Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


The genus Croton belongs to the Euphorbiaceae family, which comprises approximately 1300 species. Many Croton species have been used as folk medicines. This review focuses on the chemical constituents from Croton species and their relevant biological activities, covering the period from 2006 to 2018. A total of 399 new compounds, including 339 diterpenoids, were reported. Diterpenoids are characteristic components of the Croton species. These isolated compounds exhibited a broad spectrum of bioactivities, including cytotoxic, anti-inflammatory, antifungal, acetylcholinesterase inhibitory, and neurite outgrowth-promoting properties. The present review provides a significant clue for further research of the chemical constituents from the Croton species as potential medicines.

Free full text 


Logo of moleculesLink to Publisher's site
Molecules. 2018 Sep; 23(9): 2333.
Published online 2018 Sep 12. https://doi.org/10.3390/molecules23092333
PMCID: PMC6225158
PMID: 30213129

Chemical Constituents from Croton Species and Their Biological Activities

Abstract

The genus Croton belongs to the Euphorbiaceae family, which comprises approximately 1300 species. Many Croton species have been used as folk medicines. This review focuses on the chemical constituents from Croton species and their relevant biological activities, covering the period from 2006 to 2018. A total of 399 new compounds, including 339 diterpenoids, were reported. Diterpenoids are characteristic components of the Croton species. These isolated compounds exhibited a broad spectrum of bioactivities, including cytotoxic, anti-inflammatory, antifungal, acetylcholinesterase inhibitory, and neurite outgrowth-promoting properties. The present review provides a significant clue for further research of the chemical constituents from the Croton species as potential medicines.

Keywords: Croton species, phytochemistry, biological activities, diterpenoids, cytotoxicity

1. Introduction

The genus Croton belongs to the Euphorbiaceae family, and contains approximately 1300 species of trees, shrubs, and herbs, which are widely distributed throughout tropical and subtropical regions of the world. Many Croton species have been used as folk medicines in Africa, south Asia, and south America, for the treatment of many diseases such as stomachache, abscesses, inflammation, and malaria [1,2,3]. The seeds of C. tiglium, which are well-known as “badou”, had been utilized as a traditional Chinese medicine to treat gastrointestinal disorders, intestinal inflammation, and rheumatism. The roots of C. crassifolius, known as “jiguxiang” in China, are mainly used as a traditional medicine for the treatment of stomachache and sore throat [3]. The genus Croton is abundant in diverse diterpenoids, including clerodane, tigliane, kaurane, labdane, cembrane, and pimarane, with a wide range of biological activities, such as cytotoxic, anti-inflammatory, and anti-microbial [1,2,3,4,5]. Due to their great structural diversity and broad relevant bioactivities, Croton species have attracted increasing research attention. Several authors have provided reviews about the chemical constituents and biological activities of Croton species. A review came out in 2006 regarding clerodane diterpenes isolated from Croton species, their 13C-NMR spectroscopic data, and biological activities [2]. In 2007, a comprehensive review on the traditional uses, chemistry, and pharmacology of Croton species was published [1]. In 2013, anticancer and antioxidant activities of extracts and pure compounds from several Croton species were reviewed [4]. Five review articles were published in recent years which focused on ethnopharmacological uses, phytochemistry, and pharmacology of a single Croton species [6,7,8,9,10]. In the last decade, there has been a dramatic progress in the chemical constituents and relevant biological activities of Croton species. However, so far, no comprehensive review has been published since 2007. In the present review, we summarize systematically the research advances on the new chemical constituents and their biological activities of Croton species reported in the literature, as found on Web of Science, Google Scholar, PubMed, and SciFinder, from 2006 to March 2018, with the aim of providing a basis for further research of natural product drug discovery.

2. Chemical Constituents

To date, 399 new compounds have been isolated and identified from Croton species, including 339 diterpenoids (1339), seven sesquiterpenoids (340346), one sesterterpenoid (347), one triterpenoid (348), 21 glycosides (349369), eight alkaloids (370377), three benzoate derivatives (378380), three pyran-2-one derivatives (381383), two cyclopeptide (384, 385), two tropone derivatives (386, 387), two limonoids (388, 389), and ten miscellaneous compounds (390399). Their structures, molecular formula, names, corresponding sources, and references are summarized in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12 and Figure 13 and Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17, Table 18, Table 19, Table 20, Table 21, Table 22, Table 23, Table 24, Table 25, Table 26 and Table 27.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g002a.jpg
An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g002b.jpg

Tigliane type diterpenoids from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g003.jpg

Kaurane type diterpenoids from the genus Croton 1.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g004.jpg

Crotofolane type diterpenoids from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g005.jpg

Labdane type diterpenoids from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g006.jpg

Cembrane type diterpenoids from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g007.jpg

Abietane type diterpenoids from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g008.jpg

Casbane, Halimane, Pimarane and Cleistanthane type diterpenoids from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g009.jpg

Grayanane, Atisane, Phytane, Laevinane type diterpenoids and Meroditerpenoids from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g010.jpg

Sesquiterpenoids, Sesterterpenoid and Triterpenoid from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g011.jpg

Glycosides from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g012.jpg

Alkaloids from the genus Croton.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g013.jpg

Miscellaneous compounds from the genus Croton.

Table 1

Clerodane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
1 ent-3,13E-clerodadiene-15-formateC21H34O2 C. sylvaticus [12]
2 9-[2-(2(5H)-furanone-4-yl)ethyl]-4,8,9-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-4-carboxylic acidC20H28O4 C. crassifolius [14]
3 9-[2-(2(5H)-furanone-4-yl)ethyl]-4,8,9-trimethyl-1,2,3,4,5,6,7,8-octahydronaphthalene-4-carboxylic esterC21H30O4 C. crassifolius [14]
4 Centrafricine IC21H24O6 C. mayumbensis [19]
5 MarrubiageninC20H28O4 C. glabellus [15]
6 Methyl 15,16-epoxy-3,13(16),14-ent-clerodatrien-18,19-olide-17-carboxylateC21H26O5 C. oblongifolius [29]
7 Dimethyl 15,16-epoxy-12-oxo-3,13(16),14-ent-clerodatriene-17,18-dicarboxylateC22H28O6 C. oblongifolius [29]
8 IsoteucvinC19H20O5 C. jatrophoides [30]
9 JatrophoidinC21H22O7 C. jatrophoides [30]
10 8-EpicordatinC21H26O6 C. palanostigma [31]
11 laevigatbenzoateC27H31O5 C. laevigatus [13]
12 3,4,15,16-diepoxy-cleroda-13(16),14-diene-12,17-olideC20H26O4 C. oblongifolius [22]
13 Crassifolin AC21H30O4 C. crassifolius [16]
14 Crassifolin BC20H29O4 C. crassifolius [16]
15 Crassifolin CC21H24O5 C. crassifolius [16]
16 Crassifolin DC21H24O6 C. crassifolius [16]
17 Crassifolin EC20H23O6 C. crassifolius [16]
18 Crassifolin FC23H29O7 C. crassifolius [16]
19 Crassifolin GC19H20O6 C. crassifolius [16]
20 Methyl 3-oxo-12-epibarbascoateC21H26O6 C. urucurana [32]
21 Laevinoids AC20H22O5 C. laevigatus [20]
22 Laevinoids BC20H23O5Cl C. laevigatus [20]
23 Crotonolide AC20H18O6 C. laui [21]
24 Crotonolide BC21H24O6 C. laui [21]
25 Isocrotonolide BC21H24O6 C. laui [21]
26 Crotonolide CC23H26O8 C. laui [21]
27 Isocrotonolide CC23H26O8 C. laui [21]
28 Crotonolide DC21H26O6 C. laui [21]
29 Isocrotonolide DC21H26O6 C. laui [21]
30 Crotonolide EC20H26O4 C. laui [21]
31 Crotonolide FC20H26O4 C. laui [21]
32 Crotonolide GC20H32O C. laui [21]
33 Crotonolide HC20H32O4 C. laui [21]
34 12-Deoxycrotonolide HC20H32O3 C. laui [21]
35 CrotonoligaketoneC23H26O8 C. oligandrum [33]
36 Crotonpene AC20H26O3 C. yanhuii [23]
37 Crotonpene BC21H28O5 C. yanhuii [23]
38 Crassifolin IC20H22O6 C. crassifolius [34]
39 Crassifolin HC19H20O5 C. crassifolius [34]
40 Crotoeurin AC38H36O1 C. euryphyllus [25]
41 Crotoeurin BC20H24O6 C. euryphyllus [25]
42 Crotoeurin CC20H22O6 C. euryphyllus [25]
43 3-Oxo-15,16-epoxy-4α,12-dihydroxy-ent-neo-clerodan-13(16),14-dieneC20H30O4 C. limae [35]
44 15,16-Epoxy-3α,4α,12-trihydroxy-ent-neo-clerodan- 13(16),14-dieneC20H32O4 C. limae [35]
45 3α,4α,15,16-Tetrahydroxy-ent-neo-cleroda-13E-eneC20H36O4 C. limae [35]
46 Cracroson AC19H21O6 C. crassifolius [26]
47 Cracroson BC20H22O6 C. crassifolius [26]
48 Cracroson CC19H19O4N C. crassifolius [26]
49 Crassifolin JC20H20O5 C. crassifolius [36]
60 Crotocorylifuran-2-oneC22H24O8 C.megalocarpoides [27]
61 Megalocarpoidolide DC22H22O8 C.megalocarpoides [27]
62 7,8-DehydrocrotocorylifuranC22H24O7 C.megalocarpoides [27]
63 Megalocarpoidolide EC22H24O8 C.megalocarpoides [27]
64 Megalocarpoidolide FC22H24O8 C.megalocarpoides [27]
65 Megalocarpoidolide GC22H24O9 C.megalocarpoides [27]
66 Megalocarpoidolide HC24H28O10 C.megalocarpoides [27]
67 Launine KC27H36O3 C. laui [37]
68 Crassin AC17H20O4 C. crassifolius [17]
69 Crassin BC17H20O4 C. crassifolius [17]
70 Crassin CC21H24O6 C. crassifolius [17]
71 Crassin DC20H20O5 C. crassifolius [17]
72 Crassin EC19H20O3 C. crassifolius [17]
73 Crassin FC19H18O7 C. crassifolius [17]
74 Crassin GC20H26O5 C. crassifolius [17]
75 Crassin HC21H30O5 C. crassifolius [17]
76 Crassifolius AC20H22O5 C. crassifolius [38]
77 Crassifolius BC21H24O6 C. crassifolius [38]
78 Crassifolius CC21H26O5 C. crassifolius [38]
79 Crolaevinoid CC27H28O6 C. laevigatus [39]
80 Crolaevinoid DC27H32O8 C. laevigatus [39]
81 Crolaevinoid EC20H28O6 C. laevigatus [39]
82 Crolaevinoid FC21H30O5 C. laevigatus [39]
83 NorcrassifolinC19H18O4 C. crassifolius [28]
84 Hypolein AC20H26O4 C. hypoleucus [24]
85 Hypolein BC20H28O3 C. hypoleucus [24]
86 Hypolein CC20H28O3 C. hypoleucus [24]
87 Cracroson EC19H20O6 C. crassifolius [40]
88 Cracroson FC19H20O6 C. crassifolius [40]
89 Cracroson GC21H26O7 C. crassifolius [40]
90 12-Epi-megalocarpoidolide DC22H22O8 C. oligandrus [18]
91 Crotonolins AC22H22O10 C. oligandrus [18]
92 Crotonolins BC22H22O10 C. oligandrus [18]

Table 2

Tigliane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
93 12-O-isobutyrylphorbol-13-decanoateC34H52O8 C. tiglium [45]
94 12-O-(2-methyl)butyrylphorbol-13-octanoateC33H50O8 C. tiglium [45]
95 12-O-[(2R)-N,N-dimethyl-3-methylbutanoyl]-4-deoxyphorbol 13-acetateC29H43NO7 C. ciliatoglandulifer [41]
96 12-O-[(2S)-N,N-dimethyl-3-methylbutanoyl]-4-deoxyphorbol 13-acetateC29H43NO7 C. ciliatoglandulifer [41]
97 12-O-[(2R)-N,N-Dimethyl-3-methylbutanoyl]phorbol 13-acetateC29H43NO8 C. ciliatoglandulifer [41]
98 12-O-[3-Methyl-2-butenoyl]-4-deoxyphorbol 13-acetateC27H36NO7 C. ciliatoglandulifer [41]
99 12-O-(2-methyl)butyrylphorbol-13-tiglateC30H42O8 C. tiglium [46]
100 12-O-tiglylphorbol-13-propionateC28H38O8 C. tiglium [46]
101 13-O-acetylphorbol-20-oleateC40H62O8 C. tiglium [46]
106 12-O-tiglyl-4-deoxy-4α-phorbol-13-(2-methyl)butyrateC30H42O7 C. tiglium [46]
107 AlienusolinC42H66O8 C. alienus [42]
108 12-O-acetyl-5,6-didehydro-7-oxophorbol-13-yl 2-methylbutanoateC27H36O9 C. tiglium [47]
109 12-O-acetyl-5,6-didehydro-7-oxophorbol-13-yl2-methylpropanoateC26H34O9 C. tiglium [47]
110 12-Oacetyl-5,6-didehydro-6,7-dihydro-7-hydroxyphorbol-13-yl 2-methylbutanoateC27H38O9 C. tiglium [47]
111 12-O-decanoyl-7-hydroperoxy-phorbol-5-ene-13-acetateC32H42O10 C. mauritianus [43]
112 20-deoxy-20-oxophorbol12-tiglate 13-(2-methyl)butyrateC30H40O8 C. tiglium [48]
113 12-O-acetylphorbol-13-isobutyrateC26H36O8 C. tiglium [48]
114 12-O-benzoylphorbol-13-(2-methyl)butyrateC32H40O8 C. tiglium [48]
115 12-O-tiglyl-7-oxo-5-ene-phorbol-13-(2-methyl)butyrateC30H40O9 C. tiglium [48]
116 13-O-(2-metyl)butyryl-4-deoxy-4a-phorbolC25H36O6 C. tiglium [48]
117 Crotignoid AC30H42O10 C. tiglium [49]
118 Crotignoid BC29H40O10 C. tiglium [49]
119 Crotignoid CC30H42O9 C. tiglium [49]
120 Crotignoid DC29H40O9 C. tiglium [49]
121 Crotignoid EC29H38O9 C. tiglium [49]
122 Crotignoid FC28H36O9 C. tiglium [49]
123 Crotignoid GC30H44O8 C. tiglium [49]
124 Crotignoid HC29H38O8 C. tiglium [49]
125 Crotignoid IC30H44O8 C. tiglium [49]
126 Crotignoid JC31H38O8 C. tiglium [49]
127 Crotignoid KC29H34O7 C. tiglium [49]
128 Crotusin AC36H54O10 C. caudatus [44]
129 Crotusin BC46H72O11 C. caudatus [44]
130 Crotusin CC36H52O11 C. caudatus [44]
131 12-O-tiglylphorbol-4-deoxy- 4β-phorbol-13-acetateC27H36O7 C. tiglium [50]
132 12-O-tiglylphorbol-4-deoxy-4β-phorbol-13-hexadecanoateC41H64O7 C. tiglium [50]
133 13-O-acetylphorbol-4-deoxy-4β-phorbol-20-oleateC40H62O7 C. tiglium [50]
134 13-O-acetylphorbol-4-deoxy-4β-phorbol-20-linoleateC40H60O7 C. tiglium [50]
135 4-deoxy-20-oxophorbol 12-tiglyl 13-acetateC27H34O7 C. tiglium [51]
136 7-oxo-5-ene-phorbol-13-(2-methylbutyrate)C25H34O8 C. tiglium [51]
137 7-hydroxyl-phorbol-5-ene-13-(2-methyl)butyrateC25H36O8 C. tiglium [51]

