Skip to main content

Climate Change Assessment Based on Synphytoindication Method

  • Living reference work entry
  • First Online:
Handbook of Climate Change Mitigation and Adaptation

Abstract

The proposed method of synphytoindication involves the quantification of external factors, including climatic ones, relying on the characteristics (features) of the plant cover. The method is based on quantitative indicators of the participation of plant communities-forming species with respect to their growth in certain ecological conditions, which enables researchers to employ a broad range of modern mathematical methods of data processing. The development of climatic scales uses grade-based indicators presented as quantitative scales, which permits the use of a broad arsenal of advanced mathematical methods of data processing. The climatic scales rely on grade-based indicators of species habitat amplitude. The outlines of species habitats have been superimposed on the isochore map that reflect hydrothermal regime: thermoclimate (Tm – 17 grades), cryoclimate (Cr – 15 grades), continentality (Kn – 17 grades), and ombroregime (Om – 23 grades). The focus is given to the correlation of grade-based scales and the indicators used in climatology: Tm – mean annual temperature; PAR, the period of active growing; Cr – mean temperatures of the coldest month, Io; Kn – Gorczynsky, Om – de Martonne index, Selyaninov hydrothermal index (HMI), and SPI.

It has been shown that climate serves as the trigger mechanism producing an impact on soil edaphic properties as well, and such indirect influence on vegetation is sometimes stronger than the direct one. The analysis of correlations between climatic and other indicators has permitted us to assess the nonlinear development of eco-systems and reflects regional specificity. According to the calculation of the change in species and syntaxa existence conditions, the rise in mean annual temperatures by +1, +2, and +3° causes disturbance, non-recovery or collapse of respective ecosystems, which launches succession processes, leads to disappearance, migration, or to changes in the structures of species eco-niches.

Some examples illustrate the feasibility of using synphytoindication method for assessing the climate-stabilizing role of forest ecosystems, their landscape, territorial, and temporal changes. The proposed synphytoindication method is an important instrument of investigating natural processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angot A (1906) Étudesur le régime pluviométrique de la méditerranée. Compt Rend SocSav 1906:120–134

    Google Scholar 

  • Angot A (1918) Étudessur le climat de la France. Régime des Pluies. Ièrepartie: Considérationsgénérales; Régiondunordouest. Q J R Meteorol Soc 44(185):59–60

    Google Scholar 

  • Bagnouls F, Gaussen H (1954) Saison secheetindicexérothermique. Bull Soc Hist Nat Toulouse 88:193–239

    Google Scholar 

  • Bilyk HI (1957) Roslynnist zapovidnyka “Mykhaylivska tsilyna” ta yiyi zminy pid vplyvom hospodarskoi diyalnosti lyudyny. Ukr botan Zhurn 14(4):26–39

    Google Scholar 

  • Box EO (1981a) Macroclimate and plant forms: an introduction to predictive modelling in phytogeography. Tasks for vegetation science, vol 1. Dr. W. Junk, The Hague

    Google Scholar 

  • Box EO (1981b) Predicting physiognomic vegetation types with climate variables. Vegetatio 45:127–139

    Article  Google Scholar 

  • Box EO (1982) Life forms composition of mediterranean terrestrial vegetation in relation to climatic factors. Ecol Medit Marseille 8:173–181

    Google Scholar 

  • Box EO (1987) Plant life forms and Mediterranean environments. Ann Bot Roma 45(2):8–42

    MathSciNet  Google Scholar 

  • Box EO (1996) Plant functional types and climate at the global scale. J Veg Sci 7:309–320

    Article  Google Scholar 

  • Bramwell D (2008) Plant adaption and climate change. In: 2nd World Scientific Congress Challenges in Botanical Research and Climate Change. Programme Book of abstract. Delft, 29 June – 4 July 2008

    Google Scholar 

  • Chervona knyha Ukrainy (2009) Roslynnyi svit (eds) Didukh YaP. K.: Hlobalkonsaltynh, p 900

