Skip to main content

Genomic Designing for Nutraceuticals in Brassica juncea: Advances and Future Prospects

  • Reference work entry
  • First Online:
Compendium of Crop Genome Designing for Nutraceuticals

Abstract

Mustard (Brassica juncea) is an important crop of the Indian subcontinent and has been used as oilseed and as a condiment for a long time. Its importance as a nutraceutical crop is growing rapidly as it is a rich source of polyunsaturated fatty acids that have long been associated with cardioprotective activities, while mustard extract has been reported to harbor anticancerous properties. Mustard leaves and oil cake that is left after oil extraction are also excellent sources of antioxidants, minerals, and vitamins. However, mustard oil also contains glucosinolates and erucic acid in large amounts that are considered antinutritional as they have been implicated in goiter and cardiac lesions. The major objectives for the mustard breeding programs across the world therefore focus on enhancing the nutritional and functional properties with a concomitant overall increase in the seed oil percentage. As the nutraceutical properties of mustard are being recognized and are supported by many research studies based on QTL mapping, GWAS, genomic selection, etc., the breeding programs now also include the traits with potential nutraceutical applications. However, limited germplasm lines with high therapeutic values, genetic bottleneck due to continuous selection for oil and yield, along with a low preference for varieties with possible nutraceutical applications by farmers, are some of the major hurdles in the development of mustard varieties with high nutritional and pharmaceutical values. Modern technologies like high-throughput genotyping, sequencing, and genome editing through the novel CRISPAR/CAS9 system hold a great promise in overcoming these impediments to achieving the targets of genetic improvement of nutraceutical properties of B. juncea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 899.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aakanksha, Yadava SK, Yadav BG et al (2021) Genetic analysis of Heterosis for yield influencing traits in Brassica juncea using a doubled haploid population and its backcross progenies. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.721631

  • Abraham V (1994) Rate of out crossing in Indian mustard (Brassica juncea L.). Eucarpia Cruciferae News Lett 16:69–70

    Google Scholar 

  • Ackman RG, Eaton CA, Sipos JC, Loew FM, Hancock D (1977) A comparison of fatty acids from high levels of docosenoic acids of rapeseed oil (erucic acid) and of partially hydrogenated fish oil (primarily cetoleic acid) in a non-human primate species in a short-term exploratory study. Bibl Nutr Dieta 25:170–185. https://doi.org/10.1159/000400508

    Article  CAS  Google Scholar 

  • Aggarwal RAK, Sharma R, Kumar R et al (2003) Molecular mapping of loci affecting the contents of three major fatty acids in Indian mustard (Brassica juncea L). J Plant Biochem Biotechnol 12:31–137. https://doi.org/10.1007/BF03263173

    Article  Google Scholar 

  • Agrawal VP, Stumpf PK (1985) Elongation systems involved in the biosynthesis of erucic acid from oleic acid in developing Brassica juncea seeds. Lipids 20:361–366

    Article  CAS  Google Scholar 

  • Akhatar J, Singh MP, Sharma A et al (2020) Association mapping of seed quality traits under varying conditions of nitrogen application in Brassica juncea L. Czern & Coss. Front Genet 11:744. https://doi.org/10.3389/fgene.2020.00744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Antonious GF, Bomford M, Vincelli P (2009) Screening Brassica species for glucosinolate content. J Environ Sci Health B 44(3):311–316

    Article  CAS  PubMed  Google Scholar 

  • Assou J, Zhang D, Roth KD, Steinke S, Hust M et al (2022) Removing the major allergen Bra j I from brown mustard (Brassica juncea) by CRISPR/Cas9. Plant J 109:649–663. https://doi.org/10.1111/tpj.15584

    Article  CAS  PubMed  Google Scholar 

  • Augustine R, Bisht NC (2015) Biofortification of oilseed Brassica juncea with the anti-cancer compound glucoraphanin by suppressing GSL-ALK gene family. Sci Rep 5:1–12. https://doi.org/10.1038/srep18005

    Article  CAS  Google Scholar 

  • Augustine R, Bisht NC (2019) Targeted silencing of genes in polyploids: lessons learned from Brassica juncea-glucosinolate system. Plant Cell Rep 38:51–57. https://doi.org/10.1007/s00299-018-2348-8

    Article  CAS  PubMed  Google Scholar 

  • Augustine R, Majee M, Gershenzon J, Bisht NC (2013a) Four genes encoding MYB28, a major transcriptional regulator of the aliphatic glucosinolate pathway, are differentially expressed in the allopolyploid Brassica juncea. J Exp Bot 64:4907–4921. https://doi.org/10.1093/jxb/ert280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Augustine R, Mukhopadhyay A, Bisht NC (2013b) Targeted silencing of BjMYB28 transcription factor gene directs development of low glucosinolate lines in oilseed Brassica juncea. Plant Biotechnol J 11:855–866. https://doi.org/10.1111/pbi.12078

    Article  CAS  PubMed  Google Scholar 

  • Axelsson T, Bowman CM, Sharpe AG et al (2000) Amphidiploid Brassica juncea contains conserved progenitor genomes. Genome 43:679–688. https://doi.org/10.1139/g00-026

    Article  CAS  PubMed  Google Scholar 

  • Barfield DG, Pua EC (1991) Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens-mediated transformation. Plant Cell Rep 10:308–314. https://doi.org/10.1007/BF00193148

    Article  CAS  PubMed  Google Scholar 

  • Bhajan R, Chauhan YS, Kumar K (1991) Natural cross pollination in Indian mustard. Cruciferae Newslett 14:24–25

    Google Scholar 

  • Bhat MA, Gupta ML, Banga SK, Raheja RK, Banga SS (2002) Erucic acid heredity in B. juncea – some additional information. Plant Breed 121:456–458

    Article  CAS  Google Scholar 

  • Bhatia CR, Nichterlein K, Maluszynski M (1999) Oilseed cultivars development from induced mutations and mutation altering fatty acid composition. Mut Breed 11:1–36

    Google Scholar 

  • Bhattacharya A, Li Y, Wade KL, Paonessa JD, Fahey JW et al (2010) Allyl isothiocyanate-rich mustard seed powder inhibits bladder cancer growth and muscle invasion. Carcinogenesis 31:2105–2110. https://doi.org/10.1093/carcin/bgq202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhayana L, Paritosh K, Arora H et al (2020) A mapped locus on LG A6 of Brassica juncea line Tumida conferring resistance to white rust contains a CNL type R gene. Front Plant Sci 10:1690. https://doi.org/10.3389/fpls.2019.01690

    Article  PubMed  PubMed Central  Google Scholar 

  • Bisht NC, Gupta V, Ramchiary N et al (2009) Fine mapping of loci involved with glucosinolate biosynthesis in oilseed mustard (Brassica juncea) using genomic information from allied species. Theor Appl Genet 118:413–421. https://doi.org/10.1007/s00122-008-0907-z

