Skip to main content

Advertisement

Log in

Roman impact on the landscape near castellum Fectio, The Netherlands

  • Original Article
  • Published:
Vegetation History and Archaeobotany Aims and scope Submit manuscript

Abstract

Castellum Fectio was one of the largest fortifications along the Limes, the northern border of the Roman Empire. The castellum, situated 5 km southeast of Utrecht, the Netherlands, was occupied from around the start of our Era to ca. a.d. 260. It was situated along a river bend of the Rhine that was cut off from the main stream during the occupation of the Roman fort. A 6 m long sediment sequence was recovered from the infill of the residual channel and pieces of Roman wall plaster, glume bases of Triticum spelta and radiocarbon dates indicate that the sediments were deposited during the period of Roman occupation. The combined palaeoecological analyses—palynological, macrobotanical, entomological and geochemical—allow a detailed reconstruction of changing environmental conditions as a consequence of the Roman occupation. The pollen record reveals a dramatic decrease in arboreal pollen, suggesting that the Romans were involved in large-scale deforestation, transforming semi-open parkland to a landscape of meadows and agricultural fields. Non-pollen palynomorphs, botanical macrofossils and insect remains support this conclusion. The recorded mycoflora shows a shift from assemblages characterised by the tree pathogen Kretzschmaria deusta to assemblages dominated by spores of fungi associated with herbaceous plants, concurrent with the decrease in arboreal pollen. The presence of masticated bran fragments of cereals, clover remains, eggs of intestinal parasites and entomological and geochemical data in the upper part of the sequence indicates that these sediments largely consist of faeces that were dumped into the former channel. Surprisingly, seeds of salt tolerant species are encountered in the sediments of this inland site, which was situated outside the influence of the sea. Horses may have brought these seeds to Fectio in their intestinal tracts after grazing in coastal meadows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Appleyard HM (1978) Guide to the identification of animal fibres. Wira, Leeds

    Google Scholar 

  • Bakels CC (2010) De vroegste vondsten van bolderik (Agrostemma githago L.) in. In: Bakels CC, Fennema K, Out WA, Vermeeren C (eds) Of plants and snails. Sidestone Press, Leiden, pp 13–20

    Google Scholar 

  • Bakker JP, Gálvez Bravo L, Mouissie AM (2007) Dispersal by cattle of salt-marsh and dune species into salt-marsh and dune communities. Plant Ecol 179:43–45

    Google Scholar 

  • Behre KE (1969) Der Wert von Holzartenbestimmungen aus vorgeschichtlichen Siedlungen (dargestellt an Beispielen aus Norddeutschland). Neue Ausgrab Forsch Nds 4:348–358

    Google Scholar 

  • Behre KE (1979) Zur Rekonstruktion ehemaliger Pflanzengesellschaften an der deutschen Nordseeküste. In: Wilmanns O, Tüxen R (eds) Werden und Vergehen von Pflanzengesellschaften. Cramer, Vaduz, pp 181–214

    Google Scholar 

  • Behre KE (1981) The interpretation of anthropogenic indicators in pollen diagrams. Pollen Spores 23:225–245

    Google Scholar 

  • Bethell PH, Goad LJ, Evershed RP, Ottaway J (1994) The study of molecular markers of human activity: the use of coprostanol in the soil as an indicator of human faecal material. J Archaeol Sci 21:619–632

    Article  Google Scholar 

  • Beug HJ (2004) Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Pfeil, München

    Google Scholar 

  • BLWG Verspeidingsatlas Online (2013) http://www.verspreidingsatlas.nl/mossen. Accessed Apr 2013

  • Bouchet F, Guidon N, Dittmar K, Harter S, Ferreira LF, Chaves SM, Reinhard K, Araújo A (2003) Parasite remains in archaeological sites. Memórias do Instituto Oswaldo Cruz 98:47–52

    Article  Google Scholar 

  • Brinkkemper O (1993) Wetland farming in the area to the south of the Meuse estuary during the Iron Age and Roman Period. An environmental and palaeo-economic reconstruction. Thesis Leiden, Analecta Praehist Leidensia 24, University of Leiden, Leiden