    Google Scholar 

  • Chusova OO (2016) Otsinka vplyvu ekolohichnykh faktoriv na dyferentsiatsiyu biotopiv v dolyni r. Krasna (Luhanska obl.). Naukovi zapysky NaUKMA 184:60–67

    Google Scholar 

  • Chytrý M, Otýpková Z (2003) Plot sizes used for phytosociological sampling of European vegetation. J Veg Sci 14:563–570

    Article  Google Scholar 

  • Chytrý M, Hennekens SM, Jiménez-Alfaro B et al (2016) EuropeanVegetationArchive (EVA): anintegrated data base of European vegetation plots. Appl VegSci 19(1):173–180

    Article  Google Scholar 

  • Conrad V (1946) Usual formulas of continentality and their limits of validity. Trans Am Geophys Union 27(5):663–664

    Article  Google Scholar 

  • Currey DR (1974) Continentality of extratropical climates. Ann Assoc Am Geogr 64:268–280

    Article  Google Scholar 

  • del Río S (2005) El Cambio Climatico y suinfluencia en la vegetacion de Castilla y Leon. Itinera Geobot 16:532

    Google Scholar 

  • del Río S, Penas Á (2006) Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations. Plant Ecol 185:269–282

    Article  Google Scholar 

  • del Río S, Penas A, Pérez-Romero R (2005) Potential areas of deciduous forests inSpain (Castile and Leon) according to future climate change. Plant Biosyst 139(2):222–233

    Article  Google Scholar 

  • del Río S, Herrero L, Penas A (2007) Bioclimatic analysis of the Quercus pyrenaica forests in Spain. Phytocoenologia 37(3–4):541–560

    Google Scholar 

  • Dengler J, Jansen F, Glockler F, Peet R, De Caceres M, Chytry M, Ewald J, Oldeland J, Lopez-Gonzalez G, Finckh M et al (2011) The Global Index of Vegetation-Plot Databases (GIVD): a new resource for vegetation science. J Veget Sci 22:582–597

    Article  Google Scholar 

  • Didukh YaP (2008) Teoretychni problemy evolyutsii roslynnoho pokryvu. Etyudy fitoekolohii. Aristey, Kyiv, pp 152–177

    Google Scholar 

  • Didukh YaP (2011) The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Phytosociocentre, Kyiv

    Google Scholar 

  • Didukh YaP (2012) Osnovy bioindykatsii. Nauk. dumka, Kyiv, p 342

    Google Scholar 

  • Didukh YaP, Budzhak VV (2020) Prohrama dlya avtomatyzatsii protsesu rozrakhunku bilnykh pokaznykiv ekolohichnykh faktoriv: metodychni rekomendatsii. Chernivets. nats. un. im. Yu. Fedkovycha, Chernivtsi, p 40

    Google Scholar 

  • Didukh YaP (2016) In: Chorney II (ed) Climatogenic changes of plant life of the Ukrainian Carpathians. Druk Art, Chernivtsi, p 280

    Google Scholar 

  • Didukh YaP, Kuzemko AA (2014) Phytoindication assessment of syntaxa, class Molinio-Arrhenatheretea, in Polissya and forest steppe zones of Ukraine. Ukr Bot Zhurn 71(2):140–147

    Article  Google Scholar 

  • Didukh YaP, Plyuta P (1994) The phytoindication of ecological factors. Nauk, Kyiv, 280 p

    Google Scholar 

  • Didukh YaP, Rozenblit YuV (2017) Methodological principles of selection and assessment of ecomers (using the Dnister Canyon as a case study). Ukr Bot J 74(3):227–247

    Article  Google Scholar 

  • Didukh YaP, Vasheniyak Yu (2011) Synphytoindication of plant communities in the central Podillya region. Ukr Bot J 68(4):491–506