    Article  CAS  PubMed  Google Scholar 

  • Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants: the missing heritability is in the field. Genome Biol 12:232. https://doi.org/10.1186/gb-2011-12-10-232

    Article  PubMed  PubMed Central  Google Scholar 

  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y et al (2000) Vitamin E. J Sci Food Agric 80:913–938

    Article  CAS  Google Scholar 

  • Branca F, Cartea E (2011) Brassica. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, oilseeds. Springer, Berlin/Heidelberg, pp 17–36

    Chapter  Google Scholar 

  • Burton W, Ripley V, Potts D, Salisbury P (2004) Assessment of genetic diversity in selected breeding lines and cultivars of canola quality Brassica juncea and their implications for canola breeding. Euphytica 136:181–192

    Article  CAS  Google Scholar 

  • Cartea ME, Velasco P (2008) Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem Rev 7:213–229. https://doi.org/10.1007/s11101-007-9072-2

    Article  CAS  Google Scholar 

  • Cartea ME, Lema M, Francisco M, Velasco P (2011) Basic information on vegetable Brassica crops. In: Genetics, genomics and breeding of vegetable Brassicas, pp 1–33

    Google Scholar 

  • Chao H, Li T, Luo C et al (2020) BrassicaEDB: a gene expression database for Brassica crops. Int J Mol Sci 21:5831. https://doi.org/10.3390/ijms21165831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi VD, Maurya KN, Upadhyay DK, Singh PK, Chaubey S (2021) Genetic diversity for yield and its contributing components in Indian mustard [Brassica juncea (L.) Czern & Coss.]. J Pharm Innov 10:748–754

    Google Scholar 

  • Chauhan JS, Singh NB (2004) Breeding approaches in rapeseed mustard varietal improvement. (in) rapeseed- mustard research in India. In: Singh NB, Kumar A (eds) . National Research Center on Rapeseed-Mustard, Bharatpur, pp 51–64

    Google Scholar 

  • Chauhan JS, Tyagi MK, Kumar PR, Tyagi P, Singh M, Kumar S (2002) Breeding for oil and seed meal quality in rapeseed mustard in India – a review. Agric Rev 23(2):71–92

    Google Scholar 

  • Chauhan JS, Singh KH, Singh VV, Kumar S (2012) Hundred years of rapeseed-mustard breeding in India: accomplishments and future strategies. Indian J Agric Sci 81(12):1093–1109

    Google Scholar 

  • Chen H, Wang T, He X, Cai X, Lin R et al (2022) BRAD V3.0: an upgraded Brassicaceae database. Nucleic Acids Res 50:D1432–D1441. https://doi.org/10.1093/NAR/GKAB1057

    Article  CAS  PubMed  Google Scholar 

  • Cherif A, Dubacq J, Mache R et al (1975) Biosynthesis of α-linolenic acid by desaturation of oleic and linoleic acids in several organs of higher and lower plants and in algae. Phytochemistry 14:703–706. https://doi.org/10.1016/0031-9422(75)83018-4

    Article  CAS  Google Scholar 

  • Cheung WY, Landry BS, Raney P, Rakow GFW (1998) Molecular mapping of seed quality traits in Brassica juncea L.Czern. and Coss. Acta Hortic 459:139–147

    Article  CAS  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J et al (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899. https://doi.org/10.1007/s00122-016-2746-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196. https://doi.org/10.1007/s10681-005-1681-5

    Article  CAS  Google Scholar 

  • Czarnowska M, Gujska E (2012) Effect of freezing technology and storage conditions on folate content in selected vegetables. Plant Foods Hum Nutr 67:401–406

    Article  CAS  PubMed  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das B, Goswami L, Ray S et al (2006) Agrobacterium-mediated transformation of Brassica juncea with a cyanobacterial (Synechocystis PCC6803) delta-6 desaturase gene leads to production of gamma-linolenic acid. Plant Cell Tissue Organ Cult 86:219–231. https://doi.org/10.1007/s11240-006-9111-5

    Article  CAS  Google Scholar 

  • Del Río M, Font R, De Haro A (2004) Heavy metal uptake by Brassica species growing in the polluted soils of Aznalcóllar (Southern Spain). Fresenius Environ Bull 13:1439–1443

    Google Scholar 

  • Dhaka N, Rout K, Yadava SK, Sodhi YS, Gupta V et al (2017) Genetic dissection of seed weight by QTL analysis and detection of allelic variation in Indian and east European gene pool lines of Brassica juncea. Theor Appl Genet 130:293–307. https://doi.org/10.1007/s00122-016-2811-2

    Article  PubMed  Google Scholar 

  • Downey RK, Rimmer SR (1993) Agronomic improvement in oilseed Brassicas. Adv Agron 50:1–65

    Article  Google Scholar 

  • Downey RK, Röbbelen G (1989) Brassica species. In: Röbbelen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, pp 339–362

    Google Scholar 

  • Duke JA (2002) Handbook of medicinal herbs, 2nd edn. CRC Press, Boca Raton, FL, p 516e517

    Book  Google Scholar 

  • Fahey JW, Zhang Y, Talalay P (1997) Broccoli sprouts: An exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci USA 94:10367–10372. https://doi.org/10.1073/pnas.94.19.10367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fazekas GA, Sedmach PA, Palmer MV (1986) Genetic and environmental effects on in vitro shoot regeneration from cotyledon explants of Brassica juncea. Plant Cell Tissue Organ Cult 6:177–180. https://doi.org/10.1007/BF00180802

    Article  Google Scholar 

  • Fenewick GR, Heaney RK, Mullin J (1983) Glucosinolates and their breakdown products in food and food plants. CRC Crit Rev Food Sci Nutr 18:123–201

    Article  Google Scholar 

  • Gao J, Thelen KD, Min DH, Smith S, Hao X, Gehl R (2010) Effects of manure and fertilizer applications on canola oil content and fatty acid composition. Agron J 102(2):790–797

    Article  CAS  Google Scholar 

  • Gao P, Quilichini TD, Yang H, Li Q, Nilsen KT et al (2022) Evolutionary divergence in embryo and seed coat development of U’s Triangle Brassica species illustrated by a spatiotemporal transcriptome atlas. New Phytol 233:30–51. https://doi.org/10.1111/nph.17759

    Article  CAS  PubMed  Google Scholar 

  • Ghafoorunissa G (1994) Dietary fats/oils and heart diseases. In: Prasad MVR (ed) Sustainability in oil seeds. Indian Society of Oil Seed Research, Hyderabad, pp 486–490

    Google Scholar 

  • Ghosh S, Mazumder M, Mondal B et al (2019) Morphological and SSR marker-based genetic diversity analysis of Indian mustard (Brassica juncea L.) differing in Alternaria brassicicola tolerance. v. 12

    Google Scholar 

  • Gill KS, Kaur G, Kaur G, Kaur J, Kaur Sra S, Kaur K, Gurpreet K, Sharma M, Bansal M, Chhuneja P, Banga SS (2021) Development and validation of Kompetitive Allele-specific PCR assays for Erucic acid content in Indian Mustard [Brassica juncea (L.) Czern and Coss.]. Front Plant Sci 12:738805

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopalan C, Krishnamurthi D, Shenolikar IS, Krishnamachari KAVR (1974) Myocardial changes in monkeys fed mustard oil. Ann Nutr Metab 16:352–365. https://doi.org/10.1159/000175508

    Article  CAS  Google Scholar 

  • Gorantala J, Grover S, Rahi A, Chaudhary P, Rajwanshi R et al (2014) Generation of protective immune response against anthrax by oral immunization with protective antigen plant-based vaccine. J Biotechnol 176:1–10. https://doi.org/10.1016/j.jbiotec.2014.01.033

    Article  CAS  PubMed  Google Scholar 

  • Grafahrend-Belau E, Junker BH, Falk S (2012) Plant metabolic pathways: databases and pipeline for stoichiometric analysis. In: Seed development: OMICS technologies toward improvement of seed quality and crop yield: OMICS in seed biology. Springer, Dordrecht, pp 345–366

    Chapter  Google Scholar 

  • Grewal HS, Graham RD (1999) Residual effects of subsoil zinc and oilseed rape genotype on the grain yield and distribution of zinc in wheat. Plant Soil 207(1):29–36

    Article  Google Scholar 

  • Gupta SK (2016) Brassicas. In: Gupta SK (ed) Breeding oilseed crops for sustainable production. Opportunities and constraints. Academic, Cambridge, pp 33–53

    Chapter  Google Scholar 

  • Gupta VP, Sekhon MS, Satija DR (1991) Studies on genetic diversity, heterosis and combining ability in Indian mustard. Indian J Genet 51:448–453

    Google Scholar 

  • Gupta V, Mukhopadhyay A, Arumugam N et al (2004) Molecular tagging of erucic acid trait in oilseed mustard (Brassica juncea) by QTL mapping and single nucleotide polymorphisms in FAE1 gene. Theor Appl Genet 108:743–749. https://doi.org/10.1007/s00122-003-1481-z

    Article  CAS  PubMed  Google Scholar 

  • Hammer K, Gladis T, Laghetti G, Pignone D (2013) The wild and the grown-remarks on Brassica. Int J Agric Sci 3(6):453–480

    Google Scholar 

  • Harlan JR, De Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hassan FU, Manaf A, Qadir G, Basra SMA (2007) Effects of sulphur on seed yield, oil, protein and glucosinolates of canola cultivars. Int J Agric Biol 9:504–508

    Google Scholar 

  • Hassan SA, el Hagrassi AM, Hammam O et al (2020) Brassica juncea L. (Mustard) extract silver nanoparticles and knocking off oxidative stress, proinflammatory cytokine and reverse DNA genotoxicity. Biomolecules 10:1650. https://doi.org/10.3390/biom10121650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong H, Datla N, Reed DW, Covello PS, MacKenzie SL et al (2002) High-level production of γ-Linolenic acid in Brassica juncea using a Δ6 desaturase from Pythium irregulare. Plant Physiol 129:354. https://doi.org/10.1104/PP.001495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopkins RJ, Van Dam NM, Van Loon JJA (2009) Role of glucosinolates in insect-plant relationships and multitrophic interactions. Annu Rev Entomol 54:57–83. https://doi.org/10.1146/annurev.ento.54.110807.090623

    Article  CAS  PubMed  Google Scholar 

  • Horrobin DF (1992) Nutritional and medical importance of gamma-linolenic acid. Prog Lipid Res 31:163–194

    Article  CAS  PubMed  Google Scholar 

  • Hosaka K, Kianian SF, McGrath JM, Quiros CF (1990) Development and chromosomal localization of genome specific DNA markers of Brassica and evolution of amphidiploids and n=9 diploid species. Genome 33:131–142

    Article  CAS  Google Scholar 

  • Hu Q, Li Y, Mei D (2009) Introgression of genes from wild crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, FL, pp 261–283

    Google Scholar 

  • Huang J, Rozwadowski K, Bhinu VS, Schäfer U, Hannoufa A (2008) Manipulation of sinapine, choline and betaine accumulation in Arabidopsis seed: Towards improving the nutritional value of the meal and enhancing the seedling performance under environmental stresses in oilseed crops. Plant Physiol Biochem 46:647–654. https://doi.org/10.1016/j.plaphy.2008.04.014

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Cui T, Zhang L et al (2020) Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Theor Appl Genet 133:2401–2411. https://doi.org/10.1007/s00122-020-03607-y

    Article  CAS  PubMed  Google Scholar 

  • Jagannath A, Sodhi YS, Gupta V et al (2011) Eliminating expression of erucic acid-encoding loci allows the identification of “hidden” QTL contributing to oil quality fractions and oil content in Brassica juncea (Indian mustard). Theor Appl Genet 122:1091–1103. https://doi.org/10.1007/s00122-010-1515-2

    Article  CAS  PubMed  Google Scholar 

  • Jahangir M, Kim HK, Choi YH, Verpoorte R (2009) Health-affecting compounds in Brassicaceae. Compr Rev Food Sci Food Saf 8:31–43

    Article  CAS  Google Scholar 

  • Jain A, Bhatia S, Banga SS, Prakash S, Laxmikumaran M (1994) Potential use of random amplified polymorphic DNA (RAPD) technique to study genetic diversity in Indian mustard (B. juncea) and its relatedness to heterosis. Theor Appl Genet 88:116–122

    Article  CAS  PubMed  Google Scholar 

  • James DW, Dooner HK (1991) Novel seed lipid phenotypes in combinations of mutants altered in fatty acid biosynthesis in Arabidopsis. Theor Appl Genet 82(4):409–412

    Article  CAS  PubMed  Google Scholar 

  • James DW Jr, Lim E, Keller J, Plooy I, Ralston E et al (1995) Directed tagging of the arabidopsis FATTY ACID ELONGATION1 (FAE1) gene with the maize transposon activator. Plant Cell 7:309–319. https://doi.org/10.2307/3869853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha JK, Sinha S, Maiti MK, Basu A, Mukhopadhyay UK et al (2007) Functional expression of an acyl carrier protein (ACP) from Azospirillum brasilense alters fatty acid profiles in Escherichia coli and Brassica juncea. Plant Physiol Biochem 45:490–500. https://doi.org/10.1016/j.plaphy.2007.03.001

