Skip to main content
Log in

Ontogenetic variations in leaf morphology of the tropical rain forest species Dipterocarpus alatus Roxb. ex G. Don

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Under natural conditions ontogenetic development often coincides with changes in environmental factors. When explaining variations in leaf parameters, analyses based solely on environmental factors will lead to significant errors if the plant shows substantial ontogenetic variations in leaf properties. We evaluated intraspecific variations in eight morphological leaf traits of Dipterocarpus alatus over six architectural development stages under two different light conditions. An architectural analysis was conducted to distinguish precisely and objectively developmental stages of D. alatus. Leaves were collected on the most recent complete growth unit on the trunks of trees growing under two different light conditions. Eight leaf morphological traits were measured and calculated using ImageJ on greyscale images of leaf tracings. One-way ANOVA and Tukey tests were used to determine differences in leaf traits during ontogeny. The correlation coefficients were compared to determine whether leaf traits correlated more strongly with ontogenetic stage than with light intensity. D. alatus develops through a progressive transformation of its structure and architecture that adds one new axis category stage after stage. Specific leaf area, blade shape index and leaf dissection index decreased whereas blade area, perimeter, length, width and blade dry weight increased. Leaf traits correlated more strongly with ontogenetic stage than with light intensity. Our results demonstrated that studies on the responses of leaf traits to the environment may need to be corrected for an ontogeny effect. To strengthen this conclusion, future work should evaluate leaf variations during the ontogeny of different axis orders and/or axis categories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdul-Hamid H, Mencuccini M (2008) Age and size related changes in growth of Acer pseudoplatanus and Fraxinus excelsior species. Am J Plant Physiol 3(4):137–153

    Article  Google Scholar 

  • Abramoff M, Magelhaes PJ, Ram SJ (2004) Image processing with Image. J. Biophotonics Int 11:36–42

    Google Scholar 

  • Ackerly DD, Reich PB (1999) Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot 86:1272–1281

    Article  PubMed  CAS  Google Scholar 

  • Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002) Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. Oecologia 130(3):449–457

    Article  Google Scholar 

  • Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S (2010) A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct Ecol 24(6):1192–1201

    Article  Google Scholar 

  • Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21(7):1877–1896

    Article  PubMed  CAS  Google Scholar 

  • Arthur W (2000) Intraspecific variation in developmental characters: the origin of evolutionary novelties. Amer Zool 40(5):811–818

    Article  Google Scholar 

  • Ashton PMS, Olander LP, Berlyn GP, Thadani R, Cameron IR (1998) Changes in leaf structure in relation to crown position and tree size of Betula papyrifera within fire-origin stands of interior cedar-hemlock. Can J Bot 76(7):1180–1187

    Google Scholar 

  • Barthélémy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot Lond 99(3):375–407

    Article  Google Scholar 

  • Blanc L (1998) Les formations forestières du parc national de Cat Tien (Viêt-nam): caractérisation structurale et floristique, étude de la régénération naturelle et de la dynamique successionnelle. Dissertation, Université Claude Bernard—Lyon 1, Lyon

  • Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matters in community ecology. Trends Ecol Evol 26(4):183–192

    Article  PubMed  Google Scholar 

  • Burns KC, Beaumont SAM (2009) Scale-dependent trait correlations in a temperate tree community. Austral Ecol 34(6):670–677

    Article  Google Scholar 

  • Caraglio Y, Nicolini E, Petronelli P (2001) Observations on the links between the architecture of a tree (Dicorynia guianensis Amshoff) and Cerambycidae activity in French Guiana. J Trop Ecol 17(03):459–463

    Article  Google Scholar 

  • Claßen-Bockhoff R (2001) Plant morphology: the historic concepts of Wilhelm Troll, Walter Zimmermann and Agnes Arber. Ann Bot Lond 88(6):1153–1172

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege HT, Morgan HD, Heijden MGAVD, Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51(4):335–380

    Article  Google Scholar 

  • Corner EJH (1949) The Durian theory or the origin of the modern tree. Ann Bot Lond 13:367–414

    Google Scholar 

  • Coste S, Roggy JC, Garraud L, Heuret P, Nicolini E, Dreyer E (2009) Does ontogeny modulate irradiance-elicited plasticity of leaf traits in saplings of rain-forest tree species? A test with Dicorynia guianensis and Tachigali melinonii (Fabaceae, Caesalpinioideae). Ann For Sci 66(7):12

    Article  Google Scholar 

  • Cowling RM, Campbell BM (1980) Convergence in vegetation structure in the Mediterranean communities of California, Chile and South Africa. Vegetatio 43:191–197

    Article  Google Scholar 

  • de Bello F, Lavorel S, Albert CH, Thuiller W, Grigulis K, Dolezal J, Janeček Š, Lepš J (2011) Quantifying the relevance of intraspecific trait variability for functional diversity. Method Ecol Evol 2(2):163–174

    Article  Google Scholar 

  • Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004) The plant traits that drive ecosystems: evidence from three continents. J Veg Sci 15(3):295–304

    Google Scholar 

  • Durand M (1999) Apport de l’analyse architecturale des arbres dans l’étude de la structure des forets tropicales sempervirentes: cas d’une forêt dense humide du Sud de l’Inde. Dissertation, Université de Montpellier 2, Montpellier

  • Edelin C (1984) L’architecture monopodiale: l’exemple de quelques arbres d’Asie Tropicale. Dissertation, Université Montpellier 2 Montpellier

  • England J, Attiwill P (2006) Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans. F Muell Trees 20(1):79–90

    Article  Google Scholar 

  • Fajardo A, Piper FI (2010) Intraspecific trait variation and covariation in a widespread tree species (Nothofagus pumilio) in southern Chile. New Phytol 189(1):259–271

    Article  PubMed  Google Scholar 

  • Gatsuk LE, Smirnova OV, Vorontzova LI, Zaugolnova LB, Zhukova LA (1980) Age states of plants of various growth forms: a review. J Ecol 68:675–696

    Article  Google Scholar 

  • Givnish TJ (1984) Leaf and canopy adaptations in tropical forests. In: Medina E, Mooney HA, Vasquez Yanes C (eds) Physiological ecology of plants in the wet tropics. W. Junk, The Hague, pp 51–84

    Chapter  Google Scholar 

  • Goebel K (1889) Organography of plant, Part 1. Claredon Press, Oxford

    Google Scholar 

  • Hallé F, Oldeman RAA (1970) Essai sur l’architecture et la dynamique de croissance des arbres tropicaux. Masson, Paris

    Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forest—an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Hegazy A, El Amry M (1998) Leaf temperature of desert sand dune plants: perspectives on the adaptability of leaf morphology. Afr J Ecol 36(1):34–43

    Article  Google Scholar 

  • Kenzo T, Ichie T, Watanabe Y, Yoneda R, Ninomiya I, Koike T (2006) Changes in photosynthesis and leaf characteristics with tree height in five dipterocarp species in a tropical rain forest. Tree Physiol 26(7):865–873

    Article  PubMed  CAS  Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428(6985):851–854

    Article  PubMed  CAS  Google Scholar 

  • Lamont BB, Groom PK, Cowling RM (2002) High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol 16(3):403–412

    Article  Google Scholar 

  • Lauri PÉ, Térouanne E (1991) Eléments pour une approche morphométrique de la croissance végétale et de la floraison: le cas d’expèces tropicales du modèle de Leeuwenberg. Can J Bot 69:2095–2112

    Article  Google Scholar 

  • Leroy C, Heuret P (2008) Modelling changes in leaf shape prior to phyllode acquisition in Acacia mangium Willd. seedlings. C R Biol 331(2):127–136

    Article  PubMed  Google Scholar 

  • McDonald PG, Fonseca CR, Overton JM, Westoby M (2003) Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct Ecol 17(1):50–57

    Article  Google Scholar 

  • McLellan T, Endler JA (1998) The relative success of some methods for measuring and describing the shape of complex objects. Syst Biol 47(2):264–281

    Article  Google Scholar 

  • Meng X-L, Rosenthal R, Rubin DB (1992) Comparing correlated correlation coefficients. Psychol B 111(1):172–175

    Article  Google Scholar 

  • Milla R, Reich PB (2010) Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann Bot Lond 107(3):455–465

    Article  Google Scholar 

  • Milla R, Reich PB, Niinemets Ü, Castro-Díez P (2008) Environmental and developmental controls on specific leaf area are little modified by leaf allometry. Funct Ecol 22(4):565–576

    Article  Google Scholar 

  • Nicolini E, Caraglio Y, Pélissier R, Leroy C, Roggy JC (2003) Epicormic branches: a growth indicator for the tropical forest tree, Dicorynia guianensis Amshoff (Caesalpiniaceae). Ann Bot Lond 92(1):97–105

    Article  Google Scholar 

  • Nozeran (1984) Integration of organismal development. In: Barlow PW, Carr DJ (eds) Positional controls in plant development. Cambridge University Press, Cambridge, pp 375–401

    Google Scholar 

  • Obeso J, Herrera C (1994) Inter- and intraspecific variation in fruit traits in co-occurring vertebrate-dispersed plants. Int J Plant Sci 155:382–387

    Article  Google Scholar 

  • Osone Y, Ishida A, Tateno M (2008) Correlation between relative growth rate and specific leaf area requires associations of specific leaf area with nitrogen absorption rate of roots. New Phytol 179(2):417–427

    Article  PubMed  CAS  Google Scholar 

  • Parkhurst DF, Loucks OL (1972) Optimal leaf size in relation to environment. J Ecol 60:505–537

    Article  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182(3):565–588

    Article  PubMed  Google Scholar 

  • Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2011) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol 193(1):30–50

    Article  PubMed  Google Scholar 

  • Reich A, Holbrook NM, Ewel JJ (2004) Developmental and physiological correlates of leaf size in Hyeronima alchorneoides (Euphorbiaceae). Am J Bot 91(4):582–589

    Article  PubMed  Google Scholar 

  • Richardson AD, Ashton PMS, Berlyn GP, McGroddy ME, Cameron IR (2001) Within-crown foliar plasticity of Western Hemlock, Tsuga heterophylla, in relation to stand age. Ann Bot Lond 88(6):1007–1015

    Article  Google Scholar 

  • Roggy JC, Nicolini E, Imbert P, Caraglio Y, Bosc A, Heuret P (2005) Links between tree structure and functional leaf traits in the tropical forest tree Dicorynia guianensis Amshoff (Caesalpiniaceae). Ann For Sci 62:12

    Article  Google Scholar 

  • Royer DL, Wilf P, Janesko DA, Kowalski EA, Dilcher DL (2005) Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. Am J Bot 92(7):1141–1151

    Article  PubMed  Google Scholar 

  • Ryan MG, Phillips N, Bond BJ (2006) The hydraulic limitation hypothesis revisited. Plant Cell Environ 29(3):367–381

    Article  PubMed  Google Scholar 

  • Sack L, Melcher PJ, Liu WH, Middleton E, Pardee T (2006) How strong is intracanopy leaf plasticity in temperate deciduous trees? Am J Bot 93(6):829–839

    Article  PubMed  Google Scholar 

  • Schuepp PH (1993) Leaf boundary layers. New Phytol 125(3):477–507

    Article  Google Scholar 

  • Smith WK (1978) Temperatures of desert plants: another perspective on the adaptability of leaf size. Science 201:614–616

    Article  PubMed  CAS  Google Scholar 

  • Takenaka A (1994) Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecol Res 9(2):109–114

    Article  Google Scholar 

  • Thomas SC, Ickes K (1995) Ontogenetic changes in leaf size in Malaysian rain forest trees. Biotropica 27(4):427–434

    Article  Google Scholar 

  • Tsukaya H (2005) Leaf shape: genetic controls and environmental factors. Int J Dev Biol 49:547–555

    Article  PubMed  Google Scholar 

  • Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J (2012) The return of the variance: intraspecific variability in community ecology. Trends Ecol Evol 27(4):244–252

    Article  PubMed  Google Scholar 

  • Wilf P, Wing SL, Greenwood DR, Greenwood CL (1998) Using fossil leaves as paleoprecipitation indicators: an Eocene example. Geology 26:203–206

    Article  Google Scholar 

  • Wolfe JA (1993) A method of obtaining climatic parameters from leaf assemblages. US Geol Surv B 2040:1–71

    Google Scholar 

  • Wolfe JA (1995) Paleoclimatic estimates from tertiary leaf assemblages. Annu Rev Earth Pl Sci 23:119–142

    Article  CAS  Google Scholar 

  • Woodruff DR, Bond BJ, Meinzer FC (2004) Does turgor limit growth in tall trees? Plant Cell Environ 27(2):229–236

    Article  Google Scholar 

  • Wright SD, McConnaughay KDM (2002) Interpreting phenotypic plasticity: the importance of ontogeny. Plant Species Biol 17(2–3):119–131

    Article  Google Scholar 

  • Wright IJ, Westoby M (2001) Understanding seedling growth relationships through specific leaf area and leaf nitrogen concentration: generalisations across growth forms and growth irradiance. Oecologia 127(1):21–29

    Article  Google Scholar 

  • Wright IJ, Westoby M, Reich PB (2002) Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. J Ecol 90(3):534–543

    Article  Google Scholar 

  • Yamada T, Suzuki E (1996) Ontogenic change in leaf shape and crown form of a tropical tree, Scaphium macropodum (Sterculiaceae) in Borneo. J Plant Res 109(2):211–217

    Article  Google Scholar 

  • Zotz G, Wilhelm K, Becker A (2011) Heteroblasty—a review. Bot Rev 77(2):109–151

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Agence Universitaire de la Francophonie (AUF), program Sud Experts Plantes (SEP), University of Montpellier 2 (UM2), France and Vietnam International Education Development, programme 322 (VIED), Vietnam. We thank Gilles Le Moguédec for his advice on data analysis; Mark Jones for English revision; Nick Rowe, Hervé Rey and one anonymous reviewer for their useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Tuan Dang-Le.

Additional information

Communicated by M. Shane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dang-Le, A.T., Edelin, C. & Le-Cong, K. Ontogenetic variations in leaf morphology of the tropical rain forest species Dipterocarpus alatus Roxb. ex G. Don. Trees 27, 773–786 (2013). https://doi.org/10.1007/s00468-012-0832-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-012-0832-2

Keywords

Navigation