    Google Scholar 

  • Dubyna DV, Dzyuba TP (eds) (2019) Prodrome of the vegetation of Ukraine. Naukova Dumka, Kyiv, p 782

    Google Scholar 

  • Ellenberg H (1979) Zeigerwerte der Gefaßpflanzen Mitteleuropas. 2. Auflage. Scr Geobot 9:1–122

    Google Scholar 

  • Ellenberg H, Weber HE, Dull R et al (2001) Zeigerwerte von Pflanzen in Mitteleuropa. 3. durchgesehene Auflage. Scr Geobot 18:1–262

    Google Scholar 

  • Emberger L (1930) Sur une formule applicable en géographie botanique. Compt Rend Hebd Seanc Acad Paris 191:389–391

    Google Scholar 

  • Emberger L (1959) Sur la notion de transition en particulier dans le damaine du climat mediterranéen. Bull Serv Carte Phytogeogr 4:95–117

    Google Scholar 

  • Entrocassi G, Gavilán R, Sánchez-Mata D (2019) Subtropical mountain forests of Las Yungas: vegetation and bioclimate. Geobotany studies. Springer, Cham

    Google Scholar 

  • Entrocassi G, Gavilán R, Sánchez-Mata D (2020) Bioclimatology. In: Subtropical mountain forests of Las Yungas: vegetation and bioclimate. Geobotany studies. Springer, Cham

    Chapter  Google Scholar 

  • Foley KP, McArthur GA, Queáva C, Hurlin PJ, Soriano P, Eisenman RN (1998) Targeted disruption of the MYC antagonist MAD1 inhibits cell cycle exit during granulocyte differentiation. EMBO J 17:774–785

    Article  Google Scholar 

  • Forbes J (1859) Inquiries about terrestrial temperature. Translat R Soc Edinb 22:75–92

    Article  Google Scholar 

  • Gavilán RG (2005) The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central. Int J Biometeorol 50(2):111–120

    Article  Google Scholar 

  • Gavilán RG, Fernández-González F, Blasi C (1998) Climatic classification and ordination of the Spanish Sistema Central: relationships with potential vegetation. Plant Ecol 139:1–11

    Article  Google Scholar 

  • Gavilán RG, Sánchez-Mata D, Vilches B, Entrocassi G (2007) Modeling current distribution of Spanish Quercus pyrenaica forests using climatic parameters. Phytocoenologia 37(3–4):561–581

    Article  Google Scholar 

  • Gorczynski W (1920) Sur le calcul du degrée de continentalisme et son application dans la climatologie. Geogr Ann 2:324–331

    Google Scholar 

  • Gordon B, Levis S, Sitch S, Vertenstein M, Oleson K (2003) A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics. Glob Chang Biol 9(11):1543–1566

    Article  Google Scholar 

  • Grime JP (1977) Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat 111:116–994

    Article  Google Scholar 

  • Grisebach AHR (1838) Genera et Species Gentianearum adjectis observationibus quibusdam phytogeographicis. J. G. Cotta, Stuttgart/Tübingen

    Google Scholar 

  • Harter D, Irl S, Seo B, Steinbauer M, Gillespiee R, Triantis K, Fernández-Palacios J-M, Beierkuhnleina K (2015) Impacts of global climate change on the floras of oceanic islands – projections, implications and current knowledge. Perspect Plant Ecol 17(2):160–183

    Article  Google Scholar 

  • Hossell J, Riding A, Brown I (2003) The creation and characterization of a bioclimatic classification for Britain and Ireland. J Nat Conserv 11:5–13

    Article  Google Scholar 

  • Hutchinson G (1965) The ecological theater and the evolutionary play. Yale University Press, New Haven

    Google Scholar 

  • IPCC (ed) (2014) Climate change 2014: impacts, adaptation, and vulnerability: Working Groups II contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ivanov NN (1959) Poyasa kontinentalnosti Zemli [The belts of continentality on the Earth]. Izvestiya Vsesoyuznogo Geographicheskogo obshchestva 91:410–423