    Article  CAS  PubMed  Google Scholar 

  • Jie M, Cheung WM, Yu V, Zhou Y, Tong PH et al (2014) Anti-proliferative activities of sinigrin on carcinogen-induced hepatotoxicity in rats. PLoS One 9:e110145. https://doi.org/10.1371/journal.pone.0110145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kah M, Tufenkji N, White JC (2019) Nano-enabled strategies to enhance crop nutrition and protection. Nat Nanotechnol 14:532–540. https://doi.org/10.1038/s41565-019-0439-5

    Article  CAS  PubMed  Google Scholar 

  • Kajla S, Mukhopadhyay A, Pradhan AK (2017) Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes. PLoS One 12. https://doi.org/10.1371/JOURNAL.PONE.0182747

  • Kang L, Qian L, Zheng M, Chen L, Chen H et al (2021) Genomic insights into the origin, domestication and diversification of Brassica juncea. Nat Genet 53:1392–1402. https://doi.org/10.1038/s41588-021-00922-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanrar S, Venkateswari J, Dureja P, Kirti PB, Chopra VL (2006) Modification of erucic acid content in Indian mustard (Brassica juncea) by up-regulation and down-regulation of the Brassica juncea Fatty Acid Elongation1 (BjFAE1) gene. Plant Cell Rep 25:148–155. https://doi.org/10.1007/s00299-005-0068-3

    Article  CAS  PubMed  Google Scholar 

  • Kaplan NM (1989) The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 149:1514–1520. https://doi.org/10.1001/archinte.149.7.1514

    Article  CAS  PubMed  Google Scholar 

  • Kapoor LD (1990) CRC handbook of ayurvedic medicinal plants. CRC Press, Boca Raton, FL, p 84

    Google Scholar 

  • Katche E, Quezada-Martinez D, Katche EI (2019) Interspecific hybridization for Brassica crop improvement. Crop Breed Genet Genom:1–32. https://doi.org/10.20900/cbgg20190007

  • Katiyar RK (1997) Pusa Jai Kisan: a new high-yielding mustard variety developed through tissue culture. Indian Farming 45:6–7

    Google Scholar 

  • Kaur G, Banga SK, Banga SS (2004) Introgression of desaturase suppressor gene(s) from Brassica napus L.to enhance oleic acid content in Brassica juncea L. Coss. In: Proceedings of the 4th international crop science congress. Brisbane, Australia

    Google Scholar 

  • Khan S, Anwar S, Kuai J, Noman A, Shahid M, Din M, Ali A, Zhou G (2018) Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci Rep 8(1):634

    Article  PubMed  PubMed Central  Google Scholar 

  • Khare CP (2004) Indian herbal remedies: rational Western therapy, ayurvedic, and other traditional usage, botany. Springer, Berlin

    Book  Google Scholar 

  • Khattak AN, Wang T, Yu K, Yang R, Wan W et al (2019) Exploring the basis of 2-propenyl and 3-butenyl glucosinolate synthesis by QTL mapping and RNA-sequencing in Brassica juncea. PLoS One 14:e0220597. https://doi.org/10.1371/journal.pone.0220597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khulbe RK, Pant DP, Saxena N (2000) Variability, heritability and genetic advance in Indian mustard [Brassica juncea (L.) Czern & Coss]. Crop Res (Hisar) 20:551–552

    Google Scholar 

  • Kim MK, Park JHY (2009) Cruciferous vegetable intake and the risk of human cancer: epidemiological evidence. Proc Nutr Soc 68:103–110

    Article  CAS  PubMed  Google Scholar 

  • King A (2017) Technology: the future of agriculture. Nature 544:S21–S23

    Article  CAS  PubMed  Google Scholar 

  • Kirk JTO, Oram RN (1978) Mustards as possible oil and protein crops for Australia (Indian mustard, Brassica juncea, white mustard, Sinapsis alba). J Austral Inst Agric Sci 44:143–156

    CAS  Google Scholar 

  • Kirti PB, Narasimhulu SB, Prakash S, Chopra VL (1992) Somatic hybridization between Brassica juncea and Moricandia arvensis by protoplast fusion. Plant Cell Rep 11(5–6):318–321

    CAS  PubMed  Google Scholar 

  • Kondra ZP, Thomas PM (1975) Inheritance of oleic, linoleic and linolenic acids in seed oil of rapeseed (Brassica napus). Can J Plant Sci 55:205–210

    Article  CAS  Google Scholar 

  • Krishna P, Ghose SK (1992) Heterosis in relation to genetic divergence in rapessed and mustard. J Oilseeds Res 9:169–174

    Google Scholar 

  • Krzymanski J, Downey RK (1969) Inheritance of fatty acid composition in winter forms of rapeseed, Brassica napus. Can J Plant Sci 49:313–319. https://doi.org/10.4141/cjps69-053

    Article  CAS  Google Scholar 

  • Kumar S, Mawlong I, Rani R (2020) Biofortification of Brassicas for quality improvement. In: Wani SH, Thakur AK, Khan YJ (eds) Brassica improvement. Springer, Cham, pp 127–145. https://doi.org/10.1007/978-3-030-34694-2_7

    Chapter  Google Scholar 

  • Kumar D, Rajwanshi R, Singh P et al (2022) Pyramiding of γ-TMT and gly I transgenes in Brassica juncea enhances salinity and drought stress tolerance. Physiol Plant 174:e13618. https://doi.org/10.1111/ppl.13618

    Article  CAS  PubMed  Google Scholar 

  • Labana KS, Banga SS (1984) Floral biology in Indian mustard (Brassica juncea L.). Genetica Agraria 38:131–138

    Google Scholar 

  • Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V et al (2013) Acyl-lipid metabolism. In: The arabidopsis book/American Society of Plant Biologists, p 11

    Google Scholar 

  • Lietzow J (2021) Biologically active compounds in mustard seeds: a toxicological perspective. Foods 10(9):2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionneton E, Ravera S, Sanchez L et al (2002) Development of an AFLP-based linkage map and localization of QTLs for seed fatty acid content in condiment mustard (Brassica juncea). Genome 45:1203–1215. https://doi.org/10.1139/g02-095

    Article  CAS  PubMed  Google Scholar 

  • Lionneton E, Aubert G, Ochatt S, Merah O (2004) Genetic analysis of agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet 109:792–799

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:1–11. https://doi.org/10.1038/ncomms4930

    Article  CAS  Google Scholar 

  • Love HR, Rakow G, Raney JP, Downey RK (1990) Genetic control of 2-propenyl and 3-butenyl glucosinolate synthesis in mustard. Can J Plant Sci 70:425–429

    Article  CAS  Google Scholar 

  • Luciano FB, Holley RA (2009) Enzymatic inhibition by allyl isothiocyanate and factors affecting its antimicrobial action against Escherichia coli O157:H7. Int J Food Microbiol 131:240–245. https://doi.org/10.1016/j.ijfoodmicro.2009.03.005

