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Abstract

Vegetation species succession and composition are significant factors determining the rate

of ecosystem biodiversity recovery after being disturbed and subsequently vital for sustain-

able and effective natural resource management and biodiversity. The succession and com-

position of grasslands ecosystems worldwide have significantly been affected by

accelerated environmental changes due to natural and anthropogenic activities. Therefore,

understanding spatial data on the succession of grassland vegetation species and commu-

nities through mapping and monitoring is essential to gain knowledge on the ecosystem and

other ecosystem services. This study used a random forest machine learning classifier on

the Google Earth Engine platform to classify grass vegetation species with Landsat 7 ETM+

and ASTER multispectral imager (MI) data resampled with the current Sentinel-2 MSI data

to map and estimate the changes in vegetation species succession. The results indicate

that ASTER MI has the least accuracy of 72%, Landsat 7 ETM+ 84%, and Sentinel-2 had

the highest of 87%. The result also shows that other species had replaced four dominant

grass species totaling about 49 km2 throughout the study.

Introduction

Vegetation succession has many economically significant attributes, including high overall

biomass and productivity, a wider variety of species, and minimal nutrients or energy from the

ecosystem [1]. Nevertheless, an ecosystem with naturally occurring succession stages will be

more resilient to natural and anthropogenic disturbances, suppose these disturbances increase

in severity, frequency, and magnitude because of human activities and weather conditions. In

that case, the pressure on plant communities increases, causing accelerated succession, creat-

ing a new vegetation community, and allowing the succession of non-native species [2].

Luken [1] describes vegetation succession as a change in vegetation composition over 500

years without being disturbed to achieve a climax’s stable species composition. Climate change

and other disturbances within a short period may result in fluctuations of species composition,
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promote non-native species and delay the natural vegetational succession from reaching its cli-

max. The succession of non-native species could impact biodiversity and the natural ecosys-

tem. Non-native invasive species quickly inhabit disturbed spaces and delay native species

from achieving seral or climax states. In some cases, the succession is entirely taken over and

held for an extended period at an intermediate state, affecting biodiversity [3–5]. Invasive veg-

etation species threaten native vegetation species and water resources because they grow faster,

consume more water, and spread more than the native species [6, 7]. The encroachment of

these vegetation species tends to alter the balance of ecosystems, thereby accelerating succes-

sion. Vegetation species succession and composition are significant factors determining the

rate of ecosystem biodiversity recovery after being disturbed [8] and subsequently vital for sus-

tainable and effective natural resource management and biodiversity. For example, in South

Africa, changes in vegetation succession resulting from disturbances have led to significant

biodiversity loss [9].

Worldwide, the succession and composition of grasslands ecosystems have been signifi-

cantly affected by accelerated environmental changes due to natural and anthropogenic activi-

ties [10, 11]. It has resulted in shortages in grasslands taxonomy and the efficient functioning

of ecosystem services [12]. Grasslands’ changing diversity and composition impact ecosystem

services like precipitation and temperature controls, freshwater supply, erosion control, and

soil formation [13–15]. They can likely result in biodiversity loss [16]. About one-third of

South African land surface is covered by the grassland biome [17]. It has less than 3% located

in protected areas, and 40–60% have been altered with little chance of being salvaged and

returned. It makes the grassland one of the most vulnerable biomes in South Africa [18].

Therefore, understanding spatial data on the succession of grassland vegetation species and

communities through mapping and monitoring is essential to gain knowledge on the ecosys-

tem and other ecosystem services [9, 19, 20].

Remote sensing provides an efficient approach for mapping grassland vegetation species by

reducing rigorous fieldwork necessitated by standard mapping methods. It does this effectively

by offering a wide range of recent data on vegetation species distribution from hyperspectral

and multispectral imagery [21, 22]. Extensive studies have been undertaken in monitoring spa-

tio-temporal changes in vegetation species composition and diversity using remote sensing

data [23–26]. However, these studies focus briefly on a short period, usually between one to

five years, because, before now, only high-resolution hyperspectral images could give accurate

vegetation species discrimination at individual levels [9, 19, 27–30]. Osińska-Skotak et al. [24]

study the effect of high-resolution hyperspectral ima and LiDAR (Light Detection and Rang-

ing) acquisition date on species identification and, as a result, on classifying individual species

in succession trees and shrubs. The researchers also look into the classification accuracy of a

particular species is influenced by the research field and the examined environment. The study

determined that the time of remote-sensing data collection affects the ability to distinguish

succession species. In another study, [31] developed a method for detecting and monitoring

the succession process, which is defined as woody vegetation encroachment on non-forest

Natura 2000 areas, based on airborne laser scanner (ALS) and hyperspectral (HS) data. Chraibi

et al. [32], in their study on changes in tree biodiversity throughout succession, applied both

field data and data derived from Sentinel-2 images of 2015 and 2019 to assess variations in tree

species richness. They evaluated the benefits and drawbacks of each approach, exploring the

potential for remote sensing technology to reveal landscape-level distributions of forest condi-

tion and regeneration. Their findings revealed that remote sensing and field data provided dis-

tinct insights into tree species compositional changes, as well as alpha- and beta-diversity

patterns.
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Nevertheless, recent studies have shown that free low-resolution satellite images like Senti-

nel-2 MSI and Landsat 8 OLI can be used to accurately map and monitor grass vegetation spe-

cies [33–35]. Vegetation species succession and diversity monitoring can now be done over an

extended period using these low-resolution imageries in combination with machine learning

(ML).

Because ML can handle nonparametric information with various input predictor data,

remote sensing image processing uses ML algorithms [36, 37] to achieve higher accuracy.

Increasing accuracy in image classification is a frequent application of machine learning (ML)

algorithms, which outperform traditional classifiers for data with many predictor variables

[38, 39].

Support Vector Machines (SVM), Classification and Regression Trees (CART), Random

Forest (RF), Logistics Regression (LR), Linear Discriminant Analysis (LDA), K-Nearest Neigh-

bour, and Neural Networks are some of the algorithms used in machine learning for image

classification. However, numerous studies have shown that random forest performs better in

most cases, especially when multispectral images like Sentinel-2 are involved in vegetation spe-

cies classification [34, 40, 41]. Therefore, this study used a random forest ML algorithm with

Landsat 7 ETM+ and ASTER MI data fused with the current Sentinel-2 MSI data to map and

estimate the changes in vegetation species succession.

Study area

The study was conducted at the Golden Gate Highlands National Park, located in Free State,

South Africa, near the Lesotho border (Fig 1). The Park covers 340 km2 and is located at the

foothills of the Maloti Mountains of the Eastern Free State. The highest peak in the park is

2,829 m (9,281 ft) above sea level. The Park is positioned in the Eastern Highveld region of

South Africa and experiences a dry, sunny climate from June to August with showers, hail, and

thunderstorms between October and April and snow in winter. The Park has a relatively high

annual rainfall of 800 mm (31 in). The park is significant for its rich flora and fauna, which

include endemic and endangered plants and animals. The park contains over 60 grass species

[42]. The region is a biodiversity hotspot because of the variety of species, including some of

the dominant species like Eragrostis, Hyparrhenia cf. Tamba, T. triandra, and M. Capensis
[33, 43].

Materials and methods

The study used satellite images from different sensors to cover the period of study. The sensors

used include the European Union/ESA/Copernicus Sentinel-2 MSI, the United States Geologi-

cal Survey (USGS) Landsat series ETM+, and the NASA’s Land Processes Distributed Active

Archive Center (LP DAAC) Advanced Spaceborne Thermal Emission and Reflection Radiom-

eter (ASTER) multispectral imager satellite images with UTM Projection Zone35S, and

Datum WGS84 available on the Google earth engine (GEE). The imageries were selected for

the rainy months from November to April. The year 2001 was chosen for the Landsat +ETM,

2011 for the ASTER MI, and 2021 for Sentinel-2. Landsat ETM+ and OLI were selected for

this study because they have a 15m panchromatic band used to pansharpening the images

from 30 m to 15 m. ASTER MI was selected for 2011 because Landsat ETM+ had the scan line

error for 2011. Also, the ASTER MI has 15 m resolution bands. The atmospheric and geomet-

ric correction was done on the images, and the 10 m bands of Sentinel-2 were then used to

resample the pan sharped 15m Landsat images and ASTER MI to 10 m using bicubic interpo-

lation. All the images from the different sensors were calibrated to top-of-atmosphere (TOA)

reflectance. ArcGIS 10.7 software was used to generate a hundred random sample points from
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the spectral signatures of the 12 dominant grass vegetation species in the study area from a pre-

vious study [33] that used deep learning and machine learning models to discriminate grass

species at the individual level. Their study recommended Sentinel-2 MSI bands 6, 7 (red edge),

bands 8 and 8A, band 11, and band 12 to produce optimum classification accuracy. Therefore,

the spectral resolution of these bands was used to match and select the bands in the Landsat

ETM+ and ASTER MI, as presented in Table 1. The spectral signatures were used for training

and cross-validation, with each sample class receiving eight or nine samples to ensure fair

representation. The generated samples were saved as a shapefile, imported into GEE, and

superimposed on the Landsat ETM+ and ASTER MI and Sentinel-2 image MSI. The sample

points were randomly split into a training set (70%) to train the RF classifiers [33, 44] and a

test set (30%) for testing purposes [33, 45] in GEE.

The GEE code editor random forest machine learning classifier with ten trees [46] was then

used to process the image collections to classify the images into induvial species classes [33,

47]. Ancillary data such as Normalized Difference Vegetation Index (NDVI) were mapped

into the image collection on GEE before classification was done to improve classification accu-

racy. The difference in illuminating effect by high mountains was accounted for by mapping a

15 meters resolution ASTER Global Digital Elevation Model (GDEM) version 2 scale down to

10 m into the image collection [33, 45, 48, 49].

Fig 1. The study area.

https://doi.org/10.1371/journal.pone.0256672.g001
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Results and discussion

Sensor performance and spectral reflectance

Tables 2–4 shows the accuracy of each sensor. ASTER MI has the least accuracy of 75%, Land-

sat 7 +ETM 84%, and Sentinel-2 had the highest of 87%. The ASTER MI had the lowest level

of accuracy, possibly because [50] stated that each scene does not have all 14 bands. Therefore,

some scenes may have fewer bands than others. Hence, only bands 1 to 3 were available for

that period. However, these bands’ spectral range can be compared to bands 1–5 of Landsat +

ETM and OLI. Another possible reason is that the three bands available didn’t adequately

Table 1. Selected bands for classification.

Name Pixel Size Wavelength Description

Sentinel-2 MSI 2021

B6 20 meters 0.74 μm Red Edge 2

B7 20 meters 0.78 μm Red Edge 3

B8 10 meters 0.84 μm NIR

B8A 20 meters 0.87 μm Red Edge 4

B11 20 meters 1.614 μm SWIR 1

B12 20 meters 2.202 μm SWIR 2

ASTER MI 2011

B3N 15 meters 0.780–0.860μm VNIR_Band3N (near infrared, nadir pointing)

B04 30 meters 1.600–1.700μm SWIR_Band4 (short-wave infrared)

B05 30 meters 2.145–2.185μm SWIR_Band5 (short-wave infrared)

B06 30 meters 2.185–2.225μm SWIR_Band6 (short-wave infrared)

Landsat ETM+ 2001

B4 30 meters 0.77–0.90 μm Near infrared

B5 30 meters 1.55–1.75 μm Shortwave infrared 1

B7 30 meters 2.08–2.35 μm Shortwave infrared 2

B8 15 meters 0.52–0.90 μm Panchromatic

https://doi.org/10.1371/journal.pone.0256672.t001

Table 2. Confusion matrix for Sentinel-2 MSI.

EC PH SP AA SC TT AJ MH EP SC MC PA Total Error of comission

E. curvula (EC) 5 0 0 0 0 1 0 0 0 0 0 0 6 83%

P.Hyparrhenia (PH) 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

S. Plumosum 1 0 2 0 0 0 0 0 0 0 0 0 3 67%

A. Asteraceae 0 0 0 2 0 0 0 0 0 0 0 0 2 100%

S. Centrifugus 0 0 0 0 2 0 0 0 0 0 0 1 3 67%

T. Triandra 0 0 0 0 0 4 0 0 0 0 0 0 4 100%

A. Junciformis 0 0 1 0 0 0 3 0 0 0 0 0 4 75%

M. Hermania 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

E. Plane Nees 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

S. Conrathii 0 0 0 0 0 0 0 0 0 2 0 0 2 100%

M. Capensis 0 0 0 0 0 0 0 0 0 0 2 0 2 100%

P. Australis 0 0 0 0 0 0 0 0 0 0 0 5 5

Total 6 0 3 2 2 5 3 0 0 2 2 6 31

Error of omission 83% 0% 67% 100% 100% 80% 100% 0% 0% 100% 100%

Overall accuracy = (5+0+2+2+2+4+3+0+0+2+2+5) / 31 = 0.87.

0.87 x100 = 87%.

https://doi.org/10.1371/journal.pone.0256672.t002
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separate the grass species from each other, as shown in the spectral reflectance curve in Fig 2.

Nevertheless, if all the bands were available, ASTER MI should discriminate the grass species

effectively to attain a higher accuracy using machine learning classifiers. The accuracy of the

ASTER image agrees with a study done by [51]. Their study used ASTER NDVI and EVI to

discriminate rice and citrus fields with 75% and 65% accuracy, respectively. They also used

Landsat 5 TM NDVI and EVI, which had a lower accuracy of 60% and 65% than the accuracy

reached in this study with Landsat 7 ETM+. Landsat 7 ETM+ was able to get a greater accuracy

because the bands were pan-sharpened with the 15m panchromatic bands, unavailable on the

Table 4. Confusion matrix for ASTER MI.

EC PH SP AA SC TT AJ MH EP Sco MC PA Total Error of comission

E. curvula (EC) 5 0 0 0 0 0 0 0 0 0 1 1 7 71%

P.Hyparrhenia (PH) 0 1 0 0 0 0 0 0 0 0 0 0 1 100%

S. Plumosum (SP) 0 0 2 0 0 0 0 0 0 0 0 0 2 100%

A. Asteraceae (AA) 0 0 0 2 0 0 0 0 0 0 0 0 2 100%

S. Centrifugus (SC) 1 0 0 0 1 0 0 0 0 0 0 0 2 50%

T. Triandra 1 0 0 0 0 1 0 1 0 0 0 0 3 33%

A. Junciformis (AJ) 0 0 0 0 0 0 2 0 0 0 0 0 2 100%

M. Hermania (MH) 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

E. Plane Nees (EP) 1 0 0 0 0 0 0 0 0 0 0 0 1 0%

S. Conrathii (Sco) 0 0 0 0 0 0 0 0 0 1 0 0 1 100%

M. Capensis (MC) 0 0 0 0 0 0 0 0 0 0 3 1 4 75%

P. Australis (PA) 0 0 0 0 0 0 0 0 0 0 0 3 3 100%

Total 8 1 2 2 1 1 2 1 0 1 4 5 26

Error of omission 63% 100% 100% 100% 100% 100% 100% 0% 0% 100% 75% 60%

Overall accuracy = (5+1+2+2+1+1+2+0+0+1+3+3) / 28 = 0.75.

0.75 x100 = 75%.

https://doi.org/10.1371/journal.pone.0256672.t004

Table 3. Confusion matrix for Landsat 7 ETM+.

EC PH SP AA SC TT AJ MH EP SC MC PA Total Error of comission

E. curvula (EC) 3 0 0 0 0 1 0 0 0 0 0 0 4 75%

P.Hyparrhenia (PH) 0 3 0 0 0 0 0 0 0 0 0 1 4 75%

S. Plumosum 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

A. Asteraceae 1 0 0 0 0 0 0 0 0 0 0 0 1 0%

S. Centrifugus 0 0 0 0 2 0 0 0 0 0 0 0 2 100%

T. Triandra 0 0 0 0 0 2 0 0 0 0 0 0 2 100%

A. Junciformis 0 0 0 0 0 0 0 0 0 0 0 0 0 0%

M. Hermania 0 0 0 0 0 0 0 2 0 0 0 0 2 100%

E. Plane Nees 0 0 0 0 0 0 0 0 1 0 0 0 1 100%

S. Conrathii 0 0 0 0 0 0 0 0 0 3 0 0 3 100%

M. Capensis 0 0 0 0 0 1 0 0 0 0 2 0 3 67%

P. Australis 0 0 0 0 0 0 0 0 0 0 0 3 3 100%

Total 4 3 0 0 2 4 0 2 1 3 2 4 25

Error of omission 75% 100% 0% 0% 100% 50% 0% 100% 100% 100% 100% 75%

Overall accuracy = (3+3+0+0+2+2+0+2+1+3+2+3) / 21 = 0.84.

0.84 x100 = 84%.

https://doi.org/10.1371/journal.pone.0256672.t003
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Landsat 5 TM and resampled from 30 m to10 m using the Sentinel-2 10 m bands. Also, the RF

machine learning classifier, which many studies have proved to improve classification [33, 34,

52, 53], contributed to the higher accuracy in this study than the density slicing classification

used in their research.

Fig 2 shows the spectral reflectance of the twelve grass species extracted from all the sensors.

In the Landsat 7 ETM+, the species were discriminated in wavelengths of 0.52–0.77 μm and

1.55–2.08 μm, representing bands at the start of the wavelength for the panchromatic near-

infrared, shortwave infrared 1, and shortwave infrared 2. The ASTER MI has its best spectral

separation wavelength of 0.780–0.860μm (VNIR near-infrared, nadir pointing band). At the

same time, the Sentinel-2 separated it best in the bands 6, 7 (red edge), bands 8 and 8A, band

11, and band 12 as recommended by the study by [33, 54–56], hence the difference in classifi-

cation accuracy.

Grass species changes and succession

Fig 3 shows the map of twelve dominant vegetation species discrimination for 2001, 2011, and

2021. However, the classified map for 2010 was not analyzed further because of the low level of

accuracy. The difference of 12% from 2001 and 15% to 2021 might misrepresent the changes

that occurred with the classified maps of 2001 and 2021.

Fig 4 shows the vegetation changes from 2001 to 2021. It shows that four grass species had

the most significant transformation into other species in area coverage over twenty years. S.

centrifugus had an enormous shift of 22.6 km2, E. curvula had a change of 11.42 km2, S. Con-
rathii had a change of 9.7 km2, and P.australis changed 5.14 km2. The other seven grass species

had gained and losses over the other four species.

M. junceus has the highest success rate. It has replaced different species covering a total

land area of 17.22 km2. Another species fast replacing other species is the T. triandra species,

Fig 2. Species spectral reflectance curves of twelve grass species. (a) Extracted from Landsat 7 ETM+, (b) Extracted from ASTER MI, (c) Extracted from Sentinel-2.

https://doi.org/10.1371/journal.pone.0256672.g002
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replacing 11.4km2 that formerly contained other species. E. curvula, termed an increaser spe-

cies by many studies (9, 33), and grows very fast in disturbed environments have been replaced

by eight different species. T. triandra accounts for 50% of the total area that other species have

replaced the E. curvula. Although the E. curvula being an increaser species, it had replaced

other species like the S. centrifugus and area dominated by mixed species in different study

locations and gained back almost 90% of the area lost to other species in Figs 5 and 6. Fig 6

shows that the replacement of E. curvula by T. triandra happens all over the study area. Still, it

is more concentrated around the North, North-East, South-west, and roads of the study area.

S. centrifugus, the highest replacement species, is replaced by all the other species in the

study area, especially M. junceus, E. curvula, and T. triandra, accounting for 4.8km2, 4.7km2,

and 3.3 km2 respectively in Fig 7. The S.centrifugus species is monocotyledon and belongs to

the Poaceae family. It is a native species of South Africa and is termed one of the least con-

cerned threatened species in the red list of South African plants [57]. The succession appears

to be occurring around the South, South-western part of the study area, where there are very

high elevations (Fig 8).

Fig 3. The map of grass species. (a) derived from Landsat 7 ETM+, (b) derived from the ASTER MI, (c) derived from Sentinel-2 MSI.

https://doi.org/10.1371/journal.pone.0256672.g003
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S. Conrathii is a native species in South Africa but not endemic to the country. It is also not

seen as threatened plant species [57]. This species has about 6.26 km2 replaced by M. junceus,
majorly in the southwestern (Fig 9) part of the study area but gains 1.06km2 by replacing S.

centrifugus and 0.34km2 of H. depressa (Fig 10).

Fig 4. Vegetation transformation between 2001 and 2021.

https://doi.org/10.1371/journal.pone.0256672.g004

Fig 5. Species contributions to changes in Eragrostis curvula.

https://doi.org/10.1371/journal.pone.0256672.g005
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Fig 6. Areas where Themeda triandra succeeded from Eragrostis curvula.

https://doi.org/10.1371/journal.pone.0256672.g006
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P. australis is a decreaser species quickly affected by overgrazing and has a slow recovery

rate after a disturbance [58]. It is a tall grass found across South Africa, especially around river

beds and wet environments, and is not at risk of extinction. [57, 59]. Nevertheless, Fig 11

shows that it is being replaced mainly by T. triandra (2.55 km2), E. plane Nees (2.3 km2), and
M. junceus (1.4 km2). It is also gaining back by replacing S. centrifugus and E. curvula. It is

found across the study area around the river channels and is replaced mainly in the southern

and northern parts of the study area (Fig 12).

The replacement of species may be happening because several factors or disturbances like

that could either be natural or anthropogenic. Each species may have a unique or several rea-

sons for replacing others or has been replaced. Some of these species are used for human activ-

ities like thatching and medicinal purposes, and some are palatable for grazing. Climate

change and fires are common factors that can also affect these successions [60, 61]. The study

area is a region constantly affected by wildfires, and the fire severity and magnitude have been

mapped by [33]. Their research showed some parts of the study area had constantly been

burnt with high fire severity over 20 years. These parts of the study area may be experiencing

changes in species composition, leaving only the fire-tolerant species or invasive species like S.

plumosum, which is a known species that promote the spread of wildfires [62–64]. In fires

recently disturbed areas in the park, S. plumosum can sprout and lie dormant when encounter-

ing higher temperatures and low-moisture conditions for the remainder of winter while await-

ing the emergence of spring [65].

Several studies have found that climatic variables like temperature changes significantly

impact the distribution of ecological characteristics and environmental dynamics for many

types of vegetation species, including alien or native hosts [65–67]. Temperature plays a signif-

icant role in the distribution of species, with substantial effects on fire risk. The region’s cli-

mate often has extended periods of pronounced temperature and low precipitation, resulting

in large, devastating fires that devastate populations of plant life [67]. In their research in the

study area, Adepoju et al. [65] noted the possibility that the distribution of some types of

grasses could be better enhanced under conditions with higher daytime temperatures, low to

moderate levels of rain at lower elevations. They also noted that climate is an essential factor in

Fig 7. Species contributions to change in Sporobolus centrifugus.

https://doi.org/10.1371/journal.pone.0256672.g007
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Fig 8. Areas whereM. junceus succeeded from S. centrifugus.

https://doi.org/10.1371/journal.pone.0256672.g008
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Fig 9. Areas whereM. junceus succeeded from S. Conrathii.

https://doi.org/10.1371/journal.pone.0256672.g009
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determining grass species distribution in the mountainous grasslands of South Africa, where

periods of warm and cold weather considerably fluctuate.

Areas that are subject to overgrazing and human activities are more likely to experience the

spreading of the species that can lead to gaining of new species and loss others. Factors like dis-

tance from settlement, land near grasslands and agricultural, and distance from roads impact

how disturbances affect different vegetation species [65, 68, 69]. The study area has been a

national park with a history of incorporating farms lands to expand the conservation area [70].

In February 1991, the Qwaqwa National Park, which initially comprised multiple crop farm-

lands, agricultural activities like domestic animal grazing, was also integrated into the study

Fig 10. Species contributions to changes in Stiburus Conrathii.

https://doi.org/10.1371/journal.pone.0256672.g010

Fig 11. Species contributions to change in Phragmites australis.

https://doi.org/10.1371/journal.pone.0256672.g011
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Fig 12. Areas where T. triandra succeeded from P. australis.

https://doi.org/10.1371/journal.pone.0256672.g012
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area. To date, some of these farmers are still located in the park, and their livestock is still graz-

ing the vegetation [70, 71]. However, some farmers have stopped planting on them. The dis-

turbed land has been left to recover by the park managers as a conservation strategy.

Nevertheless, not all these previous farmlands have recovered fully because the soils have been

over-exploited. The vegetation species in these locations struggle to survive with the effects of

disturbances like frequent wildfires and overgrazing from agricultural animals from within the

park or the surrounding communal areas or from the herbivorous animals within the park.

Conclusion

This study has shown that the Landsat 7 ETM+ can be used for vegetation species discrimina-

tion if the panchromatic band is used to pan sharpening the 30 m bands to 15 m and then

resampled with the 10m bands Sentinel-2 MSI. It will allow for research in monitoring vegeta-

tion species changes over a long period. Although the ASTER MI wasn’t used to analyze the

vegetation species changes, it also has a prospect of being used if all the recommended bands

are available. The study also confirmed many other studies: using ML techniques such as RF

with freely accessible Sentinel-2 MSI can identify grass species with high accuracy. The study

explored the differences in vegetation species that have occurred over 20 years but didn’t

explore the precise reasons why others were replacing some vegetation species. The causes and

factors influencing the shift in vegetation species in some park locations can be done in a fur-

ther study. It will help the park managers appropriately manage the park and prevent key vege-

tation species from total annihilation by other more aggressive vegetation species, preserving

the animal population in the park and keeping the ecosystem healthy.
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