    Google Scholar 

  • Jäger E (1968) Die pflanzengeographische Ozeanitätsgliederung der Holarktis und die Ozeanitätsbindung der Pflanzenareale. Feddes Repert 79:157–335

    Article  Google Scholar 

  • Jäger E (1969) Die klimatischen Bedingungen des Areals der Dunklen Taiga und der sommergrünen Breitlaubwälder. Ber Deutsch Bot Ges 81:397–408

    Google Scholar 

  • Jäger E (1970) Charakteristische Typen mediterran-mitteleuropäischer Pflanzenareale. Feddes Repert 81:67–92

    Article  Google Scholar 

  • Kerner F (1905) Thermisodromen, versucheiner Kartographischen Dartstellung des jährlichen Ganges der Luftteperatur. K.K. Geogr. Gesell, Wien, 6(3)

    Google Scholar 

  • Khromov SP (1957) K voprosu o kontinental’nosti klimata [To a problem of climate continentality]. Izvestiya Vsesoyuznogo Geographicheskogo obshchestva 89:221–225

    Google Scholar 

  • Klimat Ukrainy (eds) Lipinskoho VM, Dyachuka VA, Babichenko VM (2003). K.: Vyd. Rayevskoho, p 343

    Google Scholar 

  • Konstantinov A (1968) Evopotranspiration in the environment. Hidrometeoizdat, Leningrad

    Google Scholar 

  • Köppen W (1900) Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr Z 6(593–611):657–679

    Google Scholar 

  • Köppen W (1918) Klassifikation der Klimate nach Temperatur, Niederschlag und Jahresablauf. Petermanns Geogr Mitt 64(193–203):243–248

    Google Scholar 

  • Köppen W (1948) Climatología. Con unestudio de los climas de la Tierra. Fondo de Cultura Económica, México

    Google Scholar 

  • Kozak OM, Didukh YaP (2015) Klasyfikatsiya ta sozolohichna otsinka biotopiv baseynu r. Latorytsya (Zakarpatska obl.). Naukovi zapysky NaUKMA. Biolohiya ta ekolohiya 171:38–46

    Google Scholar 

  • Krakovska SV, Palamarchuk LV, Shedemenko IP et al (2011) Hnatyuk Modeli zahalnoi tsyrkulyatsii atmosfery ta okeaniv u prohnozuvanni zmin rehionalnoho klimatu Ukrainy v KhKhI st. Heofyzycheskyi zhurnal 6(33):68–81

    Google Scholar 

  • Landolt E (1977) Ökologische Zeigerwerte zur Schweizer Flora. Veröff Geobot Inst der Eidgen Techn Hochschule in Zürich 64:1–20

    Google Scholar 

  • Lavrenko Ye, Zoz I (1928) Roslynnist tsilyny Mykhaylivskoho kinnoho zavodu (kol. Kapnista) Sumskoi okruhy. Okhorona pam’yatok pryrody na Ukraini, рр 23–36

    Google Scholar 

  • Levine JM, McEachern AK, Cowan C (2010) Do competitors modulate rare plant response to precipitation change? Ecology 91:130–140

    Article  Google Scholar 

  • Lysenko HM (2006) Dynamics characteristics of ecotopes “Yamskaya step” (reservation “Belogorie”, Russia), pp 44–51

    Google Scholar 

  • MaCarthur RH (1957) On the relative abundance of bird species. Proc Natl Acad Sci 43:293–295

    Article  Google Scholar 

  • Meusel H, Jäger E (1965) Vergleichende Chorologie der zentraleuropäischen Flora. Fischer, Jena

    Google Scholar 

  • Meusel H, Jäger E (1978) Vergleichende Chorologie der zentraleuropäischen Flora, 2. Fischer, Jena