    Article  CAS  PubMed  Google Scholar 

  • Lüthy J, Carden B, Friederich U, Bachmann M (1984) Goitrin – a nitrosatable constituent of plant foodstuffs. Experientia 40:452–453. https://doi.org/10.1007/BF01952381

    Article  PubMed  Google Scholar 

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525. https://doi.org/10.1101/gr.3531105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood T, Ekuere U, Yeh F, Good AG, Stringam GR (2003a) Molecular mapping of seed aliphatic glucosinolates in Brassica juncea. Genome 46(5):753–760. https://doi.org/10.1139/g03-051

    Article  CAS  PubMed  Google Scholar 

  • Mahmood T, Ekuere U, Yeh F et al (2003b) RFLP linkage analysis and mapping genes controlling the fatty acid profile of Brassica juncea using reciprocal DH populations. Theor Appl Genet 107:283–290. https://doi.org/10.1007/s00122-003-1244-x

    Article  CAS  PubMed  Google Scholar 

  • Marwede V, Gul MK, Becker HC, Ecke W (2005) Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breed 124:20–26

    Article  CAS  Google Scholar 

  • Mason AS, Higgins EE, Snowdon RJ et al (2017) A user guide to the Brassica 60K Illumina InfiniumTM SNP genotyping array. Theor Appl Genet 130:621–633. https://doi.org/10.1007/s00122-016-2849-1

    Article  CAS  PubMed  Google Scholar 

  • Mathur S, Paritosh K, Tandon R, Pental D, Pradhan A (2022) Comparative analysis of seed transcriptome and coexpression analysis reveal candidate genes for enhancing seed size/weight in Brassica juncea. Front Genet 13. https://doi.org/10.3389/fgene.2022.814486

  • Mawlong I, Kumar MS, Kandpal BK, Premi OP, Gurung B, Singh D (2017) Meal and oil quality among genotypes of Indian mustard (Brassica juncea) varies under recommended dose of nitrogen fertilizer. Appl Ecol Environ Res 15:1427–1445

    Article  Google Scholar 

  • Mawlong I, Kumar S, Kandpal BK, Premi OP, Joshi A, Gurung B (2018) Comparing oil color and oxidative stability among mustard genotypes under nitrogen fertilization. Agron J 110:1–11

    Article  Google Scholar 

  • McNaughton SA, Marks GC (2003) Development of a food composition database for the estimation of dietary intakes of glucosinolates, the biologically active constituents of cruciferous vegetables. Br J Nutr 90:687–697

    Article  CAS  PubMed  Google Scholar 

  • Meena CP, Chauhan JS, Singh M, Meena ML, Singh KH (2014) Evaluation of Indigenous and Exotic Germplasm of Indian mustard [Brassica juncea (L.) Czern & Coss] for morpho physiological and quality characters. Indian J Plant Genet Resour 27:118–124

    Article  Google Scholar 

  • Morales-Lopez J, Centeno-Alvarez M, Nieto-Camacho A, Lopez MG, Perez-Hernandez E et al (2017) Evaluation of antioxidant and hepatoprotective effects of white cabbage essential oil. Pharm Biol 55:233–241

    Article  CAS  PubMed  Google Scholar 

  • Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35. https://doi.org/10.1093/nar/gkm321

  • Mueller LA, Zhang P, Rhee SY (2003) AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol 132:453–460. https://doi.org/10.1104/pp.102.017236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller J, Sonntag K, Rudloff E (2001) Somatic hybridization between Brassica spp. and Raphanus sativus. Acta Hortic 560:219–220. https://doi.org/10.17660/ActaHortic.2001.560.41

  • Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10. https://doi.org/10.1186/gb-2009-10-10-r111

  • Nagamine A, Hiroshi E (2022) Genome editing for improving crop nutrition. Front Gen Edi 4:850104

    Article  Google Scholar 

  • Nelson MN, Lilley JM, Helliwell C, Taylor CM, Siddique KH et al (2016) Can genomics assist the phenological adaptation of canola to new and changing environments? Crop Pasture Sci 67(4):284–297

    Article  CAS  Google Scholar 

  • Nour-Eldin HH, Madsen SR, Engelen S, Jørgensen ME, Olsen CE et al (2017) Reduction of antinutritional glucosinolates in Brassica oilseeds by mutation of genes encoding transporters. Nat Biotechnol 35:377–382. https://doi.org/10.1038/nbt.3823

    Article  CAS  PubMed  Google Scholar 

  • Ogura H (1968) Studies on the new male sterility in Japanes radish with special reference to the utilization of this sterility towards the practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ 6:39–78

    Google Scholar 

  • Okulicz M (2010) Multidirectional time-dependent effect of Sinigrin and allyl Isothiocyanate on metabolic parameters in rats. Plant Foods Hum Nutr 65:217–224. https://doi.org/10.1007/s11130-010-0183-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Padmaja LK, Agarwal P, Gupta V, Mukhopadhyay A, Sodhi YS et al (2014) Natural mutations in two homoeologous TT8 genes control yellow seed coat trait in allotetraploid Brassica juncea (AABB). Theor Appl Genet 127:339–347. https://doi.org/10.1007/s00122-013-2222-6

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Kabdal M, Tripathi MK (2013) Study of inheritance of erucic acid in Indian mustard (Brassica juncea L. Czern & Coss). Octa J Biosci 1(1)

    Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S et al (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassicagenomes. BMC Genomics 9:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Panjabi P, Yadava SK, Kumar N, Bangkim R, Ramchiary N (2019) Breeding Brassica juncea and B. rapa for sustainable oilseed production in the changing climate: progress and prospects. In: Kole C (eds) Genomic designing of climate-smart oilseed crops. Springer, Cham. https://doi.org/10.1007/978-3-319-93536-2_6

  • Panjabi-Massand P, Yadava SK, Sharma P, Kaur A, Kumar A et al (2010) Molecular mapping reveals two independent loci conferring resistance to Albugo candida in the East European germplasm of oilseed mustard Brassica juncea. Theor Appl Genet 121:137–145. https://doi.org/10.1007/s00122-010-1297-6

    Article  CAS  PubMed  Google Scholar 

  • Pant SC, Singh P (2001) Genetic variability in Indian mustard. Agric Sci Dig 21:28–30

    Google Scholar 

  • Pant P, Hamsa S, Kaur J (2022) Advances in breeding strategies for improving stress tolerance in Brassicas. In: The Brassica juncea genome. Springer, pp 439–469

    Chapter  Google Scholar 

  • Paritosh K, Yadava SK, Singh P, Bhayana L, Mukhopadhyay A et al (2021) A chromosome-scale assembly of allotetraploid Brassica juncea (AABB) elucidates comparative architecture of the A and B genomes. Plant Biotechnol J 19:602–614. https://doi.org/10.1111/pbi.13492

    Article  CAS  PubMed  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781. https://doi.org/10.1534/genetics.105.042093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pental D, Pradhan AK, Sodhi YS, Mukhopadhyay A (1993) Variation amongst Brassica juncea cultivars for regeneration from hypocotyl explants and optimization of conditions for Agrobacterium-mediated genetic transformation. Plant Cell Rep 12:462–467. https://doi.org/10.1007/BF00234713

    Article  CAS  PubMed  Google Scholar 

  • Potts DA, Males DR (1999) Inheritance of fatty acid composition in Brassica juncea. In: 10th International Rapeseed Congress, Canberra, Australia, p 9

    Google Scholar 

  • Pradhan AK, Pental D (2011) Genetics of Brassica juncea L. In: Schmidt R, Bancroft I (eds) Genetics and genomics of the Brassicaceae, vol 9. Springer, New York, pp 323–346

    Chapter  Google Scholar 

  • Pradhan AK, Sodhi YS, Mukhopadhyay A, Pental D (1993) Heterosis breeding in Indian mustard (Brassica juncea L. Czern & Coss): Analysis of component characters contributing to heterosis for yield. Euphytica 69:219–229. https://doi.org/10.1007/BF00022368

    Article  Google Scholar 

  • Pradhan A, Gupta V, Mukhopadhyay A et al (2003) A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers. Theor Appl Genet 106:607–614. https://doi.org/10.1007/s00122-002-1083-1

    Article  CAS  PubMed  Google Scholar 

  • Prakash S, Hinata K (1980) Taxonomy, cytogenetics and origin of crop brassicas – a review. Oper Bot 55:1–57

    Google Scholar 

  • Prakash S, Bhat SR, Fu T (2009) Wild germplasm and male sterility. In: Biology and breeding of crucifers, pp 113–127

    Google Scholar 

  • Pushpa HD, Yadava DK, Singh N et al (2016) Validation of molecular markers linked to low glucosinolate QTLs for marker assisted selection in Indian mustard (Brassica juncea L. Czern & Coss). Indian J Genet Plant Breed 76:64. https://doi.org/10.5958/0975-6906.2016.00009.2

    Article  CAS  Google Scholar 

  • Rabbani MA, Iwabuchi A, Murakami Y, Suzuki T, Takayanagi K (1998) Phenotypic variation and the relationships among mustard (Brassica juncea L.) germplasm from Pakistan. Euphytica 101(3):357–366

    Article  Google Scholar 

  • Rakow G, Woods DL (1987) Outcrossing in rape and mustard under Saskatchewan prairie conditions. Can J Plant Sci 67:147–151

    Article  Google Scholar 

  • Ramchiary N, Bisht NC, Gupta V, Mukhopadhyay A, Arumugam N, Sodhi YS, Pental D, Pradhan AK (2007) QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea: importance of recurrent selection backcross scheme for the identification of ‘true’ QTL Theoretical and Applied Genetics 116(1):77–85. https://doi.org/10.1007/s00122-007-0648-4

  • Rastogi T, Reddy KS, Vaz M, Spiegelman D, Prabhakaran et al (2004) Diet and risk of ischemic heart disease in India. Am J Clin Nutr 79:582e592

    Article  Google Scholar 

  • Ravi MS, Geethanjali, Sameeyafarheen F, Maheswaran M (2003) Molecular marker based genetic diversity analysis in rice (Oryza sativa L.) using RAPD and SSR markers. Euphytica 133(2):243–252

    Article  CAS  Google Scholar 

  • Rhee SY, Beavis W, Berardini TZ, Chen G, Dixon D et al (2003) The Arabidopsis Information Resource (TAIR): a model organism database providing a centralized, curated gateway to Arabidopsis biology, research materials and community. Nucleic Acids Res 31:224–228. https://doi.org/10.1093/NAR/GKG076

    Article  CAS  PubMed  Google Scholar 

  • Ripley VL, Thompson SA, Ehlert ZC (2014) Omega-9 quality Brassica juncea. US Patent 8,637,740, 28 Jan 2014

    Google Scholar 

  • Röbbelen G (1990) Mutation breeding for quality improvement a case study for oilseed crops. Plant Mutat Breed Crop Improv 2:3–30

    Google Scholar 

  • Röbbelen G, Nitsch A (1975) Genetical and physiological investigations on mutants for polyenoic fatty acids in rapeseed, Brassica napus L. I. Selection and description of new mutants. Plant Breed 75:93–105

    Google Scholar 

  • Rohilla P, Naik R, Acharya R (2017) A look into the contribution of raja nighantu, an ayurvedic lexicon of 14th century AD, towards drug safety. Glob J Res Med Plants Indig Med 6:34e53

    Google Scholar 

  • Rosa EAS, Heaney RK, Fenwick GR, Portas CAM (1997) Glucosinolates in crop plants. Hortic Rev 19:199–215

    Google Scholar 

  • Rout K, Sharma M, Gupta V et al (2015) Deciphering allelic variations for seed glucosinolate traits in oilseed mustard (Brassica juncea) using two bi-parental mapping populations. Theor Appl Genet 128:657–666. https://doi.org/10.1007/s00122-015-2461-9

    Article  CAS  PubMed  Google Scholar 

  • Rout K, Yadav BG, Yadava SK, Mukhopadhyay A, Gupta V et al (2018) QTL landscape for oil content in Brassica juncea: analysis in multiple bi-parental populations in high and “0” erucic background. Front Plant Sci 871:1448. https://doi.org/10.3389/fpls.2018.01448

    Article  Google Scholar 

  • Sanlier N, Guler Saban M (2018) The benefits of Brassica vegetables on human health. J Human Health Res 1:104

    Google Scholar 

  • Savadi S, Naresh V, Kumar V, Bhat SR (2015) Seed-specific overexpression of Arabidopsis DGAT1 in Indian mustard (Brassica juncea) increases seed oil content and seed weight. Botany 94:177–184. https://doi.org/10.1139/cjb-2015-0218

    Article  CAS  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542. https://doi.org/10.1016/j.tplants.2006.09.002

    Article  CAS  PubMed  Google Scholar 

  • Sharafi Y, Majidi MM, Goli SAH, Rashidi F (2015) Oil content and fatty acids composition in Brassica species. Int J Food Prop 18(10):2145–2154

    Article  CAS  Google Scholar 

  • Sharma R, Prajapati PK (2016) Antidiabetic leads from ayurvedic medicinal plants. Int J Adv Complement Tradit Med 2:24e41

    Google Scholar 

  • Sharma A, Mohapatra T, Sharma RP (1994) Molecular mapping and character tagging in brassica juncea – i. degree, nature and linkage relationship of RFLPs and their association with quantitative traits. J Plant Biochem Biotechnol 3:85–89. https://doi.org/10.1007/BF03321956

    Article  CAS  Google Scholar 

  • Sharma R, Aggarwal RA, Kumar R et al (2002) Construction of an RAPD linkage map and localization of QTLs for oleic acid level using recombinant inbreds in mustard (Brassica juncea). Genome 45:467–472. https://doi.org/10.1139/g02-001

    Article  CAS  PubMed  Google Scholar 

  • Sharma M, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2016) BjuB.CYP79F1 regulates synthesis of propyl fraction of aliphatic glucosinolates in oilseed mustard Brassica juncea: functional validation through genetic and transgenic approaches. PLoS One 11:1–17. https://doi.org/10.1371/journal.pone.0150060

    Article  CAS  Google Scholar 

  • Sharma HK, Singh VV, Kumar A, Meena HS, Sharma P, Rai PK (2022) Genepools of Brassica. In: Kole C, Mohapatra T (eds) The Brassica juncea Genome. Compendium of plant genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-91507-0_4

    Chapter  Google Scholar 

  • Shen S, Tang Y, Zhang C, Yin N, Mao Y et al (2021) Metabolite profiling and transcriptome analysis provide insight into seed coat color in Brassica juncea. Int J Mol Sci 22:7215. https://doi.org/10.3390/ijms22137215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin JM, Eunbi L, Yoon SC, Chu WN (2021) Cancer-preventive effect of phenethyl isothiocyanate through tumor microenvironment regulation in a colorectal cancer stem cell xenograft model. Phytomedicine 84:153493

    Article  CAS  PubMed  Google Scholar 

  • Shyam C, Tripathi MK, Tiwari S et al (2021) In vitro production of Somaclones with decreased erucic acid content in Indian mustard [Brassica juncea (L.) Czern & Coss]. Plants 10:1297. https://doi.org/10.3390/plants10071297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BP, Chowdhury RK (1983) Correlation and path coefficient analysis of seed yield and oil content in mustard (Brassica juncea). Can J Genet Cytol 25:312–317

    Article  Google Scholar 

  • Singh BD, Singh AK (2015) Marker-assisted plant breeding: principles and practices. Springer India, New Delhi

    Book  Google Scholar 

  • Singh M, Singh N, Bhandari DK (1980) Interaction of selenium and sulfur on the growth and chemical composition of Raya. Soil Sci 129(4):238–244

    Article  CAS  Google Scholar 

  • Singh B, Singh J, Kumar A, Yadav YP, Singh S (1999) Response of Brassicas to sulphur for yield. Indian J Agric Sci 69(6):427–431

    CAS  Google Scholar 

  • Singh S, Mohapatra T, Singh R et al (2013) Mapping of QTLs for oil content and fatty acid composition in Indian mustard [Brassica juncea (L.) Czern. and Coss.]. J Plant Biochem Biotechnol 22:80–89. https://doi.org/10.1007/s13562-012-0113-6

  • Singh VK, Avtar R, Kumari N, Kumar R (2021) Assessment of genetic diversity and population structure in Indian mustard (Brassica juncea L.) using SSR markers. J Environ Biol 42:396–405

    Google Scholar 

  • Sinha S, Jha JK, Maiti MK, Basu A, Mukhopadhyay UK et al (2007) Metabolic engineering of fatty acid biosynthesis in Indian mustard (Brassica juncea) improves nutritional quality of seed oil. Plant Biotechnol Rep 1:185–197. https://doi.org/10.1007/s11816-007-0032-5

    Article  Google Scholar 

  • Sivaraman I, Arumugam N, Sodhi YS, Gupta V, Mukhopadhyay A et al (2004) Development of high oleic and low linoleic acid transgenics in a zero erucic acid Brassica juncea L. (Indian mustard) line by antisense suppression of the fad2 gene. Mol Breed 13:365–375. https://doi.org/10.1023/B:MOLB.0000034092.47934.d6

    Article  CAS  Google Scholar 

  • Small E (2006) Culinary herbs. National Research Council Canada, Ottawa, p 221e228

    Google Scholar 

  • Smith JSC, Smith OS (1989) The description and assessment of distances between inbred lines of maize: the utility of morphological, biochemical and genetic descriptors and a scheme for the testing of distinctiveness between inbred lines. Maydica 34:151–161

    Google Scholar 

  • Sodhi YS, Mukhopadhyay A, Arumugam N, Verma JK, Gupta V, Pental D (2002) Genetic analysis of total glucosinolate in crosses involving a high glucosinolate Indian variety and low glucosinolate line of Brassica juncea. Plant Breed 121:508–511

    Article  CAS  Google Scholar 

  • Sodhi YS, Chauhan A, Verma JK, Arumugam N, Mukhopadhyay A, Gupta V, Pental D, Pradhan AK (2006) A new cytoplasmic male sterility system for hybrid seed production in Indian oilseed mustard (Brassica juncea). Theor Appl Genet 114:93–99

    Article  CAS  PubMed  Google Scholar 

  • Song KM, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLPs). 3. Genome relationship in Brassica and related genera and the origin of B. oleracea and B.rapa (syn. campestris). Theor Appl Genet 79:497–506

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Gupta V, Pental D, Pradhan AK (2001) AFLP-based genetic diversity assessment amongst agronomically important natural and some newly synthesized lines of Brassica juncea. Theor Appl Genet 102:193–199. https://doi.org/10.1007/s001220051635

    Article  CAS  Google Scholar 

  • Srivastava RK, Singh RB, Pujarula VL et al (2020) Genome-wide association studies and genomic selection in pearl millet: advances and prospects. Front Genet 10. https://doi.org/10.3389/fgene.2019.01389

  • Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG (2000) High-oleic acid Australian Brassica napus and B. juncea varieties produced by co-suppression of endogenous Δ12-desaturases. Biochem Soc Trans 28:938–940. https://doi.org/10.1042/BST0280938

    Article  CAS  PubMed  Google Scholar 

  • Stringam GR, Thiagarajah MR (1995) Inheritance of alkenyl glucosinolates in traditional and microsporederived doubled haploid populations of Brassica juncea L. Czern and Coss. In: Proceedings of 9th international rapeseed congress, 4–7 July 1995. Cambridge, UK, pp 804–806

    Google Scholar 

  • Sun FJ (1943) Hybrid vigor in Brassica. J Agric Assoc China 175:35–58

    Google Scholar 

  • Tandayu E, Borpatragohain P, Mauleon R, Kretzschmar T (2022) Genome-wide association reveals trait loci for seed Glucosinolate accumulation in Indian mustard (Brassica juncea L.). Plants 11:364. https://doi.org/10.3390/plants11030364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Arabidopis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815. https://doi.org/10.1038/35048692

    Article  Google Scholar 

  • Thomas J, Kuruvilla KM, Hrideek TK (2012) Mustard. In: Handbook of herbs and spices. Woodhead Publishing, pp 388–398

    Chapter  Google Scholar 

  • Thurling N, Depittayanan V (1992) EMS Induction of early flowering mutants in spring rape (Brassica napus). Plant Breed 108:177–184

    Article  Google Scholar 

  • Tiwari AS (1995) Improved quality of oil and meal in Indian mustard. In: Rapeseed today and tomorrow, 9th international rapeseed congress. Cambridge, pp 434–436

    Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service. FoodData Central, 2019

    Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • van Doorn HE, van der Kruk GC, van Holst GJ, Raaijmakers-Ruijs NC, Postma E et al (1998) The glucosinolates sinigrin and progoitrin are important determinants for taste preference and bitterness of Brussels sprouts. J Sci Food Agric 78(1):30–38

    Article  Google Scholar 

  • Varshney RK, Roorkiwal M, Sorrells ME (2017) Genomic selection for crop improvement: an introduction. In: Varshney R, Roorkiwal M, Sorrells M (eds) Genomic selection for crop improvement. Springer, Cham, pp 1–6

    Chapter  Google Scholar 

  • Vaughan G (1977) A multidisciplinary study of the taxonomy and origin of Brassica crops. Bioscience 27:35–40

    Article  Google Scholar 

  • Vaughan JG, Hemingway JS, Schofield HJ (1963) Contributions to a study of variation in Brassica juncea Coss. & Czern. J Linn Soc Bot 58:435–447

    Article  Google Scholar 

  • Vavilov NI (1949) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:1–364

    Google Scholar 

  • Venkateswari J, Kanrar S, Kirti PB et al (1999) Molecular Cloning and Characterization of FATTY ACID ELONGATION1 (BjFAE1) Gene of Brassica juncea. J Plant Biochem Biotechnol 8:53–55. https://doi.org/10.1007/BF03263058

    Article  CAS  Google Scholar 

  • Verma K, Tripathi MK, Tiwari S, Tripathi N (2021) Analysis of genetic diversity among Brassica juncea genotypes using morphophysiological and SSR markers. Int J Curr Microbiol App Sci 10(01):1108–1117

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1040. https://doi.org/10.1038/ng.919

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Liang H, Yuan Q (2012) Separation of sinigrin from Indian mustard (Brassica juncea L.) seed using macroporous ion-exchange resin. Korean J Chem Eng 29:396–403. https://doi.org/10.1007/s11814-011-0175-5

    Article  CAS  Google Scholar 

  • Wang G, Zhang X, Huang W, Xu P, Lv Z et al (2021) Increased seed number per silique in Brassica juncea by deleting cis-regulatory region affecting BjCLV1 expression in carpel margin meristem. Plant Biotechnol J 19:2333–2348. https://doi.org/10.1111/pbi.13664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105(7):1073–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods DL, Potts DA, Males DR (1999) Genetic control of C18 fatty acid in Brassica juncea. In: 10th International Rapeseed Congress, Canberra, Australia, p 142

    Google Scholar 

  • Wu XM, Chen BY, Lu G et al (2009) Genetic diversity in oil and vegetable mustard (Brassica juncea) landraces revealed by SRAP markers. Genet Resour Crop Evol 56:1011. (2009). https://doi.org/10.1007/s10722-009-9420-8

    Article  Google Scholar 

  • Yadav RC, Kamada H, Kikuchi F (1991) Genotypic and media effects on plant regeneration from cotyledonary explants of Brassica juncea (L.) Coss & Czern. Ann Biol 7:119–124

    Google Scholar 

  • Yadav R, Singh R, Kumar S, Prasad TV, Bharadwaj R (2017) Genetic diversity among indigenous germplasm of Brassica juncea (L.) Czern and Coss, using agro-morphological and phenological traits. Proc Natl Acad Sci India Sect B Biol Sci 87(4):1125–1131

    Article  CAS  Google Scholar 

  • Yadava SK, Arumugam N, Mukhopadhyay A, Sodhi YS, Gupta V et al (2012) QTL mapping of yield-associated traits in Brassica juncea: Meta-analysis and epistatic interactions using two different crosses between east European and Indian gene pool lines. Theor Appl Genet 125:1553–1564. https://doi.org/10.1007/s00122-012-1934-3

    Article  CAS  PubMed  Google Scholar 

  • Yan W, Zhao H, Yu K et al (2020) Development of a multiparent advanced generation intercross (MAGIC) population for genetic exploitation of complex traits in Brassica juncea: Glucosinolate content as an example. Plant Breed 139:779–789. https://doi.org/10.1111/pbr.12820

    Article  CAS  Google Scholar 

  • Yang J, Song N, Zhao X et al (2014) Genome survey sequencing provides clues into glucosinolate biosynthesis and flowering pathway evolution in allotetrapolyploid Brassica juncea. BMC Genomics 15:107. https://doi.org/10.1186/1471-2164-15-107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Liu D, Wang X, Ji C, Cheng F et al (2016) The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232. https://doi.org/10.1038/ng.3657

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Wang J, Li Z et al (2021) Genomic signatures of vegetable and oilseed allopolyploid Brassica juncea and genetic loci controlling the accumulation of glucosinolates. Plant Biotechnol J 19:2619–2628. https://doi.org/10.1111/pbi.13687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao K, Bacchetto RG, Lockhart KM, Friesen LJ, Potts DA et al (2003) Expression of the Arabidopsis ADS1 gene in Brassica juncea results in a decreased level of total saturated fatty acids. Plant Biotechnol J 1:221–229. https://doi.org/10.1046/j.1467-7652.2003.00021.x

    Article  CAS  PubMed  Google Scholar 

  • Yu JC, Jiang ZT, Li R, Chan SM (2003) Chemical composition of the essential oils of Brassica juncea (L) CossGrown in different regions, Hebei, Shaanxi and Shandong, of China. J Food Drug Anal 11(1)

    Google Scholar 

  • Yusuf MA, Sarin NB (2007) Antioxidant value addition in human diets: genetic transformation of Brassica juncea with γ-TMT gene for increased α-tocopherol content. Transgenic Res 16:109–113. https://doi.org/10.1007/s11248-006

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2010) Allyl isothiocyanate as a cancer chemopreventive phytochemical. Mol Nutr Food Res 54:127–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Viennois E, Xu C, Merlin D (2016) Plant derived edible nanoparticles as a new therapeutic approach against diseases. Tissue Barriers 4:e1134415. https://doi.org/10.1080/21688370.2015.1134415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satish Kumar Yadava or Nirala Ramchiary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Singapore Pte Ltd

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Aakanksha, Yadav, B.G., Mathur, S., Yadava, S.K., Ramchiary, N. (2023). Genomic Designing for Nutraceuticals in Brassica juncea: Advances and Future Prospects. In: Kole, C. (eds) Compendium of Crop Genome Designing for Nutraceuticals. Springer, Singapore. https://doi.org/10.1007/978-981-19-4169-6_16

Download citation

Publish with us

Policies and ethics