Skip to main content
Log in

Local Adaptation of Frankia to Different Discaria (Rhamnaceae) Host Species Growing in Patagonia

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Frankia BCU110601 (Da) and Frankia BCU110345 (Dc) were isolated from root nodules of Discaria articulata and Discaria chacaye, respectively; Frankia BCU110501 (Dt) was previously isolated from Discaria trinervis. The strains were identical at the 16S sequence and after analysis of RFLP of 16S and 23S rDNA intergenic region. Diversity was revealed at the molecular level after fingerprint analysis by BOX–polymerase chain reaction. The strains were infective and effective on the original host plants. A cross-inoculation assay intra Discaria genus, including D. trinervis, D. articulata, and D. chacaye, with each of these isolated Frankia strains caused effective symbioses with a similar dry weight in each plant species regardless of the inoculated strain. Nevertheless, a differential degree of recognition was revealed: Homologous symbiotic pairs in the case of D. chacayeFrankia BCU110345 (Dc), D. articulataFrankia BCU110601 (Da), and D. trinervisFrankia BCU110501 (Dt) had faster nodulation rates than heterologous pairs. The differences in nodulation rate would suggest the existence of a subspecific level of recognition within a certain cross-inoculation group, pointing to subspecific adaptation occurring in this actinorhizal symbiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Literature Cited

  1. Akkermans ADL, Hirsch AM (1997) A reconsideration of terminology in Frankia research: a need for congruence. Physiol Plant 99:574–578

    Article  CAS  Google Scholar 

  2. Baker DD (1987) Relationships among pure cultured strains of Frankia based on host specificity. Physiol Plant 70:245–248

    Article  Google Scholar 

  3. Benson DR, Clawson ML (2000) Evolution of the actinorhizal plant symbiosis. In Triplett EW (ed) Prokaryotic nitrogen fixation: A model system for analysis of a biological process. Wymondham, UK: Horizon Scientific Press, pp 207–224

    Google Scholar 

  4. Blom J, Roelofsen W, Akkermans ADL (1980) Growth of Frankia AvcI1 on media containing Tween 80 as C-source. FEMS Microbiol Lett 9:131–135

    Article  CAS  Google Scholar 

  5. Burggraaf AJP, Shipton WA (1983) Studies on the growth of Frankia isolates in relation to infectivity and nitrogen fixation. Can J Bot 61:2774–2782

    CAS  Google Scholar 

  6. Burleigh SH, Dawson JO (1991) In vitro sporulation of Frankia strain HFPCcI3 from Casuarina cunninghamiana. Can J Microbiol 37:897–901

    Article  CAS  Google Scholar 

  7. Capelle J, Neema C (2005) Local adaptation and population structure at a micro-geographical scale of a fungal parasite on its host plant. J Evol Biol 18:1445–1454

    Article  PubMed  CAS  Google Scholar 

  8. Carú M (1993) Characterization of native Frankia strains isolated from Chilean shrubs (Rhamnaceae). Plant Soil 157:137–145

    Google Scholar 

  9. Chaia E (1998) Isolation of an effective strain of Frankia from nodules of Discaria trinervis (Rhamnaceae). Plant Soil 205:99–102

    Article  CAS  Google Scholar 

  10. Chaia E (1999) Actinorhizal symbiosis in Rhamnaceae from the Parque y Reserva Nacional Nahuel Huapi. South Connection Bull 16:15

    Google Scholar 

  11. Clawson ML, Carú M, Benson DR (1998) Diversity of Frankia strains in root nodules of plants from the families Elaeagnaceae and Rhamnaceae. Appl Environ Microbiol 64:3539–3543

    PubMed  CAS  Google Scholar 

  12. Diem HG, Gauthier D, Dommergues YR (1982). Isolation of Frankia from nodules of Casuarina equisetifolia. Can J Bot 28:526–530

    Google Scholar 

  13. Dombek PE, Johnson LAK, Zimmerley ST, Sadowsky MJ (2000) Use of repetitive DNA sequences and the PCR to differentiate Escherichia coli isolates from human and animal sources. Appl Environ Microbiol 66:2572–2577

    Article  PubMed  CAS  Google Scholar 

  14. Fernandez MP, Meugnier H, Grimont PAD, Bardin R (1989) Deoxyribonucleic acid relatedness among members of the genus Frankia. Int J Syst Bacteriol 39:424–429

    Google Scholar 

  15. Grifoni A, Bazzicalupo M, Di Serio C, Fancelli S, Fani R (1995) Identification of Azospirillum strains by restriction fragment length polymorphism of the 16S rDNA and the histidine operon. FEMS Microbiol Lett 127:85–91

    Article  PubMed  CAS  Google Scholar 

  16. Gtari M, Brusetti L, Skander G, Mora D, Boudabous A, Daffonchio D (2004) Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. FEMS Microbiol Lett 234:349–55