Table 3

Kaurane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
149 CaracasineC21H30O3 C. caracasana [53]
150 Caracasine acidC20H28O3 C. caracasana [53]
151 Kongensin AC22H30O5 C. kongensis [56]
152 Kongensin BC22H30O6 C. kongensis [56]
153 Kongensin CC20H28O5 C. kongensis [56]
154 Kongensin DC20H28O4 C. kongensis [57]
155 Kongensin EC26H36O7 C. kongensis [57]
156 Kongensin FC24H34O5 C. kongensis [58]
157 Crotonkinin AC20H30O2 C. tonkinensis [62]
158 Crotonkinin BC22H32O4 C. tonkinensis [62]
159 14-epi-hyalic acidC20H28O4 C. argyrophylloides [63]
160 14-[(2-methylbutanoyl)oxy]-3,4-seco-ent-kaura-4(19),16-dien-3-oic acidC25H39O4 C. megistocarpus [54]
161 14-{[(2Z)-2-methylbut-2-enoyl]oxy}-3,4-seco-ent-kaura-4(19),16-dien-3-oic acidC25H37O4 C. megistocarpus [54]
162 ent-11β-acetoxykaur-16-en-18-olC22H34O3 C. tonkinensis [64]
163 ent-11α-hydroxy-18-acetoxykaur-16-eneC22H34O3 C. tonkinensis [64]
164 ent-14β-hydroxy-18-acetoxykaur-16-eneC22H34O3 C. tonkinensis [64]
165 ent-7α-hydroxy-18-acetoxykaur-16-eneC22H34O3 C. tonkinensis [64]
166 ent-14S*-hydroxykaur-16-en-19-oic acidC20H30O3 C. pseudopulchellus [65]
167 ent-14S*,17-dihydroxykaur-15-en-19-oic acidC20H30O4 C. pseudopulchellus [65]
168 ent-3,4-seco-17-oxo-kaur-4(19),15(16)-dien-3-oic acidC20H28O3 C. oblongifolius [55]
169 Crotonkinin CC22H30O5 C. tonkinensis [66]
170 Crotonkinin DC24H34O6 C. tonkinensis [66]
171 Crotonkinin EC24H34O5 C. tonkinensis [66]
172 Crotonkinin FC24H34O5 C. tonkinensis [66]
173 Crotonkinin GC23H36O5 C. tonkinensis [66]
174 Crotonkinin HC22H36O4 C. tonkinensis [66]
175 Crotonkinin IC24H36O5 C. tonkinensis [66]
176 Crotonkinin JC23H34O5 C. tonkinensis [66]
177 14β-hydroxy-3-oxo-ent-kaur-16-eneC20H30O2 C. kongensis [67]
178 Kongeniod AC21H30O3 C. kongensis [59]
179 Kongeniod BC21H30O4 C. kongensis [59]
180 Kongeniod CC23H32O5 C. kongensis [59]
181 15-oxo-17(10′-α-pinenyl)-kauran-18-oic acidC30H44O3 C. limae [35]
182 Micansinoic acidC40H58O7 C. micans [60]
183 Isomicansinoic acidC40H58O7 C. micans [60]
184 Dimethylester of micansinoicC42H62O7 C. micans [60]
185 Methyl-micansinoic acidC41H60O7 C. micans [60]
186 Ethyl-micansinoic acidC42H62O7 C. micans [60]
187 Crotonkinensin CC40H62O8 C. tonkinensis [61]
188 Crotonkinensin DC44H66O10 C. tonkinensis [61]

Table 4

Crotofolane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
189 Crotocascarin AC25H32O7 C. cascarilloides [68]
190 Crotocascarin BC25H32O7 C. cascarilloides [68]
191 Crotocascarin CC25H32O8 C. cascarilloides [68]
192 Crotocascarin DC25H32O6 C. cascarilloides [68]
193 Crotocascarin EC26H34O8 C. cascarilloides [68]
194 Crotocascarin FC24H30O7 C. cascarilloides [68]
195 Crotocascarin GC24H30O7 C. cascarilloides [68]
196 Crotocascarin HC24H30O8 C. cascarilloides [68]
197 Crotocascarin αC24H32O8 C. cascarilloides [68]
198 Crotocascarin βC24H32O7 C. cascarilloides [68]
199 (5β,6β)-5,6: 13,16-diepoxycrotofola-4(9),10(18),13,15-tetraen-1-oneC20H22O3 C. argyrophyllus [72]
200 (5β,6β)-5,6: 13,16-diepoxy-2-epicrotofola-4(9),10(18),13,15-tetraen-1-oneC20H22O3 C. argyrophyllus [72]
201 (5β,6β)-5,6: 13,16-diepoxy-16-hydroxycrotofola-4(9),10(18),13,15-tetraen-1-oneC20H22O4 C. argyrophyllus [72]
202 (5β,6β)-5,6: 13,16-diepoxy-16-hydroxy-2-epi-crotofola-4(9),10(18),13,15-tetraen-1-oneC20H22O4 C. argyrophyllus [72]
203 Crotocarasin AC20H22O4 C. caracasanus [73]
204 Crotocarasin BC20H22O4 C. caracasanus [73]
205 Crotocarasin CC22H26O5 C. caracasanus [73]
206 Crotocarasin DC22H26O5 C. caracasanus [73]
207 EBC-162C20H24O2 C. insularis [74]
208 EBC-233C20H24O4 C. insularis [74]
209 EBC-300C20H24O4 C. insularis [74]
210 EBC-240C20H26O5 C. insularis [74]
211 EBC-241C20H26O5 C. insularis [74]
212 Crotocascarin IC20H24O5 C. cascarilloides [69]
213 Crotocascarin JC20H24O6 C. cascarilloides [69]
214 Crotocascarin KC20H24O5 C. cascarilloides [69]
215 Crotocascarin γC19H24O6 C. cascarilloides [69]
216 Crotocascarin LC22H26O7 C. cascarilloides [70]
217 Crotocascarin MC21H26O6 C. cascarilloides [70]
218 Crotocascarin NC20H22O6 C. cascarilloides [70]
219 Crotocascarin OC25H34O9 C. cascarilloides [70]
220 Crotocascarin PC25H34O8 C. cascarilloides [70]
221 Crotocascarin QC25H32O7 C. cascarilloides [70]
222 NeocrotocascarinC25H32O8 C. cascarilloides [70]
223 Crotodichogamoin AC20H22O4 C. dichogamus [75]
224 Crotodichogamoin BC20H22O2 C. dichogamus [75]
225 Cascarinoid AC28H31NO5 C. cascarilloides [71]
226 Cascarinoid BC28H31NO5 C. cascarilloides [71]
227 Cascarinoid CC28H31NO6 C. cascarilloides [71]

Table 5

Labdane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
228 Labdinine NC20H34O3 C. laui [76]
229 ent-12,15-dioxo-3,4-seco-4,8,13-labdatrien-3-oic acidC20H28O4 C. stipuliformis [78]
230 ent-12,15-epoxy-3,4-seco-4,8,12,14-labdatetraen-3-oic acidC20H28O3 C. stipuliformis [78]
231 ent-15-nor-14-oxo-3,4-seco-4,8,12(E)-labdatrien-3-oic acidC19H28O3 C. stipuliformis [78]
232 ent-12,15-dioxo-8,13-labdadien-3a-olC20H28O3 C. stipuliformis [78]
233 Crotonlaevin AC18H30O4 C. laevigatus [79]
234 Crotonlaevin BC20H32O5 C. laevigatus [79]
235 Crotonlaevin CC21H34O5 C. laevigatus [79]
236 Crotonlaevin DC18H30O3 C. laevigatus [79]
237 Crotonlaevin EC20H32O5 C. laevigatus [79]
238 Crotonlaevin FC22H34O6 C. laevigatus [79]
239 Crotonlaevin GC22H36O5 C. laevigatus [79]
240 Crotonlaevin HC22H36O5 C. laevigatus [79]
241 Crotonlaevin IC20H34O4 C. laevigatus [79]
242 Crotonlaevin JC20H30O3 C. laevigatus [79]
243 Crotonlaevin KC20H28O3 C. laevigatus [79]
244 Crotonlaevin LC20H30O4 C. laevigatus [79]
245 Crotonlaevin MC20H30O4 C. laevigatus [79]
246 Crotonlaevin NC20H30O3 C. laevigatus [79]
247 Crotonlaevin OC20H30O3 C. laevigatus [79]
248 Crotonlaevin PC20H30O3 C. laevigatus [79]
249 Crotonolide IC20H34O3 C. laui [21]
250 Crotonolide JC19H30O3 C. laui [21]
251 Launine AC19H32O3 C. laui [82]
252 Launine BC19H32O4 C. laui [82]
253 Launine CC20H34O3 C. laui [82]
254 Launine DC20H34O3 C. laui [82]
255 Launine EC20H32O5 C. laui [82]
256 Launine FC20H32O5 C. laui [82]
257 Launine GC20H30O4 C. laui [82]
258 Launine HC20H30O4 C. laui [82]
259 Launine IC20H34O3 C. laui [82]
260 15,16-epoxy-4-hydroxy-labda-13(16),14-dien-3,12-dioneC20H28O4 C. jacobinensis [77]
261 Crotondecalvatin AC29H42O4 C. decalvatus [80]
262 Crotondecalvatin BC30H42O6 C. decalvatus [80]
263 Bicrotonol AC40H68O4 C. crassifolius [81]

Table 6

Cembrane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
264 Launine OC20H34O2 C. laui [76]
265 Launine PC21H36O2 C. laui [76]
266 Furanocembranoid 1C20H30O2 C. oblongifolius [83]
267 Furanocembranoid 2C20H30O3 C. oblongifolius [83]
268 Furanocembranoid 3C20H32O4 C. oblongifolius [83]
269 Furanocembranoid 4C20H32O5 C. oblongifolius [83]
270 Laevigatlactone AC20H30O3 C. laeVigatus [84]
271 Laevigatlactone CC20H30O3 C. laeVigatus [84]
272 Laevigatlactone BC20H30O3 C. laeVigatus [84]
273 Laevigatlactone DC20H30O3 C. laeVigatus [84]
274 Laevigatlactone EC20H30O4 C. laeVigatus [84]
275 Laevigatlactone FC20H30O5 C. laeVigatus [84]
276 (+)-[1R*,2S*,7S*,8S*,12R*]-7,8-Epoxy-2,12-cyclocembra-3E,10Zdien-20,10-olideC20H28O3 C. gratissimus [85]
277 (+)-[1R*,10R*]-Cembra-2E,4E,7E,11Z-tetraen-20,10-olideC20H28O2 C. gratissimus [85]
278 (+)-[1R*,4S*,10R*]-4-Hydroxycembra-2E,7E,11Z-trien-20,10-olideC20H30O3 C. gratissimus [85]
279 (−)-[1R*,4R*,10R*]-4-Hydroxycembra-2E,7E,11Z-trien-20,10-olideC20H30O3 C. gratissimus [85]
280 (−)-(1R*,4R*,10R*)-4-Methoxycembra-2E,7E,11Z-trien-20,10-olideC21H32O3 C. gratissimus [86]
281 (−)-(1S*,4R*,10R*)-1-Hydroxy-4-methoxycembra-2E,7E,11Ztrien-20,10-olideC21H32O4 C. gratissimus [86]
282 (−)-(1S*,4S*,10R*)-1,4-Dihydroxycembra-2E,7E,11Z-trien-20,10-olideC20H30O4 C. gratissimus [86]
283 (−)-(1S*,4S*,10R*)-1,4-Dihydroxycembra-2E,7E,11Z-trien-20,10-olideC20H30O4 C. gratissimus [86]
284 (+)-(10R*)-Cembra-1E,3E,7E,11Z,16-pentaen-20,10-olideC20H26O C. gratissimus [86]
285 (+)-(10R*)-Cembra-1Z,3Z,7E,11Z,15-pentaen-20,10-olideC20H26O C. gratissimus [86]
286 (+)-(5R*,10R*)-5-Methoxycembra-1E,3E,7E,11Z,15-pentaen-20,10-olideC21H30O3 C. gratissimus [86]
287 (+)-(1S*,4S*,7R*,10R*)-1,4,7-Trihydroxycembra-2E,8(19),11Z-trien-20,10-olideC20H30O5 C. gratissimus [86]
288 (−)-(1S*,4S*,7S*,10R*)-1,4,7-Trihydroxycembra-2E,8(19),11Z-trien-20,10-olideC20H30O3 C. gratissimus [86]
289 (+)-(1S*,4R*,8S*,10R*)-1,4,8-Trihydroxycembra-2E,6E,11Z-trien-20,10-olideC20H30O5 C. gratissimus [86]
290 Cembranoid 1C20H30O4 C. longissimus [87]
291 Cembranoid 2C20H30O3 C. longissimus [87]
281 (−)-(1S*,4R*,10R*)-1-Hydroxy-4-methoxycembra-2E,7E,11Ztrien-20,10-olideC21H32O4 C. gratissimus [86]
282 (−)-(1S*,4S*,10R*)-1,4-Dihydroxycembra-2E,7E,11Z-trien-20,10-olideC20H30O4 C. gratissimus [86]
283 (−)-(1S*,4S*,10R*)-1,4-Dihydroxycembra-2E,7E,11Z-trien-20,10-olideC20H30O4 C. gratissimus [86]
284 (+)-(10R*)-Cembra-1E,3E,7E,11Z,16-pentaen-20,10-olideC20H26O C. gratissimus [86]
285 (+)-(10R*)-Cembra-1Z,3Z,7E,11Z,15-pentaen-20,10-olideC20H26O C. gratissimus [86]
286 (+)-(5R*,10R*)-5-Methoxycembra-1E,3E,7E,11Z,15-pentaen-20,10-olideC21H30O3 C. gratissimus [86]
287 (+)-(1S*,4S*,7R*,10R*)-1,4,7-Trihydroxycembra-2E,8(19),11Z-trien-20,10-olideC20H30O5 C. gratissimus [86]
288 (−)-(1S*,4S*,7S*,10R*)-1,4,7-Trihydroxycembra-2E,8(19),11Z-trien-20,10-olideC20H30O3 C. gratissimus [86]
289 (+)-(1S*,4R*,8S*,10R*)-1,4,8-Trihydroxycembra-2E,6E,11Z-trien-20,10-olideC20H30O5 C. gratissimus [86]
290 Cembranoid 1C20H30O4 C. longissimus [87]
291 Cembranoid 2C20H30O3 C. longissimus [87]