    Google Scholar 

  • Meusel H, Jäger E (1989) Vergleichende Chorologie der zentraleuropäischen Flora, 3. Fischer, Jena

    Google Scholar 

  • Mucina L, Bueltmann H, Dierßen K et al (2016) Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Appl Veg Sci 19:3–264

    Article  Google Scholar 

  • Natsionalnyi atlas Ukrainy (ed) Paton Bye (2009). K.: Kartohrafiya, p 435

    Google Scholar 

  • Oturbay A, Loidi J (2001) Cambio climático: predicción de suinfluencia en la distribución de especiesarbóreas en el País Vasco. In: Gómez Mercado F, Mota Poveda JF (eds) Vegetación y Cambios Climáticos. Servicio de Publicaciones Universidad de Almería, Almería, pp 283–304

    Google Scholar 

  • Ozenda P (1954) La temperature, facteur de repartition de la vegetation en montagne. An Biol 31(5–6):295–312

    Google Scholar 

  • Philippis A (1937) Classificazioni ed indice del clima in rapporto alla vegetacione forestale italiana. Nuovo Giorn Bot Ital 44:1–142

    Article  Google Scholar 

  • Pignatti S, Menegoni P, Pietrosanti S (2005) Valiri di bioindicazione dell piante vascolori della flora d’Italia. Braun-Blanquetia. Recueil de travaux de geobotanique, Camerino, vol 39, p 97

    Google Scholar 

  • Prentice IC, Cramer W, Harrison SP et al (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Quezel P (1979) La région méditerranéenne française et ses essences forestières, signification écologique dans le contexte circum-méditerranéen. Forêts Méditerranéennes 1(1):7–18

    Google Scholar 

  • Raunkier С (1905) Types biologiques pour la geographie botanique. Kongelige Danske Videnskabernes Selskabs Forhandlinger 5:347–438

    Google Scholar 

  • Rebollar G, Ibánez J (2000) Paisaje vegetal, cambio climático y degradación del suelo. Interpretación des de un modelofitoclimático, In book: El Cambio Climático, BBVA, pp 223–260

    Google Scholar 

  • Rivas-Martínez S (1981) Les etages bioclimatiques de la vegetation de la Peninsule Iberique. An Jard Bot Madrid 37:251–268

    Google Scholar 

  • Rivas-Martínez S (1983) Nuevo índice de termicidad para la región mediterránea. In: Avances sobre la investigación en Bioclimatología. VII Re. Bioclim, Zaragoza, pp 377–380

    Google Scholar 

  • Rivas-Martínez S (2004) Global Bioclimatics (Clasificación Bioclimática de la Tierra). www.globalbioclimatics.org

  • Rivas-Martínez S (2005) Avances en Geobotánica. Discurso Apertura Curso Acad. Real Acad. Farmacia, Madrid, 142 pp

    Google Scholar 

  • Rivas-Martínez S, Loidi J (1999) Bioclimatology of the Iberian Peninsula. Itinera Geobot 13:41–47

    Google Scholar 

  • Rivas-Martínez S, Sánchez-Mata D, Costa M (1999) North American boreal andwestern temperate forest vegetation. (Syntaxonomical synopsis of the potential naturalplants communities of North-America II). Itinera Geobot 12:5–316

    Google Scholar 

  • Rivas-Martínez S, Rivas Sáenz S, Penas Á (2011) Worldwide bioclimatic classification system. Global Geobot 1:1–638. + 4 Maps

    Google Scholar 

  • Rivas-Martínez S, Penas Á, del Río S, González T-ED, Rivas-Sáenz S (2017) Bioclimatology of the Iberian Peninsula and the Balearic Islands. Veg Iber Peninsula 1:29–80

    Article  Google Scholar 

  • Rozenblit YuV (2020) Ecomers of the Dnister canyon floodplain. Ukr Bot J 77(3):156–172