    Article  PubMed  CAS  Google Scholar 

  17. Huss-Danell K (1978) Nitrogenase activity measurements in intact plants of Alnus incana. Physiol Plant 43:372–376

    Article  CAS  Google Scholar 

  18. Lechevalier MP (1983) Cataloging Frankia strains. Can J Bot 61:2964–2967

    Google Scholar 

  19. Longeri L, Abarzua M (1989) Ultrastructure of Frankia isolated from three chilean shrubs (Rhamnaceae). In Skinner FA, Boddey RM, Fendrik Y (eds) Nitrogen fixation with non-legumes. Kluwer Academic, Dordrecht Pages 27–53

    Google Scholar 

  20. Lumini E, Bosco M (1999) Polymerase chain reaction–restriction fragment length polymorphisms for assessing and increasing biodiversity of Frankia culture collections. Can J Bot 77:1261–1269

    Article  CAS  Google Scholar 

  21. Murry MA, Fontaine MS, Torrey JG (1984) Growth kinetics and nitrogenase induction in Frankia sp. HPF ArI5 grown in batch culture. Plant Soil 78:61–78

    CAS  Google Scholar 

  22. Myrold DD, Hilger AB, Huss-Danell K, Martin KJ (1994) Use of molecular methods to enumerate Frankia in soil. In Ritz K, Dighton J, Giller KE (eds) Beyond the biomass. Chichester: Wiley-Sayce, pp 127–136

    Google Scholar 

  23. Navarro E, Jaffre T, Gauthier D, Gourbiere F, Rinaudo G, Simonet P, Normand P (1999) Distribution of Gymnostoma spp microsymbiotic Frankia strains in New Caledonia is related to soil type and to host-plant species. Mol Ecol 8:1781–1788

    Article  PubMed  Google Scholar 

  24. Nesme X, Normand P, Tremblay FM, Lalonde M (1985) Nodulation speed of Frankia sp. on Alnus glutinosa, Alnus crispa, and Myrica gale. Can J Bot 63:1292–1295

    Article  Google Scholar 

  25. Nittayarn A, Baker DD (1989) Methods for the quantification of Frankia cell biomass. Plant Soil 118:199–204

    Article  Google Scholar 

  26. Normand P, Orso S, Cournoyer B, Jeannin P, Chapelon C, Dawson J, Evtushenko L, Misra AK (1996) Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int J Syst Bacteriol 46:1–9

    Article  PubMed  CAS  Google Scholar 

  27. Quispel A, Burggraaf AJP, Borsje H, Tak T (1983) The role of lipids in the growth of Frankia isolates. Can J Bot 61:2801–2806

    Article  CAS  Google Scholar 

  28. Ritchie NJ, Myrold D (1999). Geographic distribution and genetic diversity of Ceanothus-infective Frankia strains. Appl Environ Microbiol 65:1378–1383

    PubMed  CAS  Google Scholar 

  29. Rouvier C, Prin Y, Reddell P, Normand P, Simonet P (1996) Genetic diversity among Frankia strains nodulating members of the family Casuarinaceae in Australia revealed by PCR and restriction fragment length polymorphism analysis with crushed root nodules. Appl Environ Microbiol 62:979–985

    PubMed  CAS  Google Scholar 

  30. Simonet P, Navarro E, Rouvier C, et al (1999). Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal. Environ Microbiol 1:525–533

    Article  PubMed  CAS  Google Scholar 

  31. Torrey JG (1990) Cross-inoculation groups within Frankia and host endosymbiont associations. In Schwintzer CR, Tjepkema JD (eds) The biology of Frankia and Actinorhizal plants. New York: Academic, pp 83–106

    Google Scholar 

  32. Tortosa RD (1983) El género Discaria (Rhamnceae). Bol Soc Arg Bot 22:301–335

    Google Scholar 

  33. Valverde C, Wall LG (1999) Regulation of nodulation in Discaria trinervis (Rhamnaceae) –Frankia symbiosis. Can J Bot 77:1302–1310

    Article  Google Scholar 

  34. Vobis G (1992) The genus Actinoplanes and related genera. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes, 2nd ed, Vol II. New York: Springer-Verlag, pp 1029–1060

    Google Scholar 

  35. Wall LG, Chaia E, Valverde C, Lucki G (2000) Specificity in DiscariaFrankia symbioses. In Pedrosa FO, Hungria M, Yates MG, Newton WE (eds) Nitrogen fixation from molecules to crop productivity. Dordrecht: Kluwer Academic, pp 461–462

    Google Scholar 

Download references

Acknowledgments

We thank G. Vobis, M.I. Messuti, and M.M. Bunge for valuable comments. This work was supported by Universidad Nacional de Quilmes (grant No. PPUNQ 0340/03), CONICET (grant No. PIP-5812), and Universidad Nacional del Comahue. LGW and CV are researchers at CONICET (Argentina).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis G. Wall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaia, E.E., Valverde, C. & Wall, L.G. Local Adaptation of Frankia to Different Discaria (Rhamnaceae) Host Species Growing in Patagonia. Curr Microbiol 53, 523–528 (2006). https://doi.org/10.1007/s00284-006-0306-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-006-0306-0

Keywords

Navigation