Table 7

Abietane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
292 Isolophanthin EC20H30O3 C. megalocarpoides [27]
293 rel-(1R,4aR,5R,8R)-methyl-7-(1-(methoxycarbonyl)vinyl)-5,8-diacetoxy-1,2,3,4a,5,6,7,8,9,10,10a-dodecahydro-1,4a-dimethyl-2-oxophenanthrene-1-carboxylateC26H34O9 C. argyrophylloides [63]
294 Crotontomentosin AC20H26O2 C. caudatus [88]
295 Crotontomentosin BC20H30O3 C. caudatus [88]
296 Crotontomentosin DC20H24O2 C. caudatus [88]
297 Crotontomentosin CC20H28O2 C. caudatus [88]
298 Crotontomentosin EC22H32O3 C. caudatus [88]
299 Crotolaevigatone AC20H24O3 C. laevigatus [89]
300 Crotolaevigatone BC20H26O2 C. laevigatus [89]
301 Crotolaevigatone CC20H26O3 C. laevigatus [89]
302 Crotolaevigatone DC20H28O4 C. laevigatus [89]
303 Crotolaevigatone EC19H24O2 C. laevigatus [89]
304 Crotolaevigatone FC20H30O4 C. laevigatus [89]
305 Crotolaevigatone GC20H30O4 C. laevigatus [89]

Table 8

Casbane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
306 1,4-dihydroxy-2E,6E,12E-trien-5-one-casbaneC20H30O3 C. nepetaefolius [90]
307 4-hydroxy-2E,6E,12E-5-one-casbaneC20H29O3 C. nepetaefolius [90]
308 1-hydroxy-(2E,6Z,12E)-casba-2,6,12-triene-4,5-dioneC20H28O3 C. argyrophyllus [91]
309 6E,12E-casba-1,3,6,12-tetraen-1,4-epoxy-5-oneC20H26O2 C. argyrophyllus [91]
310 (2E,5β,6E,12E)-5-hydroxycasba-2,6,12-trien-4-oneC20H30O2 C. argyrophyllus [72]
311 EBC-324C20H28O5 C. insularis [92]
312 EBC-329C20H26O4 C. insularis [92]

Table 9

Halimane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
313 Crassifoliusin AC21H24O5 C. crassifolius [95]
314 Crotontomentosin FC21H30O3 C. caudatus [88]
315 Crolaevinoid AC27H30O7 C. laevigatus [39]
316 Crolaevinoid BC20H26O4 C. laevigatus [39]
317 Crothalimene AC20H26O4 C. dichogamus [75]
318 Crothalimene BC20H30O2 C. dichogamus [75]

Table 10

Pimarane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
319 ent-3β-hydroxypimara-8(14),9,15-trien-12-oneC20H28O2 C. insularis [98]
320 EBC-316C20H26O2 C. insularis [99]
321 EBC-325C20H26O4 C. insularis [99]
322 EBC-326C20H26O4 C. insularis [99]
323 EBC-327C20H24O3 C. insularis [99]
324 EBC-345C20H30O4 C. insularis [99]

Table 11

Cleistanthane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
325 3-hydroxycleistantha-13(17),15-dieneC20H32O C. oblongifolius [93]
326 3,4-seco-cleistantha-4(18),13(17),15-trien-3-oic acidC20H30O2 C. oblongifolius [93]
327 rel-(5β,8α,10α)-8-hydroxy-13-methylpodocarpa-9(11),13-diene-3,12-dioneC18H25O3 C. regelianus [94]

Table 12

Grayanane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
328 Crotonkinensin AC20H24O4 C. tonkinensis [100]
329 Crotonkinensin BC20H26O3 C. tonkinensis [100]

Table 13

Atisane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
330 CrotobarinC22H28O5 C. barorum [101]
331 CrotogoudinC20H26O3 C. goudotii [101]

Table 14

Phytane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
332 Launine LC20H32O3 C. laui [37]
333 Launine MC20H32O2 C. laui [37]

Table 15

Laevinane type diterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
334 Crolaevinoid GC20H24O6 C. laevigatus [39]
335 Crolaevinoid HC21H26O6 C. laevigatus [39]

Table 16

Meroditerpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
336 Steenkrotin AC20H24O6 C. steenkampianus [102]
337 Steenkrotin BC20H28O7 C. steenkampianus [102]
338 Norcrassin AC17H22O7 C. crassifolius [81]
339 Cracroson DC21H26O6 C. crassifolius [40]

Table 17

Sesquiterpenoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
340 6α -methoxy-cypereneC16H26O C. muscicarpa [103]
341 rel-(1R,4S,6R,7S,8αR)-decahydro-1-(hydroxymethyl)-4,9,9-trimethyl-4,7-(epoxymethano)azulen-6-olC15H26O3 C. regelianus [94]
342 Blumenol AC13H20O3 C. pedicellatus [104]
343 Crocrassins AC15H24O3 C. crassifolius [105]
344 Crocrassins BC16H26O3 C. crassifolius [105]
345 1,3,5-cadinatriene-(7R,10S)-diolC15H25O2 C. dichogamus [75]
346 Cracroson HC15H22O3 C. crassifolius [40]

Table 18

Sesterterpenoid from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
347 PseudopulchellolC25H40O C.pseudopulchellus [106]

Table 19

Triterpenoid from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
348 3α-hydroxy-urs-12,15-dienC30H48O C. bonplandianum [107]

Table 20

Glycosides from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
349 Cyperenoic acid-9-O-β-d-glucopyranosideC21H32O8 C. crassifolius [108]
350 3-O-β-d-xylopyranosylspathodic acidC35H56O9 C. lachnocarpus [109]
351 Helichrysoside-3-methyletherC31H28O14 C. zambesicus [110]
352 Crotonionoside AC29H42O11 C. cascarilloides [111]
353 Crotonionoside BC30H44O12 C. cascarilloides [111]
354 Crotonionoside CC24H42O12 C. cascarilloides [111]
355 Crotonionoside DC31H46O14 C. cascarilloides [111]
356 Crotonionoside EC35H52O16 C. cascarilloides [111]
357 Crotonionoside FC24H42O11 C. cascarilloides [111]
358 Crotonionoside GC29H40O11 C. cascarilloides [111]
359 Oblongionoside AC24H42O12 C. oblongifolius [112]
360 Oblongionoside BC24H42O12 C. oblongifolius [112]
361 Oblongionoside CC24H44O11 C. oblongifolius [112]
362 Oblongionoside DC24H44O11 C. oblongifolius [112]
363 Oblongionoside EC19H36O8 C. oblongifolius [112]
364 Oblongionoside FC19H36O8 C. oblongifolius [112]
365 Blumenol A glucosideC19H30O8 C. pedicellatus [10]
366 SparsiosideC53H102O10 C. sparsiorus [113]
367 3,12-dioxo-15,16-epoxy-4α-hydroxy-6-(β-glucopyranosyl)-ent-neo-clerodan-13(16),14-dieneC26H38O10 C. limae [35]
368 Isocrotofolane glucosideC26H38O9 C. cascarilloides [69]
369 2-methoxyphenol-β-d-(6-O-β-d-apiofuranosyl) glucopyranosideC18H26O11 C. cascarilloides [69]

Table 21

Alkaloids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
370 Crotamide AC36H65NO C. sparsiflorus [114]
371 Crotamide BC38H69NO C. sparsiflorus [114]
372 CrotonineC12H14N2O4 C. tiglium [97]
373 Crotonimide AC16H20N2O3 C. pullei [115]
374 CrotsparsidineC17H17O3N C. sparsiflorus [96]
375 Crotonimide C.C20H20N2O3 C. alienus [42]
376 6-Hydroxy-1-methyl-2-dimethyl-3,4-tetrahydro-b-carbo-lineC14H19N2O C. heliotropiifolius [116]
377 N-trans-feruloyl-3,5-dihydroxyindolin-2-oneC20H20N2O6 C. echioides [117]

Table 22

Benzoate derivatives from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
378 2′-(3′’,4′’-dihydroxyphenyl)-ethyl-4-hydroxybenzoateC15H14O5 C. sylvaticus [118]
379 3-(4-hydroxy-3,5-dimethoxyphenyl)-propyl benzoateC18H20O5 C. hutchinsonianus [119]
380 3-(4-hydroxyphenyl)-propyl benzoateC16H16O3 C. hutchinsonianus [119]

Table 23

Pyran-2-one derivatives from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
381 Crotonpyrone AC17H28O3 C. crassifolius [120]
382 Crotonpyrone BC17H26O3 C. crassifolius [120]
383 Crotonpyrone CC19H28O3 C. crassifolius [121]

Table 24

Cyclicpeptides from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
384 CrotogossamideC37H56N10O11 C. gossypifolius [122]
385 [1−9-NαC]-crourorb A1C37H56N10O11 C. urucurana [123]

Table 25

Tropone derivatives from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
386 CrototroponeC10H12O4 C. zehntneri [124]
387 PernambuconeC15H18O2 C. argyroglossum [125]

Table 26

Limonoids from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
388 MusiduninC31H38O11 C. jatrophoides [126]
389 MusiduolC30H38O10 C. jatrophoides [126]

Table 27

Miscellaneous compounds from the genus Croton.

No.Compound NameMolecular FormulaSourcesRef
390 CrotoncaudatinC22H22O9 C. caudatus [127]
391 8S-(−)-8-(4-hydroxy-3-methoxybenzoyl)-dihydrofuran-8(8′H)-oneC20H30O2 C. kongensis [67]
392 LobacerideC35H58O6 C. lobatus [129]
393 Laevifolin AC29H38O4 C. laevifolius [128]
394 Laevifolin BC29H38O4 C. laevifolius [128]
395 2,6-Dimethyl-1-oxo-4-indanecarboxylic acidC12H12O3 C. steenkampianus [102]
396 3(3′-Methoxy-5′-phenylfuran-2′-yl)propan-1-olC14H16O3 C. oblongifolius [22]
397 SparsifolC7H15O6 C. sparsiflorus [96]
398 SparsioamideC43H81NO5 C. sparsiflorus [113]
399 hexyl Z-ferulateC16H22O4 C. laevigatus [89]

2.1. Diterpenoids

Phytochemical investigations on Croton species revealed the predominant secondary metabolites as diterpenoids, including clerodane, tigliane, kaurane, crotofolane, labdane, cembrane, abietane, casbane, halimane, pimarane, cleistanthane, grayanane, atisane, phytane, and laevinane diterpenoids. Three hundred & thirty-nine new diterpenoids (1339) were reported from Croton species.

2.1.1. Clerodanes

Ninety-two new clerodane diterpenoids (192) were isolated from Croton species, including two clerodane diterpenoid with acyclic at C-9s, eight clerodane diterpenoids with butenolide at C-9, and 82 furan-clerodane diterpenoids [11]. Their structures, molecular formula, names, corresponding sources, and references are listed in Figure 1 and Table 1. Two new clerodane diterpenoids with acyclic side chain at C-9, ent-3,13E-clerodadiene-15-formate (1) and 3α,4α,15,16-tetrahydroxy-ent-neo-cleroda-13E-ene (45), were isolated from the roots of C. sylvaticus [12] and the roots of C. limae [13], respectively. Eight new clerodane diterpenoids with butenolide at C-9 (2, 3, 5, 13, 14, 75, 91, 92) were obtained from three Croton species (C. crassifolius, C. glabellus, and C. oligandrus) [14,15,16,17,18]. Furan-clerodane diterpenoids are abundant in Croton species, and 82 new ones were isolated from different Croton species. For example, Centrafricine I (4) from C. mayumbensis was a new furan-clerodane diterpenoid with a 6, 18-γ-lactone ring [19]. Two novel rearranged ent-clerodane diterpenoids Laevinoids A, B (21, 22) containing an unusual 3/5 bicyclic ring were obtained from the branches and leaves of C. laevigatus; 22 represents the first chlorinated example of the clerodane family [20]. Compounds (2327) bearing a C-19/C-20 six-membered ring were identified from C. laui [21]. Phytochemical investigations on three Croton species (C. oblongifolius, C. yanhuii, and C. hypoleucus) afforded six new furan-clerodanoids (12, 36, 37, 8486) with a 3,4-epoxy moiety [22,23,24]. Crotoeurins A–C (4042) were found from the twigs and leaves of C. euryphyllus. Among them, crotoeurin A (40) was a nor-clerodane diterpenoid dimer with a unique cyclobutane ring via a [2 + 2] cycloaddition [25]. Three new furan-clerodane diterpenoids, cracroson A–C (4648) were obtained from C. crassifolius, while cracroson C (48) represents the first example of a clerodane diterpenoid alkaloid [26]. Twelve new ent-clerodanoids (55, 66) were isolated from the roots of C. megalocarpoides. Among them, compounds (5866) possessed 9, 12-γ-lactone ring [27]. Investigation on the roots of C. crassifolius afforded eight new clerodanoids, crassins A−H (6875). Among them, crassins A–B (68, 69) represents ring B rearranged clerodanoids, whereas crassins C (70) was ring A rearranged one [17]. One new nor-clerodane diterpenoid, norcrassifolin (83), with a 1,12-lactone six-membered ring, was isolated from C. crassifolius [28].

2.1.2. Tiglianes

Fifty-six new tigliane diterpenoids (93148) were reported from Croton species. Their structures, molecular formula, names, corresponding sources, and references are collected in Figure 2 and Table 2. Investigations on the aerial parts of C. ciliatoglandulifer produced four new tiglianoids (9598). Among them, tiglianoids (9597) possess a N,N-dimethyl moiety at 2′position [41]. Alienusolin (107) and compound (111) were obtained from the roots and the leaves of C. alienus and the leaves of C. mauritianus, respectively [42,43]. The twigs and leaves of C. caudatus produced three new tiglianoids, crotusins A–C (128130) [44]. Tigliane diterpenoids were abundant in C. tiglium, other 47 new ones (93, 94, 99106, 108110, 112127, 131148) were isolated from C. tiglium [45,46,47,48,49,50,51,52]. Among them, compound (112) was the first tiglianoid with the C20-aldehyde group [48].

2.1.3. Kauranes

Fourty new kaurane diterpenoids (149188) were found from Croton species. Their structures, molecular formula, names, corresponding sources, and references are listed in Figure 3 and Table 3. Five new 3,4-seco ent-kauranes (149150, 160161, 168) were isolated from C. caracasana [53], C. megistocarpus [54], and C. oblongifolius [55], respectively. Investigations on C. kongensis afforded eight new 8,9-seco-ent-kaurane diterpenes (151–154, 156, 178180) [56,57,58,59]. Compound 181, one new kaurane bearing a monoterpene unit at C-16, was found from C. limae [35]. From the stems of C. micans, five new 3,4-seco-ent-kaurene dimers (182186) were isolated [60], while other two dimeric ent-kaurane diterpenoids (187188) were elucidated from C. tonkinensis [61].