    Article  Google Scholar 

  • Rozroblennya detalizovanykh kart maybutnikh klimatychnykh umov dlya terytorii Ukrainy za riznymy stsenariyamy zminy klimatu z vykorystannyam heoin-formatsiynykh system (2013a) [Elektronnyi resurs]. – UkrHMI. Rezhym dostupu: www.uhmi.org.ua/project/rvndr

  • Rozroblennya stsenariiv zminy klimatychnykh umov v Ukraini na seredno- ta dovhostrokovu perspektyvu z vykorystannyam danykh hlobalnykh ta rehionalnykh modeley (2013b) [Elektronnyi resurs]. – UkrHMI., 135 s. Rezhym dostupu: www.uhmi.org.ua/project/rvndr

  • Sanz-Elorza M, Dana ED, González A, Sobrino E (2003) Changes in the high mountain vegetation of Central Iberian Peninsula as a probable sign of global warming. Ann Bot 92:273–280

    Article  Google Scholar 

  • Scaminee JHJ, Hennekens SM, Chytry M, Rodwell JS (2009) Vegetation-plot data and databases in Europe: an overview. Preslia 81(3):173–185

    Google Scholar 

  • Shvydenko AZ, Buksha IF, Krakovska SV (2018) Urazlyvist lisiv Ukrainy do zminy klimatu. Nika-Tsentr, Kyu, p 184

    Google Scholar 

  • Snow R (2005) Continental climate and continentality. Encyclopedia of world climatology Oliver JE (ed). Springer Netherlands, Dordrecht, рр. 303–305

    Google Scholar 

  • Sokolov A (ed) (1981) Metody izuchenija i rascheta vodnogo balansa. Gidrometioizdat, Leningrad

    Google Scholar 

  • Stonevicius Е, Stankunavicius G, Rimkus Eg (2018) Continentality and oceanity in the mid and high latitudes of the northern hemisphere and their links to atmospheric circulation. Adv Meteorol 4:1–12

    Article  Google Scholar 

  • Thornthwaite CW (1931) The climates of North America according to a new classification. Geogr Rev 21:633–655

    Article  Google Scholar 

  • Tichý L, Holt J (2006) JUICE program for management, analysis and classification of ecological data. First version of the program manual. Masarykova univerzita, Brno. http://www.sci.muni.cz/botany/juice/

    Google Scholar 

  • Tkachenko VS (1971) Suchasnyy stan roslynnoho pokryvu Uspenivs’koho steputa prylehloyi terytoriyi zapovidnyka “Askaniya-Nova”. Ukr Bot Zhurn 28(1):107–111

    Google Scholar 

  • Tkachenko VS (2008) Synfitoindykatsiya samorozvytku i bifurkatsiynyi mekhanizm strukturohenezu fitosystem Khomutovskoho stepu. Visti BZ “Askaniya-Nova” 10:5–17

    Google Scholar 

  • Tkachenko VS, Lysenko HM, Vakal A (1993) Zminy ekotopiv luchnoho stepu “Mykhaylivskii tsilyny” (Sumska oblast) v khodi rezervatnoi suktsesii. Ukr Bot Zhurn 50:44–51

    Google Scholar 

  • Tkachenko VS, Didukh YaP, Genov AP et al (1998) Ukrainian nature steppe reserve. Plants. Phytosociocentre, Kyiv

    Google Scholar 

  • Tsyganov DN (1983) Phytoindication of ecological regimes in the mixed coniferous-broad-leaved forest subzone. Nauka, Moskva, p 198

    Google Scholar 

  • Tuhkanen S (1980) Climatic parameters and indices in plant geography. Acta Phytogeogr Suec 67:3–110

    Google Scholar 

  • Tuhkanen S (1984) A circumboreal system of climatic-phytogeographical regions. Acta Bot Fenn 127:3–50