  • Brunner H, Coman BJ (1974) The identification of mammalian hair. Inkata Press, Melbourne

    Google Scholar 

  • Bull ID, Betancourt PP, Evershed RP (1999a) Chemical evidence for a structured agricultural manuring regime on the island of Pseira, Crete during the Minoan Period. Aegaeum 20:69–74

    Google Scholar 

  • Bull ID, Simpson IA, van Bergen PF, Evershed RP (1999b) Muck ‘n’ molecules: organic geochemical methods for detecting ancient manuring. Antiquity 73:86–96

    Google Scholar 

  • Bull ID, Simpson IA, Dockrill SJ, Evershed RP (1999c) Organic geochemical evidence for the origin of ancient anthropogenic soil deposits at Tofts Ness, Sanday, Orkney. Org Geochem 30:535–556

    Article  Google Scholar 

  • Bull ID, Lockhear MJ, Elhmmali MM, Roberts DJ, Evershed RP (2002) The origin of faeces by means of biomarker detection. Environ Int 27:647–654

    Article  Google Scholar 

  • Cappers RTJ, Bekker RM, Jans JEA (2006) Digitale zadenatlas van Nederland. Barkhuis and Groningen University Library, Groningen

    Google Scholar 

  • Cavallo C, Kooistra LI, Dütting M (2008) Food supply to the Roman army in the Rhine delta in the first century a.d.. In: Stallibrass S, Thomas R (eds) Feeding the Roman army. Oxbow Books, Oxford, pp 69–82

    Google Scholar 

  • Coope GR, Osborne PJ (1968) Report on the coleopterous fauna of the Roman well at Barnsley Park, Gloucestershire. Trans Bristol Glos Archaeol Soc 86:84–87

    Google Scholar 

  • Cosyns E, Claerbout S, Lamoot I, Hoffman M (2005) Endozoochorous seed dispersal by cattle and horse in a spatially heterogeneous landscape. Plant Ecol 178:149–162

    Article  Google Scholar 

  • De Marinis AM, Asprea A (2006) Hair identification key for wild and domestic ungulates from southern Europe. Wildl Biol 12:305–320

    Article  Google Scholar 

  • Deedrick DW, Koch SL (2004) Microscopy of hair part II: a practical guide and manual for animal hairs. Forensic Sci Commun. 6(3). http://www.fbi.gov/about-us/lab/forensic-science-communications/fsc/july2004/research/2004_03_research02.htm. Accessed Apr 2013

  • Diot MF (1992) Études palynologiques de blés sauvages et domestiques issues de cultures expérimentales. In: Préhistoire de l’agriculture: nouvelles approched expérimentales et ethnographiques. Centre National de la Recherche Scientifique, Monographie de CRA No 6, Périgueux, pp 107–111

  • Drost MBP, Cuppen HPJJ, van Nieuwkerken EJ, Schreijer M (eds) (1992) De waterkevers van Nederland. KNNV Publishing, Utrecht

    Google Scholar 

  • Dumayne L, Barber KE (1994) The impact of the Romans on the environment of northern England: pollen data from three sites close to Hadrian’s Wall. Holocene 4:165–173

    Article  Google Scholar 

  • Esser E, Beerenhout B, Rijkelijkhuizen M, Hakbijl T, van Haaster H (2010) Dierlijke resten. In: Dijkstra J, Houkes MC, Ostkamp S (eds) Over leven aan de rand van Gouda. ADC rapport 1770, Amersfoort, pp 237–292

  • Evershed RP, Bethell PH (1996) Application of multimolecular biomarker techniques to the identification of faecal material in archaeological soils and sediments. ACS Symp Ser 625:157–172

    Article  Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Florenzano A, Mercuri AM, Pederzoli A, Torri P, Bosi G, Olmi L, Rinaldi R, Bandini Mazzanti M (2012) The significance of intestinal parasite remains in pollen samples from medieval pits in the Piazza Garibaldi of Parma, Emilia Romagna, Northern Italy. Geoarchaeology 27:34–47