2.1.4. Crotofolanes

Thirty-nine new crotofolane diterpenoids (189227) were obtained from Croton species. Their structures, molecular formula, names, corresponding sources, and references are summarized in Figure 4 and Table 4. Twenty-four new crotofolane diterpenoids (189198, 212222, 225227) were isolated from C. caracasanus [68,69,70,71]. Among them, three new crotofolane diterpenoid alkaloids, cascarinoids A–C (225227), were firstly found. Investigations on C. argyrophyllus gave four new crotofolanes (199202) [72]. Crotocarasin A–D (203206) were isolated from the stems of C. caracasanus [73]. Five new 1, 14-seco-crotofolanes from C. insularis were obtained [74], while C. dichogamus yielded crotodichogamoin A–B (223224) [75].

2.1.5. Labdanes

Thirty-six new labdane diterpenoids (228263) were isolated from Croton species. Their structures, molecular formula, names, corresponding sources, and references are collected in Figure 5 and Table 5 12 new labdanes (228, 249259) were isolated from C. laui [21,76,77]. From the leaves of C. stipuliformis, three 3,4-seco-ent-labdanes (229231) and one ent-labdane (232) were obtained [78]. Investigation of C. laevigatus led to the isolation of 16 new labdanes (233248). Among them, crotonlaevins A–B (233, 234), represents rare labdanes with a dodecahydronaphtho [1,2-c] furan moiety [79]. Three new labdane diterpenoids (260262) were found from C. jacobinensis [77] and C. decalvatus [80], respectively. Bicrotonol A (263), one dimeric labdane-type diterpenoid, was obtained from the roots of C. crassifolius [81].

2.1.6. Cembranes

A total of 28 new cembrane diterpenoids (264291) were obtained from Croton species. Their structures, molecular formula, names, corresponding sources, and references are listed in Figure 6 and Table 6. launine O-P (264, 265), two new cembranes, were reported from the aerial parts of C. laui [76]. Investigations on the stem bark of C. oblongifolius afforded four new furanocembranoids (266269) [83]. laevigatlactones A–F (270275), six new cembranoids possessing a rare six-membered lactone moiety attached to C-1 and C-20, were firstly isolated from C. laevigatus [84]. 14 new cembranoids (276289) were found from C. gratissimus [85,86]. Among them, compound 276 was first example of a 2,12-cyclocembranolide. The leaves of C. longissimus produced two new cembranes (290, 291) [87].

2.1.7. Abietanes

Fourteen new abietane diterpenoids (292305) were isolated from Croton species. Their structures, molecular formula, names, corresponding sources, and references are collected in Figure 7 and Table 7. Two new abietanes (292, 293) were obtained from C. megalocarpoides [27], and C. argyrophylloides [63], respectively. Investigation of C. caudatus led to the isolation of 5 new abietanes (294298). Among them, crotontomentosin A (294) was a 9,10-seco abietane [88]. Crotolaevigatones A–G (299305), 7 new abietanes were found from the twigs and leaves of C. laevigatus, and compounds (304, 305) possessed a 9,13-epidioxy moiety [89].

2.1.8. Casbanes

Seven new casbane diterpenoids (306312) were found from Croton species. Their structures, molecular formula, names, corresponding sources, and references are summarized in Figure 8 and Table 8. Five new casbane s (306310) were reported from C. nepetaefolius [90], and C. argyrophyllus [72,91], respectively. Investigations on the stem bark of C. insularis afforded two new casbanes, EBC-324 (311) and EBC-329 (312). Among them, EBC-329 (312) represented the first natural seco-casbane diterpene, while EBC-324 (311) was the first endoperoxide casbane [92].

2.1.9. Halimanes

Six new halimane diterpenoids (313318) were reported from Croton species. Their structures, molecular formula, names, corresponding sources, and references are collected in Figure 8 and Table 9. Investigations on the stem bark of C. oblongifolius afforded two new cleistanthanes (325, 326). Among them, compound 326 was a 3,4-seco cleistanthane [93]. One new bis-nor-cleistanthane diterpenoid (327), was found from the twigs and leaves of C. caudatus [94].

2.1.10. Pimaranes

Six new pimarane diterpenoids (319324) were obtained from Croton species. Their structures, molecular formula, names, corresponding sources, and references are listed in Figure 8 and Table 10. All six new pimaranes (319324) were isolated from C. insularis [96,97]. Among them, compound 319 was an important biosynthetic intermediate.

2.1.11. Cleistanthanes

Three new cleistanthane diterpenoids (325327) were ioslated from Croton species. Their structures, molecular formula, names, corresponding sources, and references are collected in Figure 8 and Table 11. Investigations on the stem bark of C. oblongifolius afforded two new cleistanthanes (325, 326). Among them, compound 326 was a 3,4-seco cleistanthane [93]. One new bis-nor-cleistanthane diterpenoid (327), was found from the twigs and leaves of C. caudatus [94].

2.1.12. Grayananes, Atisanes, Phytanes, Laevinanes and Meroditerpenoids

From the leaves of C. tonkinensis, two new rare grayanane diterpenoids, crotonkinensins A (328) and B (329), were isolated [100]. Two new 3,4-seco atisane diterpenoids, crotobarin (330) from C. barorum and crotogoudin (331) from C. goudotii, were found [101]. Investigations on the aerial parts of C. laui gave two new phytane diterpenoids (332, 333) [37]. Two new laevinane diterpenoids, crolaevinoid G (334) and H (335), were obtained [39]. Two new meroditerpenoids, steenkrotin A (336) and B (337), containing new carbon skeletons, were isolated from the leaves of C. steenkampianus [102]. From the the roots of C. crassifolius, two new meroditerpenoids, norcrassin A (338) and cracroson D (339), were reported [35,69]. Among them, norcrassin A (338) possessing a new carbon skeleton with a 5/5/5/6 tetracyclic system, was a C16 tetranorditerpenoid, while cracroson D (339) featured a new skeleton with a rare cyclobutane ring. Their structures, molecular formula, names, corresponding sources, and references are listed in Figure 9 and Table 12, Table 13, Table 14, Table 15 and Table 16.

2.2. Sesquiterpenoids, Sesterterpenoids and Triterpenoids

Seven new sesquiterpenoids (340346), one sesterterpenoid (347) and one triterpenoid (348) were ioslated from Croton species. Their structures, molecular formula, names, corresponding sources, and references are summarized in Figure 10 and Table 17, Table 18 and Table 19. From C. muscicarpa, one new patchoulane sesquiterpenoid (340) was obtained [103]. A guaiane sesquiterpenoid (341) was isolated from C. regelianus [94]. Investigations on the leaves of C. pedicellatus afforded a bis-nor-sesquiterpenoid (342) [104]. Two rare sesquiterpenoid, Crocrassins A (343) and B (344) having cyclopropylcyclopentane moiety, were reported [105]. Other two sesquiterpenoids, 1,3,5-cadinatriene-(7R,10S)-diol (345) and cracroson H (346) were found from C. dichogamus [75], and C. crassifolius [40], respectively. One rare sesterterpenoid, pseudopulchellol (347), was isolated from the leaves of C. pseudopulchellus [106]. From the root of C. bonplandianum, a new ursane triterpenoid (348) was obtained [107].

2.3. Glycosides

Twenty-one new glycosides (349369) were ioslated from Croton species. Their structures, molecular formula, names, corresponding sources, and references are collected in Figure 11 and Table 20. From C. crassifolius, a patchoulane sesquiterpenoid glycoside (349), an isocrotofolane glucoside (368), and a phenolic glycoside (369) were reported [69,108]. Compound 350, isolated from C. lachnocarpus, was the first triterpenoid glucoside reported from the genus Croton [109]. A new flavone glucoside (351) was found from the leaves of C. zambesicus [110]. Investigations on the leaves of C. cascarilloides and C. oblongifolius afforded 13 new megastigmane glycosides, crotonionosides A–G (352358) and Oblongionosides A–F (359364) [111,112]. One new bis-nor-sesquiterpenoid glycoside (365) was isolated from C. pedicellatus [104]. One new diglyceride galactoside (366) and one new clerodane glucoside (367) were obtained from C. sparsiorus [113], and C. limae [35], respectively.

2.4. Alkaloids

Eight new alkaloids (370377) were reported from Croton species. Their structures, molecular formula, names, corresponding sources, and references are listed in Figure 12 and Table 21. From C. sparsiflorus, two new amide alkaloids crotamides A (370) and B (371), and one new proaporphine alkaloid, crotsparsidine (374) were isolated [96,114]. One new pyrazine derivative, crotonine (372) was obtained from the leaves of C. tiglium [97]. Investigations on C. cascarilloides afforded a new glutarimide alkaloid, crotonimide C (375) [42]. Other three new alkaloids (373, 376377) were found from C. pullei, C. heliotropiifolius, and C. echioides, respectively [115,116,117].

2.5. Benzoate Derivatives, Pyran-2-One Derivatives, Cyclicpeptides, Tropone Derivatives and Limonoids

Three benzoate derivatives (378380) were isolated from C. sylvaticus and C. hutchinsonianus [118,119]. Investigations on C. crassifolius afforded three new pyran-2-one derivatives, crotonpyrone A (381), B (382) and C (383) [120,121]. Two cyclicpeptides (384, 385) were obtained from C. gossypifolius and C. urucurana [122,123], while two tropone derivatives (386, 387) were isolated from C. zehntneri and C. argyroglossum [124,125]. From the root bark of C. jatrophoides, two new limonoids, musidunin (388) and musiduol (389), were found [126]. Their structures, molecular formula, names, corresponding sources, and references are collected in Figure 13 and Table 22, Table 23, Table 24, Table 25 and Table 26.

2.6. Miscellaneous Compounds

Flavonoids, lignans, and other types of 10 compounds were also isolated from Croton species. Their structures, molecular formula, names, corresponding sources, and references are collected in Figure 13 and Table 27. From the stems of C. caudatus, one new flavone, crotoncaudatin (390), was isolated [127]. A new nor-lignan (391) was obtained from the twigs and leaves of C. kongensis [67]. Investigations on C. laevifolius gave two new prenylated dihydrostilbenes, laevifolin A (393), B (394) and one new aromatic compound (399) [89,128]. A long chain linear ester, lobaceride (392) was isolated from the twigs and leaves of C. lobatus [129]. One indanone derivative (395) was found from the leaves of C. steenkampianus [102], while a trisubstituted furan derivative (396) was isolated from the bark of C. oblongifolius [22]. From C. sparsiflorus, an inositol, sparsifol (397), and a sphingolipid, sparsioamide (398), were obtained [96,113].

3. Biological Activities

Compounds isolated from Croton species exert a wide range of biological activities, including cytotoxic, anti-inflammatory, antifungal, acetylcholinesterase inhibitory, and neurite outgrowth-promoting activities.

3.1. Cytotoxic Activity

The anti-tumor activity of many plants from the Croton species have been reported. Therefore, the cytotoxicity of the isolated compounds is the most commonly studied bioactivity. The cytotoxic activities of the isolated compounds from the Croton species are listed in Table 28. Four new tigliane diterpene esters (135137, 139) from the leaves of C. tiglium, exhibited most potent cytotoxic activity against K562 cell line with IC50 values of 0.03, 0.03, 0.07 and 0.05 μM, respectively [51].

Table 28

Cytotoxic activity of compounds from the genus Croton.

CompoundsTumor Cell LineActivity (IC50)Ref
Methyl 15,16-epoxy-3,13(16),14-ent-clerodatrien-18,19-olide-17-carboxylate (6)HuCCA-136.0 μg/mL[29]
KB26.0 μg/mL[29]
HeLa30.0 μg/mL[29]
MDA-MB23129.0 μg/mL[29]
T47D10.0 μg/mL[29]
Dimethyl-15,16-epoxy-12-oxo-3,13 (16)14-ent-clerodatriene-17,18-dicarboxylate (7)HuCCA-139.0 μg/mL[29]
KB27.0 μg/mL[29]
HeLa29.0 μg/mL[29]
MDA-MB23127.0 μg/mL[29]
T47D25.0 μg/mL[29]
Laevigatbenzoate (8)HeLa45.4 μM[13]
Crotonolide A (23)HL-609.42 μM[21]
P-3887.45 μM[21]
15-oxo-17(10′-α-pinenyl)-kauran-18-oic acid (181)HCT-1167.14 μg/mL[35]
OVCAR-88.19 μg/mL[35]
SF-295>10.0 μg/mL[35]
Launine K (67)HeLa14.5 μM[37]
MCF-762.5 μM[37]
Crassin H (75)HL-6011.8 ± 2.1 μM[17]
A5495.2 ± 0.4 μM[17]
Crassifolius A (76)Hep3B17.91 μM[38]
HepG242.04 μM[38]
Cracroson D (339)T2414.48 ± 0.65 μM[40]
A54925.64 ± 2.14 μM[40]
Cracroson E (87)T2422.99 ± 1.76 μM[40]
A54951.88 ± 14.07μM[40]
Hela3.9 μM[48]
DU1457.2 μM[48]
A5495.8 μM[48]
SGC-709113 μM[48]
H197510 μM[48]
HL6012 μM[48]
293T291.6 μM[48]
LX-2>500.0 μM[48]
12-O-benzoylphorbol-13-(2-methyl)butyrate (114)K56215 μM[48]
MOLT-412 μM[48]
U93717 μM[48]
MCF-720 μM[48]
Hela4.6 μM[48]
DU1454.3 μM[48]
A5496.9 μM[48]
SGC-709110 μM[48]
H19753.3 μM[48]
HL606.8 μM[48]
293T420.4 μM[48]
LX-2>500.0 μM[48]
12-O-tiglyl-7-oxo-5-ene-phorbol-13-(2-methyl)butyrate (115)K56217 μM[48]
MOLT-44.8 μM[48]
U93721 μM[48]
MCF-720 μM[48]
Hela5.0 μM[48]
DU14510 μM[48]
A54919 μM[48]
SGC-709123 μM[48]
H197510 μM[48]
HL6010 μM[48]
293T455.3 μM[48]
LX-2>500.0 μM[48]
13-O-(2-metyl)butyryl-4-deoxy-4a-phorbol (116)K5628.0 μM[48]
MOLT-49.9 μM[48]
U93718 μM[48]
MCF-724 μM[48]
H197510 μM[48]
HL6010 μM[48]
293T455.3 μM[48]
LX-2>500.0 μM[48]
Hela10 μM[48]
DU14510 μM[48]
A5494.5 μM[48]
SGC-70915.4 μM[48]
H19753.3 μM[48]
HL609.8 μM[48]
293T191.0 μM[48]
LX-2>500.0 μM[48]
Crotignoid A (117)HL-601.61 μM[49]
A5492.85 μM[49]
Crotignoid B (118)HL-6022.1 μM[49]
A54931.0 μM[49]
Crotignoid C (119)HL-6032.3 μM[49]
A5495.03 μM[49]
Crotignoid D (120)HL-6019.8 μM[49]
A54910.2 μM[49]
Crotignoid F (122)HL-6044.6 μM[49]
A5496.96 μM[49]
Crotignoid G (123)HL-6022.1 μM[49]
A5493.89 μM[49]
Crotignoid H (124)HL-609.97 μM[49]
A5498.08 μM[49]
Crotignoid I (125)HL-6014.8 μM[49]
A54924.4 μM[49]
Crotignoid J (126)HL-6014.2 μM[49]
A54929.5 μM[49]
Crotusin A (128)HL-6012.53 ± 0.37 μM[44]
SMMC-77217.06 ± 0.72 μM[44]
A5499.69 ± 0.41 μM[44]
MCF-79.56 ± 0.76 μM[44]
SW48014.88 ± 0.43 μM[44]
Crotusin B (129)HL-6019.39 ± 0.46 μM[44]
SMMC-772121.13 ± 0.29 μM[44]
A54914.66 ± 1.66 μM[44]
MCF-71.49 ± 0.23 μM[44]
SW48031.21 ± 3.20 μM[44]
Crotusin C (130)HL-604.19 ± 0.15 μM[44]
SMMC-77213.87 ± 0.12 μM[44]
A5492.44 ± 0.35 μM[44]
MCF-70.49 ± 0.04 μM[44]
SW4802.89 ± 0.01 μM[44]
12-O-tiglylphorbol-4-deoxy-4β-phorbol-13-acetate (131)SNU38759.5 ± 2.1 μM[50]
SNU39843.7 ± 1.5 μM[50]
12-O-tiglylphorbol-4-deoxy-4β-phorbol-13-hexadecanoate (132)SNU38730.2 ± 1.4 μM[50]
SNU39891.2 ± 3.7 μM[50]
13-O-acetylphorbol-4-deoxy-4β-phorbol-20-oleate (133)SNU3871.9 ± 0.2 μM[50]
SNU39813.5 ± 1.1 μM[50]
13-O-acetylphorbol-4-deoxy-4β-phorbol-20-linoleate (134)SNU3870.71 ± 0.08 μM[50]
SNU39818.2 ± 1.7 μM[50]
4-deoxy-20-oxophorbol 12-tiglyl 13-acetate (135)K5620.03 μM[51]
A5496.88 μM[51]
Huh-73.85 μM[51]
7-oxo-5-ene-phorbol-13-(2-methylbutyrate) (136)K5620.03 μM[51]
A5496.33 μM[51]
Huh-720.9 μM[51]
7-hydroxyl-phorbol-5-ene-13-(2-methyl)butyrate (137)K5620.07 μM[51]
A5498.86 μM[51]
Huh-711.6 μM[51]
13-O-(2-metyl)butyryl-phorbol (139)K5620.05 μM[51]
A54943.5 μM[51]
Huh-734.2 μM[51]
7-keto-12-O-tiglylphorbol-13-acetate (140)HL-606.22 ± 3.24 μg/mL[52]
A54918.0 ± 9.48 μg/mL[52]
Phorbol-13-isobutyrate (148)HL-600.22 ± 0.15 μg/mL[52]
14-epi-hyalic acid (159)HL-608.2 μM[63]
Kongeniod A (178)HL-601.27 ± 0.24 μM[59]]
A5495.74 ± 0.25 μM[59]
Kongeniod B (179)HL-600.47 ± 0.04 μM[59]
A5493.25 ± 0.91 μM[59]
Kongeniod C (180)HL-600.58 ± 0.17 μM[59]
Crotonkinensin D (188)MCF-79.4 ± 1.7 μM[61]
MCF-7/TAMR2.6 ± 0.9 μM[61]
MCF-7/ADR18.9 ± 0.6 μM[61]
MDA-MB-23122.0 ± 0.9 μM[61]
EBC-162 (207)HL-6015 μg/mL[74]
HT2915 μg/mL[74]
MCF-730 μg/mL[74]
MM9610 μg/mL[74]
NNF20 μg/mL[74]
K56250 μg/mL[74]
EBC-233 (208)HL-6010 μg/mL[74]
HT2980 μg/mL[74]
MCF-720 μg/mL[74]
MM966 μg/mL[74]
NNF50 μg/mL[74]
K56250 μg/mL[74]
EBC-300 (209)HL-6035 μg/mL[74]
HT29100 μg/mL[74]
MCF-7100 μg/mL[74]
MM9680 μg/mL[74]
NNF80 μg/mL[74]
K562100 μg/mL[74]
EBC-240 (210)HL-6045 μg/mL[74]
HT2980 μg/mL[74]
MCF-750 μg/mL[74]
MM9612 μg/mL[74]
NNF80 μg/mL[74]
K56260 μg/mL[74]
EBC-241 (211)HL-6040 μg/mL[74]
HT2980 μg/mL[74]
MCF-740 μg/mL[74]
MM9612 μg/mL[74]
NNF75 μg/mL[74]
K56260 μg/mL[74]
Furanocembranoid 1 (266)BT4747.8 μg/mL[83]
CHAGO7.0 μg/mL[83]
Hep-G25.6 μg/mL[83]
KATO-35.9 μg/mL[83]
SW-6206.3 μg/mL[83]
Furanocembranoid 2 (267)BT4749.5 μg/mL[83]
CHAGO>10 μg/mL[83]
Hep-G2>10 μg/mL[83]
KATO-36.8 μg/mL[83]
SW-6209.9 μg/mL[83]
Furanocembranoid 3 (268)BT4749.6 μg/mL[83]
CHAGO7.1 μg/mL[83]
Hep-G25.7 μg/mL[83]
KATO-38.2 μg/mL[83]
SW-6205.6 μg/mL[83]]
Furanocembranoid 4 (269)BT4749.6 μg/mL[83]
CHAGO9.3 μg/mL[83]
Hep-G26.1 μg/mL[83]
KATO-38.1 μg/mL[83]
SW-6206.0 μg/mL[83]
Laevigatlactone B (272)Hela38.4 μM[84]
(+)-[1R*,2S*,7S*,8S*,12R*]-7,8-Epoxy-2,12-cyclocembra-3E,10Zdien-20,10-olide (276)PEO1132 nM[85]
PEO1TaxR200 nM[85]
(+)-[1R*,4S*,10R*]-4-Hydroxycembra-2E,7E,11Z-trien-20,10-olide (278)PEO1125 nM[85]
PEO1TaxR135 nM[85]
Crotontomentosin A (294)Hela24.0 ± 2.6 μM[88]
Hep G287.9 ± 4.5 μM[88]
MDA-MB-23154.1 ± 2.1 μM[88]
A54940.6 ± 3.9 μM[88]
Crotontomentosin B (295)Hela>100 μM[88]
Hep G228.1 ± 2.1 μM[88]
MDA-MB-23128.7 ± 3.4 μM[88]
A54929.1 ± 5.2 μM[88]
Crotontomentosin C (297)Hela47.9 ± 3.3 μM[88]
Hep G283.3 ± 5.3 μM[88]
MDA-MB-231>100 μM[88]
A549>100 μM[88]]
Crotontomentosin D (296)Hela59.7 ± 4.5 μM[88]
Hep G2>100 μM[88]
MDA-MB-23149.3 ± 2.8 μM[88]
A549>100 μM[88]
Crotolaevigatone B (300)A54921.2 μM[89]
MDA-MB-23133.4 μM[89]
Crotolaevigatone G (305)A54925.6 μM[89]
MDA-MB-23132.7 μM[89]
EBC-324 (311)MCF-740 μM[92]
NFF50 μM[92]
K5626 μM[92]
EBC-329 (312)MCF-713 μM[92]
NFF40 μM[92]
K5620.6 μM[92]
ent-3β-hydroxypimara-8(14),9,15-trien-12-one (319)NFF23 μg/mL[98]
Hela13 μg/mL[98]
HT 2913 μg/mL[98]
MCF-716 μg/mL[98]
MM96L2.8 μg/mL[98]
K56217 μg/mL[98]
EBC-325 (321)MCF-720 μM[99]
NFF6 μM[99]
K5623 μM[99]
EBC-326 (322)MCF-714 μM[99]
NFF6 μM[99]
K5626 μM[99]
EBC-327 (323)MCF-710 μM[99]
NFF10 μM[99]
K56210 μM[99]
3-hydroxycleistantha-13(17),15-diene (325)KATO-36.0 μg/mL[93]
SW-620>10 μg/mL[93]
BT4746.1 μg/mL[93]
Hep-G20.5 μg/mL[93]
CHAGO5.5 μg/mL[93]
3,4-seco-cleistantha-4(18),13(17),15-trien-3-oic acid (326)KATO-39.6 μg/mL[93]
SW-620>10 μg/mL[93]
BT47410 μg/mL[93]
Hep-G28.6 μg/mL[93]
CHAGO>10 μg/mL[93]
Crotobarin (330)KB2.5 ± 0.10 μM[101]
HT292.1 ± 0.60 μM[101]
A5490.79 ± 0.15 μM[101]
HL600.56 ± 0.02 μM[101]
Crotogoudin (331)KB1.5 ± 0.03 μM[101]
HT291.9 ± 0.25 μM[101]
A5490.54 ± 0.02 μM[101]
HL600.49 ± 0.01 μM[101]
Crotonpyrone A (381)Hela10.21 μg/mL[120]
NCI-4466.59 μg/mL[120]
Crotonpyrone B (382)Hela9.54 μg/mL[120]
[1−9-NαC]-crourorb A1 (385)NCI-ADR/RES4.8 μM[123]

3.2. Anti-Inflammatory Activity

Bioassay-guided fractionation of the aerial parts of C. ciliatoglandulifer led to the isolation of tigliane diterpenoids 95, 97, which inhibited the enzymes cyclooxygenases-1 (IC50, 0.001, and 1.0 μM, respectively) and cyclooxygenases-2 (IC50, 2.2 μM, for compound 95) [41]. A tigliane diterpenoid (114) was isolated from the branches and leaves of C. tiglium, which displayed moderate inhibition of the enzymes COX-1 and COX-2, with IC50 values of 0.14 and 8.5 μM, respectively [48]. crotonkinin A (157), isolated from C. tonkinensis, showed anti-inflammatory effect on LPS-induced iNOS-dependent NO production and NOX-dependent ROS production in microglial cells (IC50, 46.2 ± 3.1 μM in NOS; maximum inhibition of NOX activity at 50 μM, 11.2%) [62]. Eight ent-kauranes (169176) from C. tonkinensis exhibited the anti-inflammatory potential for inhibition of superoxide Anion generation and elastase release. Among them, crotonkinins F (172) displayed significant inhibition of superoxide anion generation (IC50, 2.88 ± 0.52 μM) and elastase release (IC50, 4.44 ± 1.45 μM) [66]. Labdane diterpenoids 251, 254 and 257, 258, isolated from the aerial parts of C. laui, were found to show anti-inflammatory activities in LPS-stimulated RAW 264.7 cells with IC50 values in the range 42.73–93.04 μM [82]. Two grayanane diterpenoids, crotonkinensins A (328) and B (329) from the leaves of C. tonkinensis, were reported to decrease the LPS-induced COX-2 promoter activity in Raw 264.7 cells with IC50 values of 7.14 ± 0.2 and 5.49 ± 0.2 μM, respectively [100]. Two benzoate derivatives (379, 380) were obtained from C. hutchinsonianus. Compound 379 showed significant activity against COX-1 (IC50, 4.95 ± 0.58 μg/mL) and COX-2 (IC50, 2.11 ± 1.3 μg/mL), while compound 380 (IC50, 1.88 ± 0.17 μg/mL) preferentially inhibited COX-2 [119].

3.3. Antifungal Activity

Two benzoate derivatives (379380) were isolated from C. hutchinsonianus, and exhibited antifungal activity against Candida albicans (IC50, 11.41 ± 1.44, and 5.36 ± 0.01 μg/mL, respectively) [119]. Ursane triterpenoid (348) from the root of C. bonplandianum, displayed the antifungal activity against Calletotricheme camellie (IC50, 10 μg/mL), Fussarium equisitae (IC50, <15 μg/mL), Alterneria alternata (IC50, 10 μg/mL), Curvularia eragrostidies (IC50, <10 μg/mL) and Colletorichum gloeosporiodes (IC50, 15 μg/mL) [107].

3.4. Acetylcholinesterase Inhibitory Activity

An indole alkaloid derivative 376, isolated from the leaves of C. heliotropiifolius, exhibited the acetylcholinesterase inhibitory activity with IC50 values of 17.8 ± 0.6 μM [116]. Compund 378 from C. sylvaticus, also displayed the same activity [118].

3.5. Neurite Outgrowth-Promoting Activity

Two clerodane diterpenoids, crotonpenes A (36) and B (37) were isolated from C. yanhuii, which markedly increased the NGF (20 ng/mL)-induced proportion of neurite bearing cells by 59%, and 47% at 15 μM, respectively [23]. Crotoeurins A–C (40–42) obtained from C. euryphyllus, were found to display neurite outgrowth-promoting activity on NGF mediated PC12 cells at concentration of 10 μM. The percentages of neurite-bearing cells were 9.72%, 14.90%, and 7.14%, respectively [25].

3.6. Other Activities

Besides the above activities, other biological activities have also been reported. Crotonolide G (32), from the aerial parts of C. laui, was found to exhibit potent antibacterial activity (MIC, 43.4 μM) against four strains of Gram-positive bacteria, namely, Staphylococcus aureus, Staphylococcus epidermidis, Micrococcus luteus, and Bacillus subtilis [21]. Crassifolin H (39) was obtained from roots of C. crassifolius as an angiogenic inhibitor by reducing vessel formation to 59.3% at 15 μg/mL [34]. Tigliane diterpene (111) was isolated from the leaves of C. mauritianus, which inhibited chikungunya virus-induced cell death in cell culture with EC50s of 4.0 ± 0.8 μM [43]. The leaves of C. tiglium yielded two tigliane diterpenoids (135, 136), which displayed significant antitubercular activities with MIC values of 19.5, and 20.9 μM, respectively [51]. Compounds (162165) were four ent-kaurane diterpenes from C. tonkinensis, which significantly stimulated differentiation in osteoblasts [64]. From the twigs and leaves of C. cascarilloides, two crotofolane diterpenoid alkaloids cascarinoids B–C (226, 227) were obtained, both of which displayed moderate activities against the ConA-induced proliferation of T lymphocyte cells and/or LPS-induced proliferation of B lymphocyte cells with IC50 values ranging from 6.14 to 16.27 μM [71]. Meroditerpenoid (336), from C. steenkampianus, showed antiplasmodial activities of 15.8 (D10), 9.1 (W2), and 9.4 (Dd2) μM [102]. Indole alkaloid (377) was found in C. mauritianus with antioxidant activity (IC50, 30.0.0 ± 0.7 μM) by the DPPH radical scavenging assay [117]. Bioactivity-guided fractionation of the root bark of C. jatrophoides resulted in the isolation of musidunin (388) and musiduol (389), both of which showed insect antifeedant activities (PC50, 3 μg/mL, PC95, 10 μg/mL; PC50, 4 μg/mL, PC95, 20 μg/mL, respectively) against the second-instar larvae of Pectinophora gossypiella in a leaf disk assay [126].