    Google Scholar 

  • Von Humboldt А, Bonpland А (1807) Ideenzueiner Geographie der Pflanzen: nebsteinemNaturgemälde der Tropenländer: auf Beobachtungen und Messungengegründet, welchevom 10ten Grade nördlicherbiszum 10ten Grade südlicherBreite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestelltwordensind. Bey F.G. Cotta, Tübingen

    Google Scholar 

  • Wahlenberg G (1811) Kamtschadalische Laub- und Lebermoose, gesammelt auf der russischen Entreckungstreise von dem Herrn Hofrath Tilesius. Mag Neuesten Entdeck Gesammten Naturk Ges Naturf Freunde Berlin 5:289–297

    Google Scholar 

  • Walter H, Lieth H (1967) Klimadiagramm-Weltatlas. Gustav Fischer Verlag, Jena

    Google Scholar 

  • Warming E (1884) Über perenne gewachse. Botanischen Central blatt 18(19):16–22

    Google Scholar 

  • Willdenow CL (1792) Grundriß der Kräuterkundep. Haude und Spener, Berlin

    Google Scholar 

  • Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge, p 174

    Google Scholar 

  • Woodward FI, Cramer W (1996) Plant functional types and climatic changes: introduction. J Veg Sci 7:306–308

    Article  Google Scholar 

  • Zarzycki K (1984) Ekologiczne liczby wskaznikowe roslin naczyniowych. Kraków: PAN, р 46

    Google Scholar 

  • Zarzycki K, Trzcińska-Tacik H, Różański W et al (2002) Ecological indicator values of vascular plants of Poland. In: Mirek Z (ed) Biodiversity of Poland. 2. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, p 184 p

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Olha Chusova, Oksana Kucher, Yulia Rozenblit, Kateryna Sokolova, and Liudmyla Zavialova for the technical support the work, and is also grateful to Iryna Rachmanova for the English translation.

List of Symbols, Units, Acronyms and Terms

ІРСС

Intergovernmental Panel on Climate Change

RCM

Regional climate model

В1, А1В, andА2

Climate change scenarios

sPLOT

Global vegetation database

VegBank

American vegetation database

ЕVA

European vegetation archive

GIVD

Global index of vegetation-plot databases

UkrVEG

Ukrainian vegetation database

DCA

Detrended correspondence analysis

PAR

Photosynthetically active radiation

ОС1-3

Degree of oceanity (Meusel and Jäger 1965)

C1-3

Degree of continentality (Meusel and Jäger 1965)

Dfb

Humid zone with warm summer according to Köppen’s classification

Dfa

Arid zone with hot summer according to Köppen’s classification

HMI

Selyaninov hydrothermal moisture index

Мatrix-plot

An array of scatterplots

рН

The level of acidity

Ig

Gorchynsky continentality index

Іс

Annual thermal amplitude – Rivas-Martínez index (2011)

Ae

Grade indicators of soil aeration

Ca

Grade indicators of carbonate content in the soil

Cr

Grade indicators of cryoregime

Hd

Grade indicators of soil moisture

fH

Grade indicators of variability of soil moisture

Kn

Grade indicators of continentality of the climate

Lc

Grade indicators of light availability in the community

Nt

Grade indicators of the content of mineral nitrogen in soil

Om

Grade indicators of climate humidity

Rc

Grade indicators of soil acidity

Sl

Grade indicators of soil salt regime

Tm

Grade indicators of climate thermoregime

TWINSPAN

Software for classifying species and samples

JUІCE

Software package for phytosociological data editing and analyses

SPI

Standardized precipitation index

Т °С

Indicators of current mean annual temperature in relation to which calculations of the rise in temperatures and other characteristics are carried out

… + 1, … + 2 °С,… +3 °С

Indicators of environmental factors calculated when the mean annual temperature rises by +1, +2 or + 3 °С

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakiv Didukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Didukh, Y. (2021). Climate Change Assessment Based on Synphytoindication Method. In: Lackner, M., Sajjadi, B., Chen, WY. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_137-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_137-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6431-0

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics