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Abstract 

 

The total land available to farm globally is only one quarter of the land available. With 

the current world population currently rising, standing at over 6.6 billion people in 

August 2008, a need to produce larger food quantities is an ever increasing pressure 

to scientists and farmers. The options available to support demands are to produce 

crops that have higher yields grown on land we currently have available, crops with 

increased tolerance to abiotic stresses, such as saline toxicity and crops to reclaim 

land that has been damaged by human use such as heavy metal contaminated land. 

There are currently over 400 plant species belonging to 45 different families that can 

tolerate and accumulate excessive amounts of heavy metals, such as nickel, 

cadmium and zinc. Thlaspi caerulescens a member of the family Brassicaceae 

(which is therefore closely related to Arabidopsis thaliana), is  a well studied model 

for studying heavy metal accumulation as it accumulates zinc, nickel and sometimes 

cadmium to high levels without showing signs of toxicity. 

The primary aim of this research was to identify and confirm potential genes 

responsible for the hyperaccumulation of zinc, using microarray and qPCR 

technologies. The second aim was to functionally test any highlighted, potential 

candidate genes through transgenics, therefore this project aimed to develop a 

transformation protocol to study potential candidate genes in planta. 

The microarray successfully identified genes that were differentially expressed in the 

hyperaccumulator T. caerulescens compared to T. avense, several were confirmed 

by qPCR. A good candidate gene from this and other studies on Thlaspi 

caerulescens and Arabidopsis haleri was HMA4 which is a member of the P1B-
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ATPase family. An RNAi construct was successfully made of the HMA4 gene in an 

attempt to silence the gene in planta. Attempts were made to transform Thlaspi 

caerulescens through tissue culture and floral dip methods; however these were 

unsuccessful due difficulties of T. caerulescens cultivation and transformation.  

Future strategies would include rapid cycling of plants and heterologous expression 

of native T. caerulescens genes in Arabidopsis thaliana. 
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1.Introduction 

 

The world population is continuing to grow, although the rate of growth has 

slowed over recent years. According to the International Census data 

(http://www.census.gov/) and the Population Clock 

(http://www.worldometers.info/population) the world population was over 6.6 

billion people in August 2008. This figure has doubled since the 1960s and is 

expected to reach 9 billion by 2042. All of these people must be fed by only 

37% of the Earth’s land. The FAO (Food and Agriculture Organisation of the 

United Nations) estimate that more than three quarters of the Earth’s surface 

is unsuitable for agriculture due to soil type, terrain or climate. If we are to 

support this growing population we need to produce plants that are better 

suited to the soils we currently cannot access. 

 

The UN also has reported that approximately one half of the world’s 

population suffers from micronutrient undernourishment mainly amongst 

young children and mothers in developing countries. Biofortification of crops 

holds a key to relieve the numbers of people currently afflicted with this 

problem. A recent WHO report has stated that nutritional Zn deficiency affects 

25% of the world’s population, ranked fifth amongst the developing world’s 

most important health and eleventh in the world overall, ranking as equally 

important as iron and vitamin C deficiency. Therefore Zn enriched plants such 

as cereals could potentially solve this problem. The Zn atom/ion has to travel 

a long way from soil to edible parts of the plant (e.g. cereal grains) and 
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therefore to be able to use crops to treat mineral deficiencies it is necessary to 

understand the biological processes that control the uptake and translocation 

of the mineral ion (Palmgren et al., 2008).  

 

This introduction will study in more detail the facts surrounding these issues 

and the research may be able to begin to make an impact on the road to 

solving these issues.  

 

1.1 Zinc is an essential element for plant growth  

1.1.1 Zn chemical and biological properties 

Zinc (Zn) belongs in the group of metals known as heavy metals or trace 

elements. Heavy metals are defined as those metals or semimetals 

(metalloids) that have been know to cause contamination or toxicity. Generally 

these metal have a high density (greater than 6 g cm3) and with a high atomic 

mass (the value varies around 20), examples of which include Copper (Cu), 

Zinc (Zn), Nickel (Ni), or Lead (Pb). Together they make up approximately 1% 

of the earth’s crust. Zinc, the 23rd most abundant element found on earth 

(average total Zn content in the lithosphere 75 mg/kg), has an atomic number 

of thirty and is found in five stable isotopic forms: 64Zn, 66Zn, 67Zn, 68Zn and 

70Zn. In order to study Zn uptake and translocation in plants the isotope 65Zn, 

one of thirty short lived isotopes of Zn has been used as a Zn tracer. Zn is 

primarily found as sulphide minerals, sphalerite (ZnS) and less commonly, 

smithsonite (ZnCO3) (Alloway and Ayres, 1997; Auld, 2001; Barak and 

Helmke, 1993; Ross, 1994). 
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Zinc is an essential micronutrient required for correct plant growth and 

functioning. In order to function and complete their life cycles plants require at 

least 17 elements (Broadley et al., 2001). Excluding iron, zinc is the most 

abundant metal to be found in living organisms, where it plays a major 

structural, catalytic and cocatalytic role in enzymes. Zinc is the only metal to 

be found in all of the six classes of enzymes: oxidoreductases, transferases, 

hydrolases, lyases, isomerases and ligases 

(http://www.chem.qmul.ac.uk/iubmb/). The study of Zn2+, the only stable 

oxidation state of Zn, has shown Zn2+ to be required for correct protein folding. 

The most abundant Zn2+ binding protein class is the Zn finger domain 

containing proteins (ZFP). The ZFP are able to determine transcription rates 

through DNA/RNA binding. Zinc also plays a structural role in ribosomes; 

protein synthesis is greatly reduced in its absence due to ribosomal 

degradation (Auld, 2001; Broadley et al., 2007; Maret, 2005). Zinc is able to 

bind to phospholipid and sulfhydryl groups within membranes, forming 

tetrahydral complexes that protect membranes from oxidative damage 

(Marschner,1995). Studies on the importance of Zn in maize were reported as 

early as 1915, followed by barley and dwarf sunflower (Mazé, 1915; Sommer 

and Lipman, 1926). Earliest reports on studies of Zn deficiency in plants was 

carried out in the 1940s in tomato (Skoog, 1940). These early experiments 

looked at the symptoms of zinc deficiency in various agriculturally important 

crop species and confirmed a positive relationship between the presence of 

zinc and the levels of auxin in the plants (reviewed in Broadley et al., 2007). 

They reported that a deficiency in Zn resulted in the retardation of growth 

probably due to the reduced accumulation of auxin in the plant. The issue of 
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zinc deficiencies in plants has not decreased in interest today and therefore is 

a present day research area.  

 

1.1.2 Zn deficiency in plants 

Zinc deficiency in plants has been noted as the most commonly occurring 

crop micronutrient deficiency, affecting 30 % of the world’s soils (Fig.1.1). The 

total Zn concentration of soils is greatly determined by the parent rock type. 

Typically soils range in Zn concentration from 10-300 mg kg-1, averaging 

around 50 mg kg-1 (Alloway, 1990). Most West Australian soils, half of Indian 

and Turkey’s cultivated land, and a third of China’s agricultural land is Zn 

deficient. Phytoavailablility of free Zn2+ is affected by pH, soil moisture, 

organic matter content and the ease of weathering of rocks. Although the 

average soil contains 50 mg kg-1 of Zn the concentration of Zn in solution is 

much lower (4-270 μg l-1). Zn mobility and solubility is largely affected by pH, 

at low pH Zn exists in the ionic form Zn2+. Solubility of Zn is therefore 

decreased as Zn forms ZnCO3 and ZnS in the soil. In alkaline soils high pH 

causes Zn sorbs or precipitates in unavailable forms (Khoshgoftar et al., 2004; 

Ross, 1994; Alloway, 1990). 

 

Agricultural production on soils low in phytoavailable Zn can be improved 

through genetic improvement of crops to take up Zn or traditional agricultural 

practices such as the addition of foliar fertilizers containing Zn. The most 

commonly used and most cost effective way of altering soil concentrations are 

through the use of zinc salts such as zinc sulphate (ZnSO4.7H2O) applied on 

their own or mixed with fertilizers. To treat foliar parts zinc sulphate can also 
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be used; however calcium hydroxide is normally needed in addition to 

neutralise acidity. Alternatively by-products of industry may be recycled and 

used (Alloway, 2001). Success stories have included the treatment of little leaf 

in peach orchards, mottled leaf in citrus orchards, stunted growth and 

rosetting in pineapples and pecans respectively (Hacisalihoglu and Kochian, 

2003; Graham, et al., 1992; White, and Zasoski, 1999; Cakmak, 2002; 2004 

respectively; reviewed in Broadley et al., 2007). The limitations of application 

of Zn fertilisers are i) economics, ii) environmental factors associated with 

excessive fertiliser uses and iii) agronomic factors associated with disease 

interactions. 

 

Heavy metals occur in greater quantities in igneous and metamorphic rock 

compared with sedimentary rock. However sedimentary rocks are the most 

predominant soil parent material as they overlay most igneous and 

metamorphic rock (Alloway and Ayres, 1997). Zn deficiency occurs in highly 

weathered acidic or calcareous soils (as pH increases Zn mobility decreases). 

Plants are said to be deficient in Zn when levels are below 15-20 ng g-1 d. wt. 

During Zn deficiency there is often an increase in membrane permeability that 

results in leakage of low molecular weight solutes (Marschner, 1995). 

Chlorosis is a typical visible clue of Zn deficiency in plants, often called “mottle 

leaf” or “bronzing”, where leaves turn a reddish-brown or bronze colour. 

Plants often become stunted, due to a reduction in internode lengthening 

which is termed “rosetting”. This is seen also in auxin deficient plants. Leaf 

size is reduced in a disorder termed, “little leaf”; leaf laminae curl inwards in a 
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disorder termed “goblet leaves” and epinasty is observed. In severe cases 

necrosis is seen in the root apex, and is known as “die back”. (Fig.1.2). 

 

 

Fig.1.1 Geographic distribution of Zn deficient soil of the world. Severe areas 

shown in red and moderate areas shown in green (For a definition of the 

values of severe or critical zinc soil levels see Table 1.1). There are more zinc 

deficient areas not shown on the map as they are areas that are not suitable 

for growing crops (for example due to climatic reasons). For example the 

majority of Australian soils are Zn deficient however the western, eastern and 

southern coasts provide conditions suitable to crop growth, the majority of the 

rest of the land is desert (reproduced from Alloway, 2003). 
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Soil Extractant Soil Levels mg Zn kg-1 dry soil 

likely to limit crop growth 

1N NH4-acetate, pH 4.8 0.6 

DTPA methods 0.8 

0.05N HCl 1.0 

EDTA methods 1.5 

0.1N HCl 2.0 

Table 1.1 Soil zinc levels classed as critical or severe. The levels differ 

depending on the extraction method that has been used. Refer to Fig.1.1 for 

soils that have been classed as severely zinc deficient (Alloway 2003). 
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Fig.1.2 Zinc deficiency in common bean. (a) Plants grown on Zn deficient 

nutrient solution (b) Plants grown on solution containing 150 ppm Zn (c) Bean 

plants showing stunted growth, reduction in leaf size and chlorosis 

(Hacisalihoglu and Kochian, 2003). 
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1.1.3 Zn toxicity  

The majority of plants find high tissue concentrations (>0.03% d. wt.) of Zn 

toxic. Some plant species exhibit toxicity symptoms when containing as little 

as 0.01% dry weight (d. wt.) or less. In nature and agriculture, Zn toxicity is a 

far less common occurrence than Zn deficiency. Zinc toxicity is mainly found 

in mining and smelting areas or on agricultural land contaminated with 

sewerage sludge. Toxicity may also occur in soils with a low pH enriched with 

anthropogenic inputs of Zn (Chaney, 1993; Marschner, 1995). Symptoms of 

Zn toxicity include chlorosis of leaves, inhibition of root elongation and often 

inhibition of photosynthesis (Marschner, 1995). High cytosolic Zn2+ 

concentrations interfere with cellular processes in most plants causing toxicity.  

Zn2+ concentrations are controlled through selective cation uptake, 

translocation to the shoot, and through compartmentalising Zn2+ within and 

between cells (Andrews, 2001; Gaither and Eide, 2001). Other symptoms of 

Zn toxicity include reduction in crop yields, stunted growth, reduction in 

chlorophyll synthesis and chloroplast degradation, which induces chlorosis 

and a disruption of potassium and magnesium uptake (Chaney, 1993).  

 

The symptoms of toxicity that are observed in plants may be due to 

interactions at the cellular and molecular level. One mechanism for toxicity 

may be through the inhibition of enzyme activity. Two methods of enzyme 

inhibition are the binding of metals to the sulphydryl group of proteins which 

may be either responsible for the catalytic action or structural integrity of the 

enzyme, or the metal may displace another essential element leading to 

symptoms of deficiency (Van Assche and Clijsters, 1990). Heavy metals are 
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known to inhibit chlorophyll biosynthesis through the binding to two key 

enzymes in this pathway, 5-aminolaevulinic acid (ALA) dehydratase and 

Protochlorophyllide reductase (Van Assche and Clijsters, 1990). 

 

Some heavy metals such as iron and copper, due to unpaired electrons, can 

be responsible for catalysing oxygen reduction. Hydroxyl radicals (.OH) 

produced can cause biological damage and also may result in cell death. If 

this occurs in proximity to DNA the addition or removal of hydrogen ions to the 

DNA bases or DNA backbone may result (Brait and Lebrun, 1999). This same 

reaction involving, in particular, iron and oxygen may be responsible for lipid 

peroxidation. Therefore biological membranes rich in polyunsaturated fatty 

acids would be disposed to damage (Brait and Lebrun, 1999). Metals are 

capable of binding to the cell nucleus which results in mutagenesis via base 

changes, crosslinking of DNA and proteins, base pair mismatches and breaks 

in the DNA strands. 

 

There are some plants however that can grow on heavy metal contaminated 

soils and not only survive but thrive there without showing any signs of 

toxicity. These plants are able to accumulate levels of zinc above 30 mg g-1 d. 

wt. (Hammond et al., 2005; McGrath et al., 2006). These plants also show the 

ability to actively seek out heavy metals in the soil and actively uptake them, 

accumulate them and traffic them to aerial parts (Clemens, 2001). The 

hyperaccumulation trait is an interesting one and has led to many people 

researching the plant to determine how this trait is controlled, why the plants 

actively uptake heavy metals and why the trait has evolved.  
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Studies which have previously looked at Thlaspi caerulescens and the 

hyperaccumulation trait have identified potential genes involved with the 

hyperaccumulation trait (Assunção et al., 2004; Papoyan and Kochian 2004; 

Pence et al., 2000)  

 

The whole picture is still not clear despite extensive studies, which is why this 

research was carried out. One further question of interest that will be 

answered is how these plants can be of benefit to humans. Firstly the plants 

themselves and the areas they are commonly found in will be looked at. 

 

1.1.4 Zinc tolerance vs zinc hyperaccumulation 

Studies have confirmed that zinc tolerance and zinc hyperaccumulation are 

genetically independent characters (Macnair et al., 1999). These authors 

describe how tolerance is a response to external Zn concentrations and is not 

affected by internal Zn levels within aerial plant parts. Tolerance involves the 

prevention of build up of toxic metals in sensitive areas within the cell (Hall, 

2002). In comparison hyperaccumulation of Zn involves the translocation of 

Zn to the aerial parts form the roots. This conclusion was drawn following an 

experiment that involved a cross between the hyperaccumulating plant, A. 

halleri and a closely related non-hyperaccumulating plant, A. petraea. The F2 

generation that was produced was subjected to a series of tolerance 

experiments and it was deduced that the F2 generation segregated for the two 

characteristics, tolerance and hyperaccumulation independently.  
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Plants have evolved ways to maintain the concentration of essential metals at 

a physiological level and to minimize any damage caused by non-essential 

metals through a series of mechanisms including; uptake, translocation and 

detoxification via chelators. A review of these tolerance mechanisms will be 

covered here. 

1.1.4.1 Sequestering ions in root vacuoles  

Current evidence suggests that the vacuole is the main storage site for metals 

in both yeast and plant cells. In yeast (Saccharomyces cerevisiae) Ni 

compartmentalization in the vacuole is achieved by pH gradient existing 

across the vacuolar membrane (Yang et al., 2005). Studies in plants and 

yeast have identified several transporters involved in the sequestration of ions 

to the root vacuole. Included in this is the ATP-dependent, ABC transporter 

which has been localized to the tonoplast and is associated with Cd tolerance 

and was first discovered in a yeast mutant through the complementation with 

the HMT1 gene (Clemens, 2000; Hall, 2002). Similarly a system involving the 

HMT1 gene has been found in oat root cells where it is thought to transport 

Cd-phytochelatin complexes (Salt and Rauser, 1995; reviewed in Hall and 

Williams, 2003). 

 

There is more evidence for the sequestration of Zn to the vacuole for example 

in meristematic cells of Festuca rubra where it was shown to have elevated 

vacuolation on application of external Zn. Likewise studies in barley showed 

that rapid vacuolar compartmentation was vital in managing the high levels of 

Zn (Brune et al., 1995, reviewed in Hall, 2002). Further to this it was found 
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that despite the importance of vacular compartmentation to Cd and Zn, Ni was 

found in the cytosol not the vacuole. 

 

Studies were carried out looking at the root tonoplast vesicles of two ecotypes 

of Silene vulgaris, one Zn tolerant, one Zn sensitive. When observed at 

elevated Zn levels, Zn transport into the vesicles was 2.5 fold higher in Zn 

tolerant ecotypes compared with Zn sensitive ecotypes. This suggests that 

the tonoplast plays an important role in Zn tolerance (Verkleij et al., 1998; 

reviewed in Hall 2002). A separate study (Chardonnens et al., 1999; reviewed 

in Hall, 2002) looked at a genetic cross and concluded that the tonoplastic 

uptake system correlated with Zn tolerance. In more recent studies an 

Arabisopsis gene (ZAT) which shows similarities to the animal ZnT gene (Zn 

transporter gene- localized to the plasma membrane, which was isolated from 

rats and proposed to transport Zn out of cells), has been isolated. This gene 

was found to be constitutively expressed in plants however its expression was 

not elevated in the presence of Zn (van der Zaal et al., 1999) However in 

transgenic plants where the gene was over expressed, Zn tolerance was 

elevated and accumulation was increased, therefore proposing that the Zn 

transporter is involved in Zn tolerance. 

 

A further two vacuolar-located genes, CAX1 and CAX2 have been isolated 

from Arabidopsis and have been proposed to be H+/Ca2+ exchangers (Hirschi 

et al., 1996). Again evidence has been found for a Cd and Ca H+ antiporter in 

oat root cells. No evidence has been found for a Ni/H+ antiporter or a 
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nucelotide-dependent Ni transporter which supports earlier evidence that Ni is 

stored elsewhere (Gries and Wagner, 1998; reviewed in Hall, 2002). 

1.1.4.2 Mycorrhizas, rhizosphere bacteria 

It is thought that the majority of plants have mycorrhiza when growing under 

natural conditions. They are beneficial in that they increase the surface area 

of the roots to increase the assimilation of nutrients (Khan et al., 2000). 

 

Mycorrhizal fungi including ectomycorrhizas have been known to alleviate the 

effects of heavy metal toxicity of plants including trees and shrubs. For 

example Marx and Artman (1979; reviewed in Jentschke and Godbold, 2000) 

showed that conifer seedling survival and growth on contaminated mine soil 

was greatly increased following inoculation of the roots with Pisolithus 

tinctorius. The mechanisms involved in this process are still unresolved and 

appear to be diverse and may be species and metal specific. For example 

Pinus sylvestris retained less Zn due to the ectomycorrhizal fungi Paxillus 

involutus containing higher levels of Zn. On the other hand the fungus 

Thelephora terrestris held less Zn and increased the Zn content of the host 

(Colpaert and Van Assche, 1992; reviewed in Hall, 2002). It is thought that the 

mechanisms undertaken by the fungi to be able to tolerate elevated heavy 

metal concentrations are similar to the cellular mechanisms exhibited by 

higher plants such as binding of the metals to extracellular materials or 

sequestration to the vacuole. It was noted that tolerance to Cu and Zn was 

achieved in Pisolithus tinctorius through the binding of Cu and Zn to 

extrahyphal slime, (Tam, 1995; reviewed in Hall, 2002). Comparatively 
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Paxillus involutus maintained Cd tolerance through the binding of Cd to the 

cell wall and compartmentalising the Cd in the vacuole (Blaudez et al., 2000; 

reviewed in Hall, 2002).  

 

The mycorrhizal fungi are able to assist in plant metal tolerance by restricting 

movement of heavy metals to plant host roots through the absorption of 

metals to the fungal hyphal sheath and absorption onto the external 

mycelium. Due to the hydrophobicity of the fungal sheath, access by the 

heavy metals to the apoplast is restricted (Jentschke and Godbould, 2000) 

Arbuscular mycorrhizas have been linked, less frequently, to metal tolerance. 

For example Weissenhorn et al., (1995; reviewed in Hall 2000) showed that 

arbuscular mycorrhizas were either responsible for reducing the heavy metal 

content of the plant or increased the metal uptake dependent on growth 

conditions. 

 

In addition to mycorrhizal fungi, plants have associations in the soil with 

rhizobacteria. Links have been made that suggest rhizobacteria increase the 

ability of a plant to survive in the presence of elevated heavy metals in the soil 

(Burd et al., 1998, 2000) It was found that Kluyvera ascorbata SUD 165, a 

metal-resistant bacteria, isolated from metal contaminated soils was able to 

affect germination and survival of plants grown in heavy metal containing 

soils. Plant seeds of rape (canola), Indian mustard and tomato were 

inoculated with the bacteria and grown on soil containing nickel, lead or zinc. 

The bacterium was able relieve symptoms of growth inhibition caused by the 

metals. Methods suggested to explain how these soil bacteriaa reduce the 
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effects of metal toxicity and promote plant growth include; nitrogen fixation, 

production of hormones such as auxin and cytokinin to enhance plant growth 

and the solubization of minerals such as phosphorus.  

1.1.4.3 Chelators  

Chelators are responsible for the buffering of metal concentration within cells 

due to the lack of solubility of metals. Experiments have shown these 

chelators and chaperones account for the lack of “free” metal within cells, for 

example in yeast it was found that less than one free Cu atom was found 

within each yeast cell (Rae et al., 1999; reviewed in Clemens, 2000). 

Chaperones are responsible for delivering metal ions to organelles and metal 

proteins. The main chelators involved in plant metal homeostasis are 

phytochelatins, metallothioneins, organic acids and amino acids.  

1.1.4.3.1 Phytochelatins 

Phytochelatins have been found in all plants that have been studied and in 

some fungi they have most frequently been related to cadmium (Cd). They 

are small metal binding peptides that are synthesized within minutes of 

exposure to metals or metalloids by the phytochelatin synthase enzyme 

Metals which have been associated with phytochelatin complexes include, 

Cd, Ag, Cu and As (reviewed in Clemens, 2000). Investigations using 

Arabidopsis mutants have isolated a CAD1 gene, the cad1 mutant that was 

studied was sensitive to Cd and deficient in phytochelatins. Recent cloning 

has determined that the CAD1 gene encodes a phytochelatin synthase gene. 

The gene has since been renamed AtPCS1 and has been expressed in E. coli 
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which subsequently produces phytochelatins on exposure to metals (reviewed 

in Clemens, 2000). 

 

Not all studies have agreed on phytochelatins’ role in metal detoxification and 

tolerance (Hall, 2002) for example De Knecht et al., (1992; 1994, reviewed in 

Hall, 2002) concluded that Cd tolerance in Silene vulgaris was not due to a 

differential production of phytochelatins. They therefore may have other roles 

such as in sulphur metabolisms or anti-oxidants (Hall, 2002). 

1.1.4.3.2 Metallothioneins 

Metallothioneins are low molecular weight, cystine rich proteins which bind 

metal ions, namely Zn, Cu and Cd. Reports have shown Cu can induce 

metallothioneins and they have been suggested to play a role in metal 

detoxification in animals and fungi. Their role in plants is yet to be recognized 

(Hall, 2002). 

 

Several studies have used A. thaliana genes (metallothioneins1- MT1 and 

MT2 expressed in S. cerevisiae to eliminate sensitivity to metals such as Cu. 

Also metallothioneins production has been induced in Arabidopsis on 

exposure to Cu but less so by Cd and Zn (Hall, 2002) 

 

As yet their actual role is yet to be deduced, this function may vary for 

different metals, other suggested roles are detoxification of metals, in 

particular Cu, cytosolic Zn buffering, metal scavenging during leaf 
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senescence, secretion of metals via leaf trichomes, as antioxidants and in 

plasma membrane repair (Clemens, 2000; Hall, 2002). 

1.1.3.4.3 Organic acids and amino acids 

Other suggested ligands involved in metal detoxification are carboxylic acids 

and amino acids including malate, citrate and histidine. Reported experiments 

in this field include the induction of histidine (36-fold) on exposure to Ni in a Ni 

hyperaccumulator Alyssum lesbiacum found in xylem sap (Kramer, 1996; 

reviewed in Hall, 2002). Also applying histidine to non-accumulator plants 

increased their tolerance to Ni and increased translocation to the shoot. 

Conversely an experiment with T. goesingense, a Ni hyperaccumulator 

showed no link between histidine and Ni tolerance within its tissues (Persans 

et al., 1999; reviewed in Hall, 2002). 

 

Citric acid is thought to form complexes with Cd, Ni and Zn ions in 

hyperaccumulating plant species where it may be involved in metal transport 

through the xylem and sequestration in the vacuole. In addition malate has 

been suggested as a cytosolic Zn chelator in Zn hyperaccumulating plant 

species (Mathys, 1977; reviewed in Clemens, 2000).  

 

1.2 Species that hyperaccumulate Zinc 

1.2.1 Elevated Zn soil concentrations and Zn-tolerant plant species 

It is thought that up to 25% of the world’s soils may deter plant growth either 

due to natural causes or through man’s interference (Macnair, 1993). Soil 

found around mine sites and near to corroded galvanised material such as 



Chapter 1: Introduction  

19 
 

electricity pylons have been of interest to those studying Zn tolerance. These 

soils have a Zn concentration that would normally be toxic to most plant 

species, but many plants have been found to flourish there (Ernst et al., 1992; 

Macnair, 1993). Plants possess a series of cellular mechanisms to detoxify Zn 

and thereby tolerate high tissue Zn concentrations.  

 

Tolerant plants possess mechanisms for compartmentalising Zn, avoiding its 

build up in sensitive areas where toxic effects could occur. Such mechanisms 

of avoiding Zn stress include extracellular compartmentalising into 

mycorrhizas, particularly in trees and shrubs (Hall, 2002; Hutterman et al., 

1999; Jentschke and Goldbold, 2000; Marschner, 1995). Older leaves may be 

used as a way of compartmentalizing Zn to avoid its toxic effects on younger 

and more vulnerable parts of the plant. Other mechanisms include reducing 

Zn fluxes from root to shoot, increased organic acid production, vacuolar 

compartmentalisation and Zn efflux across the plasma membrane (Broadley 

et al., 2007; Ernst et al., 1992; Hall, 2002). 

 

1.2.2 Hyperaccumulating plant species 

Although this thesis focuses on Zn and Zn hyperaccumulation, a broader 

account of the hyperaccumulation trait will be considered including other 

plants species and other metals. This is important to be considered here as 

accumulation pathways of different heavy metals may be linked within a 

species and have implications with evolution. 
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There are upward of 400 reported plant species from families such as the 

Asteraceace (including sunflowers and daisies), Brassicaceae (includes T. 

caerulescens and the cabbage family), Caryophyllaceae (includes 

carnations), Poaceae (includes grasses), Violaceae (including violets and 

pansies) and Fabaceae (including peas and beans) that are able to tolerate 

high levels of heavy metals in the soil and in their shoots. Of these families 

the Brassicaceae family is most highly studied, containing 87 classified 

hyperaccumulators. The term hyperaccumulator was first termed by Brooks et 

al., 1977 (reviewed in Milner and Kochian, 2008; Peer et al., 2003) to plants 

found to tolerate and accumulate heavy metals approximately 100 times 

higher than nonaccumulator species (accumulate greater than 1000 μg g-1 Ni, 

10 000 μg g-1 Zn or Mn, 1000 μg g-1 Co or Cu and 100 μg g-1 Cd when grown 

in native soils). Despite this plants have been identified as possessing this 

trait since 1885 (see 1.2.2.3) (Peer et al., 2003). Plant hyperaccumulators 

have been recorded hyperaccumulating Nickel (Ni), Zn, Cadmium (Cd), Lead 

(Pb), Copper (Cu), Arsenic (As), Cobalt (Co) and Manganese (Mn) (Baker & 

Brooks, 1989; Brooks, 1994; Ma et al., 2001). 

 

Within the Brassicaceae family two species have received the largest 

attention above all hyperaccumulator plant species; these are Thlaspi 

caerulescens and Arabidopsis halleri. These plant species have been studied 

mainly due to their ability to accumulate the metals zinc (Zn), Cadmium (Cd) 

and Nickel (Ni) with reported findings of levels exceeding 10,000 mg Zn kg-1 

d. wt., 100 mg Cd kg-1 d. wt. and 1000 mg Ni kg-1 d. wt. (Milner and Kochian, 

2008).  
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1.2.2.1 Ni Hyperaccumulation 

The majority of the 400 plant hyperaccumulators are Ni accumulators (317 

species) (Reviewed in Assunção et al., 2003; Reeves and Baker, 2000). Over 

half of all plant Ni hyperaccumulators belong to the family Brassicaceae the 

rest are found within 21 other families. Of these some of the most studied   

include Thlaspi caerulescens, Alyssum bertolonii, Alyssum lesbiacum and 

Thlaspi goesingense (Küpper et al., 2001). A Ni hyperaccumulator has been 

defined, by Reeves, (1992) as a “species for which at least one wild-collected 

specimen has been shown to contain at least 1000 μg Ni g-1 in aboveground 

tissues (on a dry mass basis)”. 

 

Plants typically require only small amounts of nickel to remain healthy (1.7 

nmol g-1 Ni or less d. wt.). Toxicity to Ni can be observed at levels between 

0.19 and 0.85 µ mol g-1 Ni d. wt. Symptoms of toxicity include inhibition of root 

elongation and interveinal chlorosis, possibly due to the Ni interrupting normal 

chlorophyll production (Kr�mer et al., 1997). The levels of Ni found in plant 

species known to hyperaccumulate Ni have been recorded to be higher than 

1000 parts per million (17 pmol g-1) in fresh weight and 650 pmol g-1 Ni in dry 

weight (Baker and Brooks, 1989; Reeves, 1992; reviewed in Krämer et al., 

1