    Article  Google Scholar 

  • Freude H, Harde KW, Lohse GA (eds) (1965–1983) Die Käfer Mitteleuropas. Goecke & Evers, Krefeld, pp 1–11

  • Frohne D, Pfänder HJ (2005) Poisonous plants: a handbook for doctors, pharmacists, toxicologists, biologists and veterinarians, 2nd edn. Timber Press, Portland

    Google Scholar 

  • Glasbergen W, Groenman-van Waateringe W (1974) The pre-Flavian garrisons of Valkenburg Z. H.: fabriculae and bipartite barracks. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Grimm EC (1992/2004) TILIA, TILA.GRAPH, and TGView. Illinois State Museum, Research and Collections Center, Springfield, USA

  • Groot M (2008) Animals in ritual and economy in a Roman frontier community: Excavations in Tiel-Passewaaij. Dissertation, Vrije Universiteit Amsterdam

  • Groot M, Kooistra LI (2009) Land use and agrarian economy in the Roman Dutch River Area. Internet Archaeol. doi:10.11141/ia.27.5

    Google Scholar 

  • Hakbijl T (2001) Arthropoden. In: Louwe Kooijmans LP (ed) Archeologie in de Betuweroute: Hardinxveld-Giessendam Polderweg. Een mesolitisch jachtkamp in het rivierengebied (5500–5000 v. Chr.). ROB Rapportage Archeologische Monumentenzorg 83, Amersfoort, pp 277–284

  • Hennekens SM, Smits NAC, Schaminée JHJ (2010) SynBioSys Nederland versie 2. Alterra, Wageningen

    Google Scholar 

  • Hessing WAM, Polak M, Vos WK, Wynia SL (eds) (1997) Romeinen langs de snelweg: Bouwstenen voor Vechtens verleden. Uniepers, Amersfoort

    Google Scholar 

  • Kalis AJ, Karg S, Meurers-Balke J, Teunissen-van Oorschot H (2008) Mensch und Vegetation am unteren Niederrhein während der Eisen- und Römerzeit. In: Müller M, Schalles HJ, Zieling N (eds) Colonia Ulpia Traiana: Xanten und sein Umland in römischer Zeit, vol 1. Philipp von Zabern, Mainz, pp 31–48

    Google Scholar 

  • Koch K (1989–1992) Die Käfer Mitteleuropas, Ökologie 1–3. Goecke & Evers, Krefeld

  • Kooistra LI (1996) Borderland farming. Van Gorcum, Assen

    Google Scholar 

  • Kooistra LI (2009) The provenance of cereals for the Roman army in the Rhine delta, based on archaeobotanical evidence. Beih Bonner Jahrb 58:219–237

    Google Scholar 

  • Kooistra I, van Dinter M, Dütting MK, van Rijn P, Cavallo C (2013) Could the local population of the Lower Rhine delta supply the Roman army? Part 1: the archaeological and historical framework. J Archaeol Low Ctries 4:5–23

    Google Scholar 

  • Körber-Grohne U (1964) Bestimmungsschlüssel für Subfossile Juncus-Samen und Gramineen-Früchte. Probl Küstenforsch südl Nordseegebiet 7:1–47

    Google Scholar 

  • Körber-Grohne U (1991) Identification methods. In: van Zeist W, Wasylikova K, Behre K-E (eds) Progress in old world palaeoethnobotany. Balkema, Rotterdam, pp 3–24

    Google Scholar 

  • Kuijper WJ, Turner H (1992) Diet of a Roman centurion at Alphen aan den Rijn, The Netherlands, in the first century a.d.. Rev Palaeobot Palynol 73:187–204

    Article  Google Scholar 

  • Landwehr J (1984) Nieuwe atlas Nederlandse bladmossen. Thieme, Zutphen

    Google Scholar 

  • Lohse GA, Lucht WH (eds) (1989–1994) Die Käfer Mitteleuropas, 12–14. Supplementband mit Katalogteil 1–3. Goecke & Evers, Krefeld

  • Lundqvist N (1972) Nordic Sordariaceae s. lat. Symb Bot Upsaliensis 20:1–374

    Google Scholar 

  • Moore PD, Webb JA, Collinson ME (1991) Pollen analysis, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Osborne PJ (1983) An insect fauna from a modern cesspit and its comparison with probable cesspit assemblages from archaeological sites. J Archaeol Sci 10:453–463

    Article  Google Scholar 

  • Pals JP, Hakbijl T (1992) Weed and insect infestation of a grain cargo in a ship at the Roman fort of Laurium in Woerden (Province of Zuid-Holland). Rev Palaeobot Palynol 73:287–300

    Article  Google Scholar 

  • Pickersgill B (2005) Spices. In: Prance G, Nesbitt M (eds) The cultural history of plants. Routledge, New York, pp 153–172

    Google Scholar 

  • Polak M (2006) Bunnik/Vechten—Fectio. In: Reddé M, Brulet R, Fellmann R, Haalebos JK, Von Schnurbein S (eds) L’architecture de la Gaule romaine: Les fortifications militaires. Documents d’Archéologie Française 100, Paris-Bordeaux, pp 244–248

  • Polak M (2009) The Roman military presence in the Rhine delta in the period c. a.d. 40–140. In: Morillo A, Hanel N, Martín E (eds) Limes Int. Congress of Roman Frontiers studies, Leon (España), Septiembre 2006, Madrid. Anejos de Gladius 13, Madrid, pp 945–953

  • Polak M, Wynia SL (1991) The Roman forts at Vechten: a survey of the excavations 1829–1989. Oudheidkundige Mededeelingen van het Rijksmuseum van Oudheden te Leiden 71:125–156

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Burr GS, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, McCormac FG, Manning SW, Reimer RW, Richards DA, Southon JR, Talamo S, Turney CSM, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and MARINE09 radiocarbon age calibration curves, 0–50,000 years cal b.p.. Radiocarbon 51:1,111–1,150

    Google Scholar 

  • Schaminée JHJ, Stortelder AHF, Hommel PWFM, Weeda EJ, Westhoff V (1995/1996/1998/1999) De vegetatie van Nederland, vol 1 (1995a), vol 2 (1995b), vol 3 (1996), vol 4 (1998), vol 5 (1999). Opulus Press, Uppsala

  • Schepers M, Scheepens JF, Cappers RTJ, van Tongeren OFR, Raemaekers DCM, Bekker RM (2013a) An objective method based on assemblages of subfossil plant macro-remains to reconstruct past natural vegetation: a case study at Swifterbant, The Netherlands. Veget Hist Archaeobot 22:243–255

    Article  Google Scholar 

  • Schepers M, Cappers RTJ, Bekker RM (2013b) A review of prehistoric and early historic mainland salt marsh vegetation in the northern-Netherlands based on the analysis of plant macrofossils. J Coast Conserv. doi:10.1007/s11852-013-0275-y

    Google Scholar 

  • Schweingruber FH (1978) Mikroskopische Holzanatomie. Zuercher AG, Zug

    Google Scholar 

  • Seifert K, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Siebel H, During H (2006) Beknopte mosflora van Nederland en België. KNNV Uitgeverij, Utrecht

    Google Scholar 

  • Simpson IA, Bull ID, Dockrill SJ, Evershed RP (1998) Early anthropogenic soil formation at Tofts Ness, Sanday, Orkney. J Archaeol Sci 25:729–746

    Article  Google Scholar 

  • Stockmarr J (1971) Tablets with spores used in absolute pollen analysis. Pollen Spores 13:615–621

    Google Scholar 

  • Stuiver M, Reimer PJ (1993) CALIB radiocarbon calibration program. Radiocarbon 35:215–230

    Google Scholar 

  • Tamis WLM, van der Meijden R, Runhaar J, Bekker RM, Ozinga WA, Odé B, Hoste I (2004) Standaardlijst van de Nederlandse flora 2003. Gorteria 30:101–191