4. Conclusions

In the present review, we systematically summarized the chemical constituents and biological activity studies of Croton species covering from 2006 to 2018. To date, a total of 399 new compounds were reported from Croton species, which included 339 diterpenoids, seven sesquiterpenoids, 21 glycosides, eight alkaloids, and 24 miscellaneous compounds (Figure 14). Obviously, diterpenoids are characteristic components for Croton species. The diterpenoids with clerodane, tigliane, kaurane, crotofolane, labdane, and cembrane skeletons are among the most studied diterpenoids isolated from Croton species (Figure 14). Although the current studies have shown that these isolated compounds from Croton species possessed diversified biological activities, many compounds have never been biologically tested. Moreover, most studies conducted so far have focused mainly on in vitro cytotoxic assays. Further studies on the mechanism of actions and the structure activity relationship are needed in order to provide a better understanding of the chemical constituents from Croton species as potential medicines. Increasing interest in the chemistry and pharmaceutics of Croton species may promote new progress in finding and developing novel compounds.

An external file that holds a picture, illustration, etc.
Object name is molecules-23-02333-g014.jpg

The percentage of each type of compounds (left), the percentage of each type of diterpenoids (right) from Croton Species.

Author Contributions

W.-H.X. classified the chemical constituents and drafted the structural formulas, wrote the manuscript; W-Y L. collected literatures; Q.L. managed references, overall responsibility.

Funding

We are thankful for financial supports from the Natural Science Foundation of China (NSFC) (21362035); The Initial Foundation of Scientific Research for the introduction of talents from Southwest Forestry University for Wen-Hui Xu (20130916); and Opening Research Foundation from Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University (KLE201807).

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Sample Availability: Samples of the compounds are not available from the authors.

References

1. Salatino A., Salatino M.L.F., Negri G. Traditional uses, chemistry and pharmacology of Croton species (Euphorbiaceae) J. Braz. Chem. Soc. 2007;18:11–33. 10.1590/S0103-50532007000100002. [CrossRef] [Google Scholar]
2. Júnior S.F.P., Conserva L.M., Filho J.M.B. Clerodane diterpenes from Croton species: Distribution and a compilation of their 13C-NMR spectral data. Nat. Prod. Commun. 2006;1:319–344. [Google Scholar]
3. Wu X.A., Zhao Y.M. Advance on chemical composition and pharmacological action of Croton L. Nat. Prod. Res. Dev. 2004;16:467–472. [Google Scholar]
4. Nath R., Roy S., De B., Choudhury M.D. Anticancer and antioxidant activity of Croton: A review. Int. J. Pharm. Pharm. Sci. 2013;5:63–70. [Google Scholar]
5. Premprasert C., Tewtrakul S., Plubrukarn A., Wungsintaweekul J. Anti-inflammatory activity of diterpenes from Croton stellatopilosus on LPS-induced RAW264. 7 cells. J. Nat. Med. 2013;67:174–181. 10.1007/s11418-012-0668-5. [Abstract] [CrossRef] [Google Scholar]
6. Maroyi A. Ethnopharmacological uses, phytochemistry, and pharmacological properties of Croton macrostachyus Hochst. Ex Delile: A Comprehensive Review. Evid Based. Compl. Alt. 2017;20:1–17. 10.1155/2017/1694671. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
7. Maroyi A. Ethnomedicinal uses and pharmacological activities of Croton megalobotrys Müll Arg: A systematic review. Trop. J. Pharm. Res. 2017;16:2535–2543. [Google Scholar]
8. Maroyi A. Traditional usage, phytochemistry and pharmacology of Croton sylvaticus Hochst. ex C. Krauss. Asian Pac. J. Trop. Med. 2017;10:423–429. 10.1016/j.apjtm.2017.05.002. [Abstract] [CrossRef] [Google Scholar]
9. Dutta S., Chaudhuri T.K. Pharmacological aspect of Croton bonplandianus Baill: A comprehensive review. J. Pharmacogn. Phytochem. 2018;7:811–813. [Google Scholar]
10. Ghosh T., Biswas M.K., Roy P., Guin C. A review on traditional and pharmacological uses of Croton bonplandianum with special reference to phytochemical aspect. Eur. J. Med. Plant. 2018;22:1–10. 10.9734/EJMP/2018/40697. [CrossRef] [Google Scholar]
11. Li R., Morris-Natschke S.L., Lee K.H. Clerodane diterpenes: Sources, structures, and biological activities. Nat. Prod. Rep. 2016;33:1166–1226. 10.1039/C5NP00137D. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
12. Ndunda B., Langat M.K., Midiwo J.O., Omosa L.K. Diterpenoid derivatives of Kenyan croton sylvaticus. Nat. Prod. Commun. 2015;10:557–578. [Abstract] [Google Scholar]
13. Zou G.A., Zhang H.W., Aisa H.A., Yang J.S., Peng C.Z., Zou Z.M. Laevigatbenzoate from Croton laevigatus vahl. J. Nat. Med. 2011;65:391–394. 10.1007/s11418-010-0503-9. [Abstract] [CrossRef] [Google Scholar]
14. Hu Y., Zhang L., Wen X.Q., Zeng X.J., Rui W., Cen Y.Z. Two new diterpenoids from croton crassifolius. J. Asian. Nat. Prod. Res. 2012;14:785–788. 10.1080/10286020.2012.694872. [Abstract] [CrossRef] [Google Scholar]
15. García A., Ramírez-Apan T., Cogordan J.A., Delgado G. Absolute configuration assignments by experimental and theoretical approaches of ent-labdane-and cis-ent-clerodane-type diterpenes isolated from Croton glabellus. Can. J. Chem. 2006;84:1593–1602. 10.1139/v06-164. [CrossRef] [Google Scholar]
16. Wang G.C., Li J.G., Li G.Q., Xu J.J., Wu X., Ye W.C., Li Y.L. Clerodane diterpenoids from Croton crassifolius. J. Nat. Prod. 2012;75:2188–2192. 10.1021/np300636k. [Abstract] [CrossRef] [Google Scholar]
17. Yuan Q.Q., Tang S., Song W.B., Wang W.Q., Huang M., Xuan L.J. Crassins A-H, diterpenoids from the roots of Croton crassifolius. J. Nat. Prod. 2017;80:254–260. 10.1021/acs.jnatprod.6b00425. [Abstract] [CrossRef] [Google Scholar]
18. Guetchueng S.T., Nahar L., Ritchie K.J., Ismail F.M.D., Evans A.R., Sarker S.D. Ent-clerodane diterpenes from the bark of Croton oligandrus Pierre ex Hutch. and assessment of their cytotoxicity against human cancer cell lines. Molecules. 2018;23:410. 10.3390/molecules23020410. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
19. Yamale S.C., Koudou J., Samb A., Heitz A., Teulade J.C. Structural elucidation of a new furoclerodane from stem barks of croton mayumbensis J. Leonard extracts. Int. J. Phys. Sci. 2009;4:96–100. [Google Scholar]
20. Wang G.C., Zhang H., Liu H.B., Yue J.M. Laevinoids A and B: Two diterpenoids with an unprecedented backbone from Croton laevigatus. Org. Lett. 2013;15:4880–4883. 10.1021/ol402318m. [Abstract] [CrossRef] [Google Scholar]
21. Liu C.P., Xu J.B., Zhao J.X., Xu C.H., Dong L., Ding J., Yue J.M. Diterpenoids from Croton laui and their cytotoxic and antimicrobial activities. J. Nat. Prod. 2014;77:1013–1020. 10.1021/np500042c. [Abstract] [CrossRef] [Google Scholar]
22. Pudhom K., Sommit D. Clerodane diterpenoids and a trisubstituted furan from Croton oblongifolius. Phytochem. Lett. 2011;4:147–150. 10.1016/j.phytol.2011.02.004. [CrossRef] [Google Scholar]
23. Sun Y., Wang M., Ren Q., Li S., Xu J., Ohizumi Y., Xie C., Jin D.Q., Guo Y. Two novel clerodane diterpenenes with NGF-potentiating activities from the twigs of Croton yanhuii. Fitoterapia. 2014;95:229–233. 10.1016/j.fitote.2014.03.012. [Abstract] [CrossRef] [Google Scholar]
24. Velázquez-Jiménez R., Vargas-Mendoza D., Gayosso-de-Lucio J.A., González-Montiel S., Villagómez-Ibarra J.R. Three novel epoxy-clerodanes bearing a furan ring from Croton hypoleucus. Phytochem. Lett. 2018;24:21–26. 10.1016/j.phytol.2018.01.001. [CrossRef] [Google Scholar]
25. Pan Z., Ning D., Wu X., Huang S., Li D., Lv S. New clerodane diterpenoids from the twigs and leaves of Croton euryphyllus. Bioorg. Med. Chem. Lett. 2015;46:329–1332. 10.1016/j.bmcl.2015.01.033. [Abstract] [CrossRef] [Google Scholar]
26. Qiu M., Cao D., Gao Y., Li S., Zhu J., Yang B., Zhou L., Zhou Y., Jin J., Zhao Z. New clerodane diterpenoids from Croton crassifolius. Fitoterapia. 2016;108:81–86. 10.1016/j.fitote.2015.11.016. [Abstract] [CrossRef] [Google Scholar]
27. Ndunda B., Langat M.K., Mulholland D.A., Eastman H., Jacob M.R., Khan S.I., Walker L.A., Muhammad I., Kerubo L.O., Midiwo J.O. New ent-Clerodane and abietane diterpenoids from the Roots of Kenyan Croton megalocarpoides Friis & M. G. Gilbert. Planta Med. 2016;82:1079–1086. [Abstract] [Google Scholar]
28. Zhang Z.X., Li H.H., Fan G.X., Li Z.Y., Dong L.L., Li H.Y., Fei D.Q. A novel norclerodane diterpenoid from the roots of Croton crassifolius. Nat. Prod. Commun. 2015;10:1917–1918. [Abstract] [Google Scholar]
29. Youngsa-ad W., Ngamrojanavanich N., Mahidol C., Ruchirawat S., Prawat H., Kittakoop P. Diterpenoids from the roots of Croton oblongifolius. Planta Med. 2007;73:1491–1494. 10.1055/s-2007-990247. [Abstract] [CrossRef] [Google Scholar]
30. Mbwambo Z., Foubert K.M., Kapingu M., Magadula J., Moshi M., Lemiere F., Goubitz K., Fraanje J., Peschar R., Vlietinck A., et al. New furanoditerpenoids from croton jatrophoides. Planta Med. 2008;75:262–267. 10.1055/s-0028-1088383. [Abstract] [CrossRef] [Google Scholar]
31. Brasil D.S.B., Müller A.H., Guilhon G.M.S.P., Alves C.N., Peris G., Llusard R., Moliner V. Isolation, X-ray crystal structure and theoretical calculations of the new compound 8-Epicordatin and identification of others terpenes and steroids from the bark and leaves of Croton palanostigma klotzsch. J. Braz. Chem. Soc. 2010;21:731–739. 10.1590/S0103-50532010000400021. [CrossRef] [Google Scholar]
32. Pizzolatti M.G., Bortoluzzi A.J., Brighente I.M.C., Zuchinalli A., Carvalho F.K., Candido A.C.S., Peresb M.T.L.P. Clerodane diterpenes from bark of Croton urucurana Baillon. J. Braz. Chem. Soc. 2013;24:609–614. [Google Scholar]
33. Abega D.F., Kapche D.W., Ango P.Y., Mapitse R., Yeboah S.O., Ngadjui B.T. Chemical constituents of croton oligandrum (euphorbiaceae) Z. Naturforsch. C. 2014;69:181–185. 10.5560/znc.2013-0207. [Abstract] [CrossRef] [Google Scholar]
34. Huang W.H., Li G.Q., Li J.G., Wu X., Ge W., Chung H.Y., Ye W.C., Li Y.L., Wang G.C. Two new clerodane diterpenoids from Croton crassifolius. Heterocycles. 2014;89:1585–1593. [Google Scholar]
35. Sousa A.H., Junior J.N.S., Guedes M.L.S., Braz-Filho R., Costa-Lotufo L.V., Araujo A.J., Silveira E.R., Lima M.A.S. New terpenoids from Croton limae (Euphorbiaceae) J. Braz. Chem. Soc. 2015;26:1565–1572. [Google Scholar]
36. Wang J.J., Chung H.Y., Zhang Y.B., Li G.Q., Li Y.L., Huang W.H., Wang G.C. Diterpenoids from the roots of Croton crassifolius and their anti-angiogenic activity. Phytochemistry. 2016;12:270–275. 10.1016/j.phytochem.2015.12.011. [Abstract] [CrossRef] [Google Scholar]
37. Yang L., Zhang Y.-B., Wu Z.-N., Chen N.-H., Jiang S.-Q., Jiang L., Li Y.-L., Wang G.-C. Three new diterpenoids from Croton laui. Chem. Lett. 2016;45:1235–1237. 10.1246/cl.160632. [Abstract] [CrossRef] [Google Scholar]
38. Tian J.L., Yao G.D., Wang Y.X., Gao P.Y., Wang D., Li L.Z., Lin B., Huang X.X., Song S.J. Cytotoxic clerodane diterpenoids from Croton crassifolius. Bioorg. Med. Chem. Lett. 2017;27:1237–1242. 10.1016/j.bmcl.2017.01.055. [Abstract] [CrossRef] [Google Scholar]
39. Zhang J.S., Tang Y.Q., Huang J.L., Li W., Zou Y.H., Tang G.H., Liu B., Yin S. Bioactive diterpenoids from Croton laevigatus. Phytochemistry. 2017;144:151–158. 10.1016/j.phytochem.2017.09.003. [Abstract] [CrossRef] [Google Scholar]
40. Qiu M., Jin J., Zhou L., Zhou W., Liu Y., Tan Q., Cao D., Zhao Z. Diterpenoids from Croton crassifolius include a novel skeleton possibly generated via an intramolecular [2 + 2]-photocycloaddition reaction. Phytochemistry. 2018;145:103–110. 10.1016/j.phytochem.2017.10.008. [Abstract] [CrossRef] [Google Scholar]
41. Rios M.Y., Aguilar-Guadarrama A.B. Nitrogen-containing phorbol esters from Croton ciliatoglandulifer and their effects on cyclooxygenases-1 and-2. J. Nat. Prod. 2006;69:887–890. 10.1021/np0504311. [Abstract] [CrossRef] [Google Scholar]
42. Ndunda B., Langat M.K., Wanjohi J.M., Midiwo J.O., Kerubo L.O. Alienusolin, a new 4α-deoxyphorbol ester derivative, and crotonimide C, a new glutarimide alkaloid from the Kenyan Croton alienus. Planta Med. 2013;79:1762–1766. 10.1055/s-0033-1351044. [Abstract] [CrossRef] [Google Scholar]
43. Corlay N., Delang L., Girard-Valenciennes E., Neyts J., Clerc P., Smadja J., Gueritte F., Leyssen P., Litaudon M. Tigliane diterpenes from Croton mauritianus as inhibitors of chikungunya virus replication. Fitoterapia. 2014;97:87–91. 10.1016/j.fitote.2014.05.015. [Abstract] [CrossRef] [Google Scholar]
44. Chen Y.Y., Yang K.X., Yang X.W., Khan A., Liu L., Wang B., Zhao Y.L., Liu Y.P., Li Y., Luo X.D. New cytotoxic tigliane diterpenoids from Croton caudatus. Planta Med. 2016;82:729–733. 10.1055/s-0042-102539. [Abstract] [CrossRef] [Google Scholar]
45. Jiang L., Zhang Y.B., Jiang S.Q., Zhou Y.D., Luo D., Niu Q.W., Qian Y.R., Li Y.L., Wang G.C. Phorbol ester-type diterpenoids from the twigs and leaves of Croton tiglium. J. Asian Nat. Prod. Res. 2017;19:1191–1197. 10.1080/10286020.2017.1307836. [Abstract] [CrossRef] [Google Scholar]
46. Zhang X.L., Wang L., Li F., Yu K., Wang M.K. Cytotoxic phorbol esters of Croton tiglium. J. Nat. Prod. 2013;76:858–864. 10.1021/np300832n. [Abstract] [CrossRef] [Google Scholar]
47. Ren F.X., Ren F.Z., Yang Y., Yu N.J., Zhang Y., Zhao Y.M. Tigliane diterpene esters from the leaves of Croton tiglium. Helv. Chim. Acta. 2014;97:1014–1019. 10.1002/hlca.201300408. [CrossRef] [Google Scholar]
48. Wang J.F., Yang S.H., Liu Y.Q., Li D.X., He W.J., Zhang X.X., Liu Y.H., Zhou X.J. Five new phorbol esters with cytotoxic and selective anti-inflammatory activities from Croton tiglium. Bioorg. Med. Chem. Lett. 2015;25:1986–1989. 10.1016/j.bmcl.2015.03.017. [Abstract] [CrossRef] [Google Scholar]
49. Zhang D.-D., Zhou B., Yu J.-H., Xu C.-H., Ding J., Zhang H., Yue J.-M. Cytotoxic tigliane-type diterpenoids from Croton tiglium. Tetrahedron. 2015;71:9638–9644. 10.1016/j.tet.2015.10.070. [CrossRef] [Google Scholar]
50. Zhang X.-L., Khan A.-A., Wang L., Yu K., Li F., Wang M.-K. Four new phorbol diesters from Croton tiglium and their cytotoxic activities. Phytochem. Lett. 2016;16:82–86. 10.1016/j.phytol.2016.03.008. [CrossRef] [Google Scholar]
51. Zhao B.Q., Peng S., He W.J., Liu Y.H., Wang J.F., Zhou X.J. Antitubercular and cytotoxic tigliane-type diterpenoids from Croton tiglium. Bioorg. Med. Chem. Lett. 2016;26:4996–4999. 10.1016/j.bmcl.2016.09.002. [Abstract] [CrossRef] [Google Scholar]
52. Du Q., Zhao Y., Liu H., Tang C., Zhang M., Ke C., Ye Y. Isolation and structure characterization of cytotoxic phorbol esters from the seeds of Croton tiglium. Planta Med. 2017;83:1361–1367. 10.1055/s-0043-110227. [Abstract] [CrossRef] [Google Scholar]
53. Suirez A.I., Chavez K., Monache F.D., Vasquez L., Delannoy D.M., Orsini G., Compagnone R.S. New 3,4-seco ent-kaurenes from Croton caracasana flowers. Nat. Prod. Commun. 2008;3:319–322. [Google Scholar]
54. Mora S., Castro V., Poveda L., Chavarría M., Murillo R. Two new 3,4-seco-ent-kaurenes and other constituents from the costa rican endemic species Croton megistocarpus. Helv. Chim. Acta. 2011;94:1888–1892. 10.1002/hlca.201100127. [CrossRef] [Google Scholar]
55. Suwancharoen S., Chonvanich O., Roengsumran S., Pornpakakul S. Seco-kaurane skeleton diterpenoids from Croton oblongifolius. Chem. Nat. Compd. 2012;48:583–586. 10.1007/s10600-012-0317-y. [CrossRef] [Google Scholar]
56. Chen W., Yang X.D., Zhao J.F., Yang J.H., Zhang H.B., Li Z.Y., Li L. Three new, 1-oxygenated ent-8,9-secokaurane diterpenes from Croton kongensis. Helv. Chim. Acta. 2006;89:537–541. 10.1002/hlca.200690057. [CrossRef] [Google Scholar]
57. Chen W., Yang X.D., Zhao J.F., Zhang H.B., Li L. Two new, 1-oxygenated ent-kaurane-type diterpenes from Croton kongensis. Helv. Chim. Acta. 2007;90:1554–1558. 10.1002/hlca.200790162. [CrossRef] [Google Scholar]
58. Yang X.-D., Chen W., Zhao J.-F., Yang L.-J., Zhang H.-B., Li L. Ent-kaurane diterpenes and phenolic compounds from Croton kongensis (Euphorbiaceae) Biochem. Syst. Ecol. 2009;37:237–240. 10.1016/j.bse.2009.03.007. [CrossRef] [Google Scholar]
59. Shi S.Q., Fan Y.Y., Xu C.H., Ding J., Wang G.W., Yue J.M. Cytotoxic 8,9-seco-ent-kaurane diterpenoids from Croton kongensis. J. Asian Nat. Prod. Res. 2017 10.1080/10286020.2017.1373100. [Abstract] [CrossRef] [Google Scholar]
60. Mateu E., Chavez K., Riina R.S., Compagnone R., Monache F.D., Suárez A.I. New 3,4-seco-ent-kaurene dimers from Croton micans. Nat. Prod. Commun. 2012;7:5–8. [Abstract] [Google Scholar]
61. Thuong P.T., Pham T.H., Le T.V., Dao T.T., Dang T.T., Nguyen Q.T., Oh W.K. Symmetric dimers of ent-kaurane diterpenoids with cytotoxic activity from Croton tonkinensis. Bioorg. Med. Chem. Lett. 2012;22:1122–1124. 10.1016/j.bmcl.2011.11.116. [Abstract] [CrossRef] [Google Scholar]
62. Kuo P.C., Shen Y.C., Yang M.L., Wang S.H., Thang T.D., Dung N.X., Chiang P.-C., Lee K.-H., Lee E.-J., Wu T.-S. Crotonkinins A and B and related diterpenoids from Croton tonkinensis as anti-inflammatory and antitumor agents. J. Nat. Prod. 2007;70:1906–1909. 10.1021/np070383f. [Abstract] [CrossRef] [Google Scholar]
63. Santos H.S., Barros F.W., Albuquerque M.R., Bandeira P.N., Pessoa C., Braz-Filho R., Monte F.J.Q., Leal-Cardoso J.H., Lemos T.L.G. Cytotoxic diterpenoids from croton argyrophylloides. J. Nat. Prod. 2009;72:1884–1887. 10.1021/np900250k. [Abstract] [CrossRef] [Google Scholar]
64. Dao T.T., Lee K.Y., Jeong H.M., Nguyen P.H., Tran T.L., Thuong P.T., Nguyen B.T., Oh W.K. Ent-kaurane diterpenoids from Croton tonkinensis stimulate osteoblast differentiation. J. Nat. Prod. 2011;74:2526–2531. 10.1021/np200667f. [Abstract] [CrossRef] [Google Scholar]
65. Langat M.K., Crouch N.R., Pohjala L., Tammela P., Smith P.J., Mulholland D.A. Ent-kauren-19-oic acid derivatives from the stem bark of Croton pseudopulchellus Pax. Phytochem. Lett. 2012;5:414–418. 10.1016/j.phytol.2012.03.002. [CrossRef] [Google Scholar]
66. Kuo P.C., Yang M.L., Hwang T.L., Lai Y.Y., Li Y.C., Thang T.D., Wu T.S. Anti-inflammatory diterpenoids from Croton tonkinensis. J. Nat. Prod. 2013;76:230–236. 10.1021/np300699f. [Abstract] [CrossRef] [Google Scholar]
67. Sun L., Meng Z., Li Z., Yang B., Wang Z., Ding G., Xiao W. Two new natural products from Croton kongensis Gagnep. Nat. Prod. Res. 2014;28:563–567. 10.1080/14786419.2013.867856. [Abstract] [CrossRef] [Google Scholar]
68. Kawakami S., Toyoda H., Harinantenaina L., Matsunami K., Otsuka H., Shinzato T., Takeda Y., Kawahata M., Yamaguchid K. Eight new diterpenoids and two new nor-diterpenoids from the stems of Croton cascarilloides. Chem. Pharm. Bull. 2013;61:411–418. 10.1248/cpb.c12-01002. [Abstract] [CrossRef] [Google Scholar]
69. Kawakami S., Matsunami K., Otsuka H., Inagaki M., Takeda Y., Kawahata M., Yamaguchic K. Crotocascarins I-K: Crotofolane-type diterpenoids, crotocascarin γ, isocrotofolane glucoside and phenolic glycoside from the leaves of Croton cascarilloides. Chem. Pharm. Bull. 2015;63:1047–1054. 10.1248/cpb.c15-00635. [Abstract] [CrossRef] [Google Scholar]
70. Kawakami S., Inagaki M., Matsunami K., Otsuka H., Kawahata M., Yamaguchi K. Crotofolane-type diterpenoids, crotocascarins L–Q, and a rearranged crotofolane-type diterpenoid, neocrotocascarin, from the Stems of Croton cascarilloides. Chem. Pharm. Bull. 2016;64:1492–1498. 10.1248/cpb.c16-00500. [Abstract] [CrossRef] [Google Scholar]
71. Gao X.H., Xu Y.S., Fan Y.Y., Gan L.S., Zuo J.P., Yue J.M. Cascarinoids A-C, a class of diterpenoid alkaloids with unpredicted conformations from Croton cascarilloides. Org. Lett. 2018;20:228–231. 10.1021/acs.orglett.7b03592. [Abstract] [CrossRef] [Google Scholar]
72. Filho F.A.S., Junior J.N.S., Braz-Filho R., Simone C.A., Silveira E.R., Lima M.A.S. Crotofolane-and casbane-type diterpenes from Croton argyrophyllus. Helv. Chim. Acta. 2013;96:1146–1154. 10.1002/hlca.201200347. [CrossRef] [Google Scholar]
73. Chávez K., Compagnoneb R.S., Riina R., Briceño A., González T., Squitieri E., Landaetab C., Soscúnd H., Suáreza A.I. Crotofolane diterpenoids from Croton caracasanus. Nat. Prod. Commun. 2013;8:1679–1682. [Abstract] [Google Scholar]
74. Maslovskaya L.A., Savchenko A.I., Pierce C.J., Gordon V.A., Reddell P.W., Parsons P.G., Williams C.M. Unprecedented 1,14-seco-crotofolanes from Croton insularis: Oxidative cleavage of crotofolin C by a putative homo-baeyer-villiger rearrangement. Chem. Eur. J. 2014;20:14226–14230. 10.1002/chem.201404250. [Abstract] [CrossRef] [Google Scholar]
75. Aldhaher A., Langat M., Ndunda B., Chirchir D., Midiwo J.O., Njue A., Schwikkard S., Carew M., Mulholland D. Diterpenoids from the roots of Croton dichogamus Pax. Phytochemistry. 2017;144:1–8. 10.1016/j.phytochem.2017.08.014. [Abstract] [CrossRef] [Google Scholar]
76. Yang L., Wu Z.N., Zhang Y.B., Chen N.H., Zhuang L., Li Y.L., Wang G.C. Three new diterpenoids from Croton laui Merr. et Metc. Nat. Prod. Res. 2017;31:1028–1033. 10.1080/14786419.2016.1266350. [Abstract] [CrossRef] [Google Scholar]
77. Bernardino A.C.S.S., Teixeira A.M.R., de Menezes J.E.S.A., Pinto C.C.C., Santos H.S., Freire P.T.C., Coutinho H.D.M., Sena Junior D.M., Bandeira P.N., Braz-Filho R. Spectroscopic and microbiological characterization of labdane diterpene 15,16-epoxy-4-hydroxy-labda-13(16),14-dien-3,12-dione isolated from the stems of Croton jacobinensis. J. Mol. Struct. 2017;1147:335–344. 10.1016/j.molstruc.2017.06.084. [CrossRef] [Google Scholar]
78. Ramos F., Takaishi Y., Kashiwada Y., Osorio C., Duque C., Acuna R., Fujimoto Y. Ent-3,4-seco-labdane and ent-labdane diterpenoids from Croton stipuliformis (Euphorbiaceae) Phytochemistry. 2008;69:2406–2410. 10.1016/j.phytochem.2008.05.025. [Abstract] [CrossRef] [Google Scholar]
79. Huang H.-L., Qi F.-M., Yuan J.-C., Zhao C.-G., Yang J.-W., Fang F.-H., Wu Q.-X., Gao K., Yuan C.-S. Labdane-type diterpenoids from Croton laevigatus. RSC Adv. 2014;4:39530–39540. 10.1039/C4RA04863F. [CrossRef] [Google Scholar]
80. Pompimon W., Udomputtimekakul P., Apisantiyakom S., Baison W., Penlap N., Chaibun S., Nuntasaen N. Two new labdane-type diterpenoids cinnamate from Croton decalvatus Esser. Nat. Prod. Res. 2017 10.1080/14786419.2017.1408089. [Abstract] [CrossRef] [Google Scholar]
81. Zhang Z.X., Wu P.Q., Li H.H., Qi F.M., Fei D.Q., Hu Q.L., Liu Y.H., Huang X.L. Norcrassin A, a novel C16 tetranorditerpenoid, and bicrotonol A, an unusual dimeric labdane-type diterpenoid, from the roots of Croton crassifolius. Org. Biomol. Chem. 2018;16:1745–1750. 10.1039/C7OB02991H. [Abstract] [CrossRef] [Google Scholar]
82. Yang L., Zhang Y.B., Chen L.F., Chen N.H., Wu Z.N., Jiang S.Q., Jiang L., Li G.Q., Li Y.L., Wang G.C. New labdane diterpenoids from Croton laui and their anti-inflammatory activities. Bioorg. Med. Chem. Lett. 2016;26:4687–4691. 10.1016/j.bmcl.2016.08.052. [Abstract] [CrossRef] [Google Scholar]
83. Pudhom K., Vilaivan T., Ngamrojanavanich N., Dechangvipart S., Sommit D., Petsom A., Roengsumran S. Furanocembranoids from the stem bark of Croton oblongifolius. J. Nat. Prod. 2007;70:659–661. 10.1021/np060520t. [Abstract] [CrossRef] [Google Scholar]
84. Zou G.A., Gang D., Su Z.-H., Yang J.-S., Zhang H.-W., Peng C.-Z., Aisa H.A., Zou Z.-M. Lactonecembranoids from Croton laewigatus. J. Nat. Prod. 2010;73:792–795. 10.1021/np100044t. [Abstract] [CrossRef] [Google Scholar]
85. Mulholland D.A., Langat M.K., Crouch N.R., Coley H.M., Mutambi E.M., Nuzillard J.M. Cembranolides from the stem bark of the southern african medicinal plant, Croton gratissimus (Euphorbiaceae) Phytochemistry. 2010;71:1381–1386. 10.1016/j.phytochem.2010.05.014. [Abstract] [CrossRef] [Google Scholar]
86. Langat M.K., Crouch N.R., Smith P.J., Mulholland D.A. Cembranolides from the leaves of Croton gratissimus. J. Nat. Prod. 2011;74:2349–2355. 10.1021/np2002012. [Abstract] [CrossRef] [Google Scholar]
87. Kawakami S., Matsunami K., Otsuka H., Lhieochaiphant D., Lhieochaiphant S. Two new cembranoids from the leaves of Croton longissimus Airy Shaw. J. Nat. Med. 2013;67:410–414. 10.1007/s11418-012-0693-4. [Abstract] [CrossRef] [Google Scholar]
88. Song J.T., Han Y., Wang X.L., Shen T., Lou H.X., Wang X.N. Diterpenoids from the twigs and leaves of Croton caudatus var. tomentosus. Fitoterapia. 2015;107:54–59. 10.1016/j.fitote.2015.10.006. [Abstract] [CrossRef] [Google Scholar]
89. Song J.-T., Liu X.-Y., Li A.-L., Wang X.-L., Shen T., Ren D.-M., Lou H.-X., Wang X.-N. Cytotoxic abietane-type diterpenoids from twigs and leaves of Croton laevigatus. Phytochem. Lett. 2017;22:241–246. 10.1016/j.phytol.2017.10.007. [CrossRef] [Google Scholar]
90. Santos H.S., Mesquita F.M.R., Lemos T.L.G., Monte F.J.Q., Braz-Filho R. Diterpenos casbanos e acetofenonas de Croton nepetaefolius (Euphorbiaceae) Quim. Nova. 2008;31:601–604. 10.1590/S0100-40422008000300026. [CrossRef] [Google Scholar]
91. e Silva-Filho F.A., Braz-Filho R., Silveira E.R., Lima M.A. Structure elucidation of casbane diterpenes from Croton argyrophyllus. Magn. Reson. Chem. 2011;49:370–373. 10.1002/mrc.2752. [Abstract] [CrossRef] [Google Scholar]
92. Maslovskaya L.A., Savchenko A.I., Krenske E.H., Gordon V.A., Reddell P.W., Pierce C.J., Parsons P.G., Williams C.M. Croton insularis introduces the seco-casbane class with EBC-329 and the first casbane endoperoxide EBC-324. Chem. Commun. 2014;50:12315–12317. 10.1039/C4CC05413J. [Abstract] [CrossRef] [Google Scholar]
93. Roengsumran S., Pata P., Ruengraweewat N., Tummatorn J., Pornpakakul S., Sangvanich P., Puthong S., Petsom A. New cleistanthane diterpenoids and 3,4-seco-cleistanthane diterpenoids from croton oblongifolius. Chem. Nat. Compd. 2009;45:641–646. 10.1007/s10600-009-9442-7. [CrossRef] [Google Scholar]
94. Torres M.C.M., Braz-Filho R., Silveira E.R., Diniz J.C., Viana F.A., Pessoa O.D.L. Terpenoids from Croton regelianus. Helv. Chim. Acta. 2010;93:375–381. 10.1002/hlca.200900201. [CrossRef] [Google Scholar]
95. Zhang Z.-X., Li H.-H., Qi F.-M., Xiong H.-Y., Dong L.-L., Fan G.-X., Fei D.-Q. A new halimane diterpenoid from Croton crassifolius. Bull. Korean Chem. Soc. 2014;35:1556–1558. 10.5012/bkcs.2014.35.5.1556. [CrossRef] [Google Scholar]
96. Maslovskaya L.A., Savchenko A.I., Gordon V.A., Reddell P.W., Pierce C.J., Parsons P.G., Williams C.M. Isolation and confirmation of the proposed cleistanthol biogentic link from Croton insularis. Org. Lett. 2011;13:1032–1035. 10.1021/ol103083m. [Abstract] [CrossRef] [Google Scholar]
97. Maslovskaya L.A., Savchenko A.I., Gordon V.A., Reddell P.W., Pierce C.J., Parsons P.G., Williams C.M. EBC-316, 325–327, and 345: New pimarane diterpenes from Croton insularis found in the Australian rainforest. Aust. J. Chem. 2015;68:652–659. 10.1071/CH14550. [CrossRef] [Google Scholar]
98. Thuong P.T., Dao T.T., Pham T.H., Nguyen P.H., Le T.V., Lee K.Y., Oh W.-K. Crotonkinensins A and B, diterpenoids from the Vietnamese medicinal plant Croton tonkinensis. J. Nat. Prod. 2009;72:2040–2042. 10.1021/np900215r. [Abstract] [CrossRef] [Google Scholar]
99. Rakotonandrasana O.L., Raharinjato F.H., Rajaonarivelo M., Dumontet V., Martin M.-T., Bignon J., Rasoanaivo P. Cytotoxic 3,4-seco-atisane diterpenoids from Croton barorum and Croton goudotii. J. Nat. Prod. 2010;73:1730–1733. 10.1021/np1005086. [Abstract] [CrossRef] [Google Scholar]
100. Adelekan A.M., Prozesky E.A., Hussein A.A., Urena L.D., Rooyen P.H., Liles D.C., Meyer J.J.M., Rodrfguez B. Bioactive diterpenes and other constituents of Croton steenkampianus. J. Nat. Prod. 2008;71:1919–1922. 10.1021/np800333r. [Abstract] [CrossRef] [Google Scholar]
101. Barreto M.B., Gomes C.L., Freitas J.V.B.D., Pinto F.D.C.L., Silveira E.R., Gramosa N.V., Torres D.S.C. Flavonoides e terpenoides de Croton muscicarpa (euphorbiaceae) Quim. Nova. 2013;36:675–679. 10.1590/S0100-40422013000500011. [CrossRef] [Google Scholar]
102. Lopes E.L., Neto M.A., Silveira E.R., Pessoa O.D.L., Braz-Filho R. Flavonoides e sesquiterpenos de Croton pedicellatus kunth. Quim. Nova. 2012;35:2169–2172. 10.1590/S0100-40422012001100012. [CrossRef] [Google Scholar]
103. Zhang Z.-X., Li H.-H., Qi F.-M., Dong L.-L., Hai Y., Fan G.-X., Fei D.-Q. Crocrassins A and B: Two novel sesquiterpenoids with an unprecedented carbon skeleton from Croton crassifolius. RSC Adv. 2014;4:30059–30061. 10.1039/C4RA03798G. [CrossRef] [Google Scholar]
104. Langat M.K., Crouch N.R., Nuzillard J.-M., Mulholland D.A. Pseudopulchellol: A unique sesquiterpene-monoterpene derived C-25 terpenoid from the leaves of Croton pseudopulchellus Pax (Euphorbiaceae) Phytochem. Lett. 2018;23:38–40. 10.1016/j.phytol.2017.11.008. [CrossRef] [Google Scholar]
105. Ghosh P., Mandal A., Rasul M.G. A new bioactive ursane-type triterpenoid from Croton bonplandianum Bail. J. Chem. Sci. 2013;125:359–364. 10.1007/s12039-013-0387-9. [CrossRef] [Google Scholar]
106. Yuan Q.Q., Song W.B., Wang W.Q., Xuan L.J. A new patchoulane-type sesquiterpenoid glycoside from the roots of Croton crassifolius. Nat. Prod. Res. 2017;31:289–293. 10.1080/14786419.2016.1233413. [Abstract] [CrossRef] [Google Scholar]
107. Pan Z.H., Ning D.S., Liu J.L., Pan B., Li D.P. A new triterpenoid saponin from the root of Croton lachnocarpus Benth. Nat. Prod. Res. 2014;28:48–51. 10.1080/14786419.2013.838238. [Abstract] [CrossRef] [Google Scholar]
108. Aderogba M.A., McGaw L.J., Bezabih M., Abegaz B.M. Isolation and characterisation of novel antioxidant constituents of Croton zambesicus leaf extract. Nat. Prod. Res. 2011;25:1224–1233. 10.1080/14786419.2010.532499. [Abstract] [CrossRef] [Google Scholar]
109. Kawakami S., Matsunami K., Otsuka H., Shinzato T., Takeda Y. Crotonionosides A-G: Megastigmane glycosides from leaves of Croton cascarilloides Rauschel. Phytochemistry. 2011;72:147–153. 10.1016/j.phytochem.2010.10.003. [Abstract] [CrossRef] [Google Scholar]
110. Takeshige Y., Kawakami S., Matsunami K., Otsuka H., Lhieochaiphant D., Lhieochaiphant S. Oblongionosides A-F, megastigmane glycosides from the leaves of Croton oblongifolius Roxburgh. Phytochemistry. 2012;80:132–136. 10.1016/j.phytochem.2012.05.011. [Abstract] [CrossRef] [Google Scholar]
111. Mehmood R., Bibi A., Malik A. New secondary metabolites from Croton sparsiflorus Morong. Turk. J. Chem. 2013;37:111–118. [Google Scholar]
112. Mehmood R., Imran M., Safder M., Anjum S., Malik A. Structural determination of crotamides A and B, the new amides from Croton sparsiflorus. J. Asian Nat. Prod. Res. 2010;12:662–665. 10.1080/10286020.2010.489896. [Abstract] [CrossRef] [Google Scholar]
113. Mehmood R., Malik A. New secondary metabolites from Croton sparsiflorus. Z. Naturforsch. B. 2011;66:857–860. 10.1515/znb-2011-0812. [CrossRef] [Google Scholar]
114. Wu X.A., Zhao Y.M., Yu N.J. A novel analgesic pyrazine derivative from the leaves of Croton tiglium L. J. Asian Nat. Prod. Res. 2007;9:437–441. 10.1080/10286020500384781. [Abstract] [CrossRef] [Google Scholar]
115. Barbosa P.S., Abreu A.d.S., Batista E.F., Guilhon G.M.S.P., Müller A.H., Arruda M.S.P., Santos L.S., Arruda A.C., Secco R.S. Glutarimide alkaloids and terpenoids from Croton pullei var. glabrior Lanj. Biochem. Syst. Ecol. 2007;35:887–890. 10.1016/j.bse.2007.04.006. [CrossRef] [Google Scholar]
116. Queiroz M.M.F., Queiroz E.F., Zeraik M.L., Marti G., Favre-Godal Q., Simões-Pires C., Marcourt L., Carrupt P.A., Cuendet M., Paulo M.Q., et al. Antifungals and acetylcholinesterase inhibitors from the stem bark of Croton heliotropiifolius. Phytochem. Lett. 2014;10 10.1016/j.phytol.2014.08.013. [CrossRef] [Google Scholar]
117. Novello C.R., Marques L.C., Pires M.E., Kutschenco A.P., Nakamura C.V., Nocchi S., Sarragiotto M.H., Mello J.C.P. Bioactive indole alkaloids from Croton echioides. J. Braz. Chem. Soc. 2016;27:2203–2209. [Google Scholar]
118. Aderogba M., Ndhlala A.R., Staden J.V. Acetylcholinesterase inhibitors from Croton sylvaticus ethyl acetate leaf extract and their mutagenic effects. Nat. Prod. Commun. 2013;8:795–798. [Google Scholar]
119. Athikomkulchai S., Prawat H., Thasana N., Ruangrungsi N., Ruchirawat S. Cox-1, Cox-2 inhibitors and antifungal agents from Croton hutchinsonianus. Chem. Pharm. Bull. 2006;54:262–264. 10.1248/cpb.54.262. [Abstract] [CrossRef] [Google Scholar]
120. Li H.-H., Qi F.-M., Dong L.-L., Fan G.-X., Che J.-M., Guo D.-D., Zhang Z.-X., Fei D.-Q. Cytotoxic and antibacterial pyran-2-one derivatives from Croton crassifolius. Phytochem. Lett. 2014;10:304–308. 10.1016/j.phytol.2014.10.022. [CrossRef] [Google Scholar]
121. Huang W., Wang J., Liang Y., Li Y., Wang G. Pyran-2-one derivatives from the roots of Croton crassifolius. Nat. Prod. Commun. 2016;11:803–804. [Abstract] [Google Scholar]
122. Quintyne-Walcott S., Maxwell A.R., Reynolds W.F. Crotogossamide, a cyclic nonapeptide from the latex of Croton gossypifolius. J. Nat. Prod. 2007;70:1374–1376. 10.1021/np078007i. [Abstract] [CrossRef] [Google Scholar]
123. Candido-Bacani Pde M., Figueiredo Pde O., Matos Mde F., Garcez F.R., Garcez W.S. Cytotoxic orbitide from the latex of Croton urucurana. J. Nat. Prod. 2015;78:2754–2760. 10.1021/acs.jnatprod.5b00724. [Abstract] [CrossRef] [Google Scholar]
124. Bracher F., Randau K.P., Lerche H. Crototropone, a new tropone derivative from Croton zehntneri. Fitoterapia. 2008;79:236–237. 10.1016/j.fitote.2007.12.001. [Abstract] [CrossRef] [Google Scholar]
125. Randau K.P., Sproll S., Lerche H., Bracher F. Pernambucone, a new tropone derivative from Croton argyroglossum. Pharmazie. 2009;64:350–351. [Abstract] [Google Scholar]
126. Nihei K., Asaka Y., Mine Y., Yamada Y., Iigo M., Yanagisawa T. Musidunin and musiduol, insect antifeedants from Croton jatrophoides. J. Nat. Prod. 2006;69:975–977. 10.1021/np060068d. [Abstract] [CrossRef] [Google Scholar]
127. Zou G.A., Su Z.H., Zhang H.W., Wang Y., Yang J.S., Zou Z.M. Flavonoids from the stems of Croton caudatus Geisel. var. tomentosus Hook. Molecules. 2010;15:1097–1102. 10.3390/molecules15031097. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
128. Ahmat N., Said I.M., Latip J., Din L.B., Syah Y.M., Hakim E.H. New prenylated dihydrostilbenes from Croton laevifolius. Nat. Prod. Commun. 2007;2:1137–1140. [Google Scholar]
129. Attioua B., Weniger B., Chabert P. Antiplasmodial activity of constituents isolated from Croton lobatus. Pharm. Biol. 2007;45:263–266. 10.1080/13880200701214607. [CrossRef] [Google Scholar]

Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Alternative metrics

Altmetric item for https://www.altmetric.com/details/143130983
Altmetric
Discover the attention surrounding your research
https://www.altmetric.com/details/143130983

Article citations


Go to all (19) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

National Natural Science Foundation of China (1)