzeas Amazônicas: Desafios para um Manejo Sustentável. Editora INPA, Manaus, pp 44–65

    Google Scholar 

  • Schöngart J, Piedade MTF, Ludwigshausen S, Horna V, Worbes M (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597. https://doi.org/10.1017/S0266467402002389

    Article  Google Scholar 

  • Schöngart J, Junk WJ, Piedade MTF, Ayres JM, Hüttermann A, Worbes M (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño-Southern Oscillation effect. Glob Chang Bio 10:683–692. https://doi.org/10.1111/j.1529-8817.2003.00754.x

    Article  Google Scholar 

  • Schöngart J, Piedade MTF, Wittmann F, Junk WJ, Worbes M (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461. https://doi.org/10.1007/s00442-005-0147-8

    Article  PubMed  Google Scholar 

  • Schöngart J, Wittmann F, Worbes M (2010) Biomass and NPP of Central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological Studies, vol 210. Springer Verlag, Dordrecht, pp 347–388

    Chapter  Google Scholar 

  • Schöngart J, Gribel R, Ferreira da Fonseca-Junior S, Haugaasen T, Group PP, Cient D, Management NR (2015) Age and growth patterns of Brazil Nut Trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biotropica 47:550–558. https://doi.org/10.1111/btp.12243

    Article  Google Scholar 

  • Schöngart J, Bräuning A, Barbosa ACMC, Lisi SG, Oliveira JM (2017) Dendroecological studies in the neotropics: history, status and future challenges. In: Amoroso MM, Daniels LD, Baker PJ, Camarero JJ (eds) Dendroecology. Ecological Studies (Analysis and Synthesis), vol 231. Springer, Cham, pp 35–73

    Google Scholar 

  • Schöngart J, Wittmann F, Resende AF, Assahira C, Lobo GS, Neves JRD, Rocha M, Mori GB, Quaresma AC, Demarchi LO, Albuquerque BW, Feitosa YO, Costa GS, Feitoza GV, Durgante FM, Lopes A, Trumbore SE, Silva TSF, ter Steege H, Val AL, Junk WJ, Piedade MTF (2021) The shadow of the Balbina dam—a synthesis of over 35 years of downstream impacts on floodplain forests in Central Amazonia. Aquat Conserv. https://doi.org/10.1002/aqc.3526

    Article  Google Scholar 

  • Schweingruber FH (1990) Radiodensitometry. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology: applications in the environmental sciences. Springer, Netherlands, pp 55–63

    Google Scholar 

  • Schweingruber FH, Bräker OU, Schär E (1978) X-ray densitometric results for subalpine conifers and their relationship to climate. In: Fletcher J (ed) Dendrochronology in Europe. British Archaeological Reports, International Series 51, pp 89–100

  • Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, Trotsiuk V, Mairota P, Svoboda M, Fabrika M, Nagel TA, Reyer CPO (2017) Forest disturbances under climate change. Nature Clim Change 7:395–402. https://doi.org/10.1038/nclimate3303

    Article  Google Scholar 

  • Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A et al (2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol Lett 18:1406–1419

    Article  PubMed  Google Scholar 

  • Sombroek WG (1984) Soils of the Amazon Region. In: Sioli H (ed) The Amazon,limnology and landscape ecology of amighty tropical river and its basin. Dr. W. Junk Publishers, Dordrecht, pp 521–536

    Chapter  Google Scholar 

  • Spathelf P, Tomazello Filho M, Tonini H (2010) Dendroecological analysis of Ocotea pulchella and Nectandra maegapotamica on two sites near Santa Maria, Rio Grande do Sul (Brazil). Floresta 40(4):777–788

    Google Scholar 

  • Speer J (2010) Fundamentals of tree ring research. The University of Arizona Press, Tucson

    Google Scholar 

  • Sullivan MJP, Lewis SL, Affum-Baffoe K, Castilho C, Costa F, Sanchez AC, Ewango CEN, Hubau W, Marimon B, Monteagudo-Mendoza A, Qie L, Sonké B, Martinez RV, Baker TR, Brienen RJW, Feldpausch TR, Galbraith D, Gloor M, Malhi Y, Aiba S-I, Alexiades MN, Almeida EC, de Oliveira EA, Dávila EÁ, Loayza PA, Andrade A, Vieira SA, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Ashton P, Aymard CG, Baccaro FB, Banin LF, Baraloto C, Camargo PB, Barlow J, Barroso J, Bastin J-F, Batterman SA, Beeckman H, Begne SK, Bennett AC, Berenguer E, Berry N, Blanc L, Boeckx P, Bogaert J, Bonal D, Bongers F, Bradford M, Brearley FQ, Brncic T, Brown F, Burban B, Camargo JL, Castro W, Céron C, Ribeiro SC, Moscoso VC, Chave J, Chezeaux E, Clark CJ, de Souza FC, Collins M, Comiskey JA, Valverde FC, Medina MC, da Costa L, Dancák M, Dargie GC, Davies S, Cardozo ND, de Haulleville T, de Medeiros MB, del Aguila PJ, Derroire G, Di Fiore A, Doucet J-L, Dourdain A, Droissant V, Duque LF, Ekoungoulou R, Elias F, Erwin T, Esquivel-Muelbert A, Fauset S, Ferreira J, Llampazo GF, Foli E, Ford A, Gilpin M, Hall JS, Hamer KC, Hamilton AC, Dj H, Hart TB, Hédl R, Herault B, Herrera R, Higuchi N, Hladik A, Coronado EH, Huamantupa-Chuquimaco I, Huasco WH, Jeffery KJ, Jimenez-Rojas E, Kalamandeen M, Djuikouo MNK, Kearsley E, Umetsu RK, Kho LK, Killeen T, Kitayama K, Klitgaard B, Koch A, Labrière N, Laurance W, Laurance S, Leal ME, Levesley A, Lima AJN, Lisingo J, Lopes AP, Lopez-Gonzalez G, Lovejoy T, Lovett JC, Lowe R, Magnusson WE, Malumbres-Olarte J, Manzatto ÂG, Marimon BH, Marshall AR, Marthews T, de Almeida Reis SM, Maycock C, Melgaço K, Mendoza C, Metali F, Mihindou V, Milliken W, Mitchard ETA, Morandi PS, Mossman HL, Nagy L, Nascimento H, Neill D, Nilus R, Vargas PN, Palacios W, Camacho NP, Peacock J, Pendry C, Peñuela Mora MC, Pickavance GC, Pipoly J, Pitman N, Playfair M, Poorter L, Poulsen JR, Poulsen AD, Preziosi R, Prieto A, Primack RB, Ramírez-Angulo H, Reitsma J, Réjou-Méchain M, Correa ZR, de Sousa TR, Bayona LR, Roopsind A, Rudas A, Rutishauser E, Abu Salim K, Salomão RP, Schietti J, Sheil D, Silva RC, Espejo JS, Valeria CS, Silveira M, Simo-Droissart M, Simon MF, Singh J, Soto Shareva YC, Stahl C, Stropp J, Sukri R, Sunderland TCH, Svátek M, Swaine MD, Swamy V, Taedoumg H, Talbot J, Taplin J, Taylor D, Ter Steege H, Terborgh J, Thomas R, Thomas SC, Torres-Lezama A, Umunay P, Gamarra LV, Van Der Heijden G, van der Hout P, Van der Meer P, van Nieuwstadt M, Verbeeck H, Vernimmen R, Vicentini A, Vieira ICG, Torre EV, Vleminckx J, Vos V, Wang O, White LJT, Willcock S, Woods JT, Wortel V, Young K, Zagt R, Zemagho L, Zuidema PA, Zwerts JA, Phillips OL (2020) Long-term thermal sensitivity of Earth’s tropical forests. Science 368:869–874. https://doi.org/10.1126/science.aaw7578

    Article  CAS  PubMed  Google Scholar 

  • Targhetta N, Kesselmeier J, Wittmann F (2015) Effects of the hydroedaphic gradient on tree species composition and aboveground wood biomass of oligotrophic forest ecosystems in the central Amazon basin. Folia Geobot 50:185–205. https://doi.org/10.1007/s12224-015-9225-9

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Johns Hopkins Univ, Laboratory in Climatology, Publ in Climat 8(1)

  • Timpe K, Kaplan D (2017) The changing hydrology of a dammed Amazon. Sci Adv 3:e1700611. https://doi.org/10.1126/sciadv.1700611

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomazello Filho M, Brazolin S, Chagas MP, Oliveira JTS, Ballarin AW, Benjamin CA (2008) Application of X-ray technique in nondestructiveevaluation of Eucalypt wood. Maderas Ciência Tecnologia 10:139–145. https://doi.org/10.4067/S0718-221X2008000200006

    Article  Google Scholar 

  • Verheyden A, Helle G, Schleser GH, Dehairs F, Beeckman H, Koedam N (2004) Annual cyclicity in high-resolution stable carbon and oxygen isotope ratios in the wood of the mangrove tree Rhizophora mucronata. Plant Cell Environ 27:1525–1536. https://doi.org/10.1111/j.1365-3040.2004.01258.x

    Article  Google Scholar 

  • Vetter RE (1995) Untersuchungen über Zuwachsrhythmen an tropischen Bäumen in Amazonien. PhD Thesis, University of Freiburg

  • Victoria RL, Martinelli LA, Richey JE, Forsberg BR (1989) Spatial and temporal variations in soil chemistry on the Amazon Floodplain. GeoJournal 19:45–52. https://doi.org/10.1007/BF00620548

    Article  Google Scholar 

  • Vieira J, Campelo F, Nabais C (2009) Age-dependent responses of tree-ring growth and intra-annual density fluctuations of Pinus pinaster to Mediterranean climate. Trees 23:257–265. https://doi.org/10.1007/s00468-008-0273-0

    Article  Google Scholar 

  • Waldhoff D, Parolin P (2010) Morphology and anatomy of leafs. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer Verlag, Dordrecht, pp 179–202

    Chapter  Google Scholar 

  • Wang L, Payetete S, Bégin Y (2001) 1300-year tree-ring width and density series based on living, dead and subfossil black spruce at tree-line in Subartic Québec. Canada Holocene 11(3):333–341. https://doi.org/10.1191/095968301674769686

    Article  CAS  Google Scholar 

  • Wang X, Li X, Zhu J, Tanajuta CAS (2018) The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. Environ Res Lett 13:094015. https://doi.org/10.1088/1748-9326/aadbb9

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series with applications in dendroclimatology and hydrometeorology. J Climate Appl Meteorol 23:201–221. https://doi.org/10.1175/1520-0450(1984)023%3c0201:OTAVOC%3e2.0.CO;2

    Article  Google Scholar 

  • WinklerPrins AMGA (2006) Jute cultivation in the lower Amazon, 1940–1990: an ethnographic account from Santarém, Pará, Brazil. J Hist Geogr 32:818–838. https://doi.org/10.1016/j.jhg.2005.09.028

    Article  Google Scholar 

  • Wittmann F (2012) Tree species composition and diversity in Brazilian freshwater floodplains. In: Pagano M (ed) Mycorrhiza: occurrence and role in aquatic and riparian environments. Nova Science, New York, pp 223–263

    Google Scholar 

  • Wittmann F, Junk WJ (2016) The Amazon River basin. In: Finlayson CM, Milton GR, Prentice RC, Davidson NC (eds) The wetland book II: distribution, description and conservation. Springer Verlag, New York, pp 1–20

    Google Scholar 

  • Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of Central Amazonian várrzea forests by remote sensing techniques. J Trop Ecol 18:805–820. https://doi.org/10.1017/S0266467402002523

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Montero JC, Motzer T, Junk WJ, Piedade MTF, Queiroz HL, Worbes M (2006) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347. https://doi.org/10.1111/j.1365-2699.2006.01495.x

    Article  Google Scholar 

  • Wittmann F, Schöngart J, Junk WJ (2010a) Phytogeography, species diversity, community structure and dynamics of central Amazonian floodplain forests. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian floodplain forests: ecophysiology, biodiversity and sustainable management. ecological studies, vol 210. Springer Verlag, Dordrecht, pp 61–102

    Chapter  Google Scholar 

  • Wittmann F, Schöngart J, Brito JM, Oliveira Wittmann A, Piedade MTF, Parolin P, Junk WJ, Guillaumet JL (2010b) Manual of trees from central Amazonian várzea floodplains: taxonomy, ecology, and use—Manual de Árvores de Várzea da Amazônia Central. Taxonomia, Ecologia e Uso. Editora INPA, Manaus

  • Wittmann F, Householder E, Piedade MTF, Assis RLJ, Schöngart J, Parolin P, Junk WJ (2013) Habitat specificity, endemism and the neotropical distribution of Amazon white-water floodplain trees. Ecography 36:690–707. https://doi.org/10.1111/j.1600-0587.2012.07723.x

    Article  Google Scholar 

  • Worbes M (1986) Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Erich Goltze, Göttingen. Scripta Geobotanica 17:1–112

    Google Scholar 

  • Worbes M (1989) Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the neotropics. IAWA J 10:109–122. https://doi.org/10.1163/22941932-90000479

    Article  Google Scholar 

  • Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central amazon floodplain: ecology of a pulsating system. Ecological studies, vol 126. Springer Verlag, Berlin, pp 223–265

    Chapter  Google Scholar 

  • Worbes M (2002) One hundred years of tree-ring research in the tropics—a brief history and an outlook to future challenges. Dendrochronologia 20:217–231. https://doi.org/10.1078/1125-7865-00018

    Article  Google Scholar 

  • Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F, Schöngart J, Parolin P (eds) Central Amazonian Floodplain forests: ecophysiology, biodiversity and sustainable management. Ecological studies, vol 210. Springer Verlag, Dordrecht, pp 329–346

    Chapter  Google Scholar 

  • Worbes M, Klinge H, Revilla JD, Martius C (1992) On the dynamics, floristic subdivision and geographical distríbutíon of várzea forests in Central Amazônia. J Veg Sci 3:553–564. https://doi.org/10.2307/3235812

    Article  Google Scholar 

  • Worbes M, Klosa D, Lewark S (1995) Rohdichtestruktur von Jahresringen tropischer Hölzer aus zentralamazonischen Überschwemmungswäldern. Holz als Roh- und Werkstoff 53:63–67

    Article  Google Scholar 

  • Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34:249–264. https://doi.org/10.1007/s00382-009-0551-6

    Article  Google Scholar 

Download references

Acknowledgements

This contribution is part of the Master thesis of JQG at the Instituto Nacional de Pesquisas da Amazônia (INPA, PPG-ECO), which was supported by a fellowship from the Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM). This research was made possible by the German-Brazilian project ATTO (Amazon Tall Tower Observatory), supported by the German Federal Ministry of Education and Research (BMBF contracts 01LB1001A and 01LK1602) and the Brazilian Ministério da Ciência, Tecnologia e Inovação (MCTI/FINEP contract 01.11.01248.00). We, furthermore, acknowledge the support by the Amazon State University (UEA), FAPEAM, LBA/INPA, and SDS/CEUC/RDS-Uatumã. We thank the Brazilian National Council for Scientific and Technological Development (CNPq) for support by the Long-term Ecological Research Program–PELD (MCTI/CNPq/FAPs; Grant number: 403792/2012-6) and the Technical/Scientific Cooperation between INPA and the Max-Planck Society for financial support. DROR acknowledges the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for research fellowship (Grant number 2018/22914-8). JS acknowledges support from CNPq (Grant number: 311874/2017-7). We thank the Wood Anatomy and Tree-Ring Laboratory (LAIM) (FAPESP; Grant umber 2009/53951-7) and PIRE-project (FAPESP; Grant number 2017/50085-3). We thank EMBRAPA (Brazilian Agricultural Research Corporation) Amazônia Ocidental for providing climate data; Aparecido Cândido Siqueira for technical support at the laboratory of USP/ESALQ; Celso Rabelo Costa, Mario Luiz Picanço Marinho, Gildo Feitoza Vieira, Alberto Fialho (Cunha) for field work assistance and Anderson de Araújo Reis for creating the map of Catalão Lake location.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Schöngart.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Ethical statement

This manuscript is not currently being considered for publication in another journal.

Additional information

Communicated by S. Vospernik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 294 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, J.Q., Durgante, F.M., Wittmann, F. et al. Minimum temperature and evapotranspiration in Central Amazonian floodplains limit tree growth of Nectandra amazonum (Lauraceae). Trees 35, 1367–1384 (2021). https://doi.org/10.1007/s00468-021-02126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-021-02126-7

Keywords

Navigation