    Google Scholar 

  • Teunissen D (1988) De bewoningsgeschiedenis van Nijmegen en omgeving, haar relatie tot de landschapsbouw en haar weerspiegeling in palynologische gegevens. Mededelingen van de Afdeling Biogeologie van de Sectie Biologie van den Katholieke Universiteit van Nijmegen 15:1–108

    Google Scholar 

  • Teunissen D, Teunissen-van Oorschot H, De Man R (1987) Palynological investigations in castellum Meinerswijk near Arnhem (The Netherlands). Proc Koninklijke Nederlandse Akademie van Wetenschappen 90:211–229

    Google Scholar 

  • The Plant List (2012) Version 1. http://www.theplantlist.org. Accessed Apr 2013

  • Touw A, Rubers WV (1989) De Nederlandse bladmossen. Stichting Uitgeverij Koninklijke Nederlandse Natuurhistorische Vereniging, Utrecht

    Google Scholar 

  • van der Linden M (2011) Palynologisch onderzoek. In: Weterings P, Meijer Y (eds) Op zoek naar de weg. LR60: onderzoek naar de Romeinse limesweg in De Meern, Utrecht. Basisrapportage Archeologie Gemeente Utrecht 33, pp 141–145

  • van Dinter M (2013) The Roman Limes in the Netherlands: how a delta landscape determined the location of the military structures. Neth J Geosci 92:11–32

    Google Scholar 

  • van Dinter M, Kooistra LI, Dütting MK, van Rijn P, Cavallo C (2013) Could the local population of the Lower Rhine delta supply the Roman army? Part 2: modelling the carrying capacity using archaeological, palaeo-ecological and geomorphological data. J Archaeol Low Ctries 5:5–50

    Google Scholar 

  • van Geel B (1978) A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands based on the analysis of pollen, spores and macro- and microscopic remains of fungi, algae, cormophytes and animals. Rev Palaeobot Palynol 25:1–120

    Article  Google Scholar 

  • van Geel B, Aptroot A (2006) Fossil ascomycetes in quaternary deposits. Nova Hedwig 82:313–329

    Article  Google Scholar 

  • van Geel B, Bohncke SJP, Dee H (1981) A palaeoecological study of an upper late glacial and Holocene sequence from “De Borchert”, The Netherlands. Rev Palaeobot Palynol 31:367–448

    Article  Google Scholar 

  • van Geel B, Coope GR, van der Hammen T (1989) Palaeoecology and stratigraphy of the lateglacial type section at Usselo (The Netherlands). Rev Palaeobot Palynol 60:50–129

    Google Scholar 

  • van Geel B, Buurman J, Brinkkemper O, Schelvis J, Aptroot A, van Reenen G, Hakbijl T (2003) Environmental reconstruction of a Roman Period settlement site in Uitgeest (The Netherlands), with special reference to coprophilous fungi. J Archaeol Sci 30:873–883

    Article  Google Scholar 

  • van Geel B, Gelorini V, Lyaruu A, Aptroot A, Rucina S, Marchant R, Sinninghe Damsté JS, Verschuren D (2011) Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev Palaeobot Palynol 164:174–190

    Article  Google Scholar 

  • van Geel B, Engels S, Martin-Puertas C, Brauer A (2013) Ascospores of the parasitic fungus Kretzschmaria deusta as rainstorm indicators during a late Holocene beech-forest phase around lake Meerfelder Maar, Germany. J Paleolimnol 50:33–40

    Article  Google Scholar 

  • van Haaster H (2003) Archeobotanie. In: Vos WK, Blom E (eds) Archeologisch onderzoek naar de Romeinse vindplaatsen De Balije en Context Schip in de gemeente Utrecht. ADC rapport 171, Bunschoten, pp 59–67

  • van Haaster H (2007) Pollen-en macrorestenonderzoek: voedselgewassen en vegetatiereconstructie. In: van der Kamp J (ed) Vroege Wacht. LR31 Zandweg: Archeologisch onderzoek van twee eerste eeuwse houten wachttorens in Leidsche Rijn. Basisrapportage archeologie Gemeente Utrecht 16, pp 158–164

  • van Haaster H (2010) Archeobotanisch onderzoek. In: Langeveld MCM, Luksen-IJtsma A (eds), Wegens Wateroverlast. LR39. De Balije II: rivierdynamiek, wachttorens en infrastructuur in de Romeinse tijd in een rivierbocht. Basisrapportage Archeologie Gemeente Utrecht 11, pp 177–180

  • van Zeist W (1974) Studies of settlement sites in the coastal area of The Netherlands. Palaeohist 26:223–371

    Google Scholar 

  • Vánky K (1994) European smut fungi. Fischer, Stuttgart

    Google Scholar 

  • Vorst O (2010) Catalogus van de Nederlandse kevers. Nederlandse Entomologische Vereniging, Amsterdam

    Google Scholar 

  • Vos WK (2009) Bataafs platteland. Het Romeinse nederzettingslandschap in het Nederlandse Kromme-Rijngebied. Nederlandse Archeologische Rapporten 3. Dissertation, Amsterdam University, Amersfoort

  • Vos PC, Bazelmans J, Weerts HJT, van der Meulen MJ (eds) (2011) Atlas van Nederland in het Holoceen: landschap en bewoning vanaf de laatste ijstijd tot nu. Bert Bakker, Amsterdam

    Google Scholar 

  • Waasdorp JA, Lanzing JJ, van der Linden E, Siemons H, van Zoolingen RJ, Storm P (2012) Den Haag Ockenburgh. Een fortificatie als onderdeel van de Romeinse kustverdediging. Haagse Oudheidkundige Publicaties13. Dienst Stadsbeheer, Den Haag

  • Weeda EJ, Westra R, Westra C, Westra T (2003) Nederlandse oecologische flora: wilde planten en hun relaties 1–5. KNNV Uitgeverij/IVN, Utrecht/Amsterdam

    Google Scholar 

  • Wells FH, Lauenroth WK (2007) The potential for horses to disperse alien plants along recreational trails. Rangel Ecol Manag 60:574–577

    Article  Google Scholar 

  • Zandstra MJM, Polak M (2012) De Romeinse versterkingen in Vechten-Fectio. Het archeologisch onderzoek in 1946–1947. Auxiliaria 11, Nijmegen

Download references

Acknowledgments

This study is dedicated to Hilary Birks who, with her studies, has given strong positive impulses to the field of palaeoecology. We would like to thank her for her dedication and look forward to continuing our cooperation and discussions on future projects and scientific meetings. We would like to thank the following people for their contributions to our study: Bram Jansen (RAAP, Leiden) for geo-archaeological prospecting of the site; Wim Hoek (Utrecht University) for field-assistance and logistic support; Marchien Wolma and Thomas Slagter for field-assistance; Henk van Haaster (BIAX Consult, Zaandam) for the identifications of the mammal hairs; Corrie Bakels (Leiden University), Laura Kooistra and Pauline van Rijn (BIAX Consult, Zaandam) and Lara Laken (Radboud University, Nijmegen) for providing expert knowledge contributing greatly to the discussion section; Hans Huisman, Bertil van Os (RCE, Amersfoort) and Nikolaj Walraven (Geoconnect, Castricum) for conducting the XRF spectrometry; Wim Kuijper (Leiden University) for performing the parasite analysis; Willem Toonen (Utrecht University) for supporting AMS 14C dating. The photos of hairs were made by Mark van Waijjen (BIAX Consult), all other photos were made by Jan van Arkel (University of Amsterdam). Pollen slides were prepared by Annemarie Philip (University of Amsterdam). We thank two anonymous referees for valuable comments that helped to improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bas van Geel.

Additional information

Communicated by A. E. Bjune.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 51 kb)

Supplementary material 2 (TIFF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Bos, V., Brinkkemper, O., Bull, I.D. et al. Roman impact on the landscape near castellum Fectio, The Netherlands. Veget Hist Archaeobot 23, 277–298 (2014). https://doi.org/10.1007/s00334-013-0424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00334-013-0424-0

Keywords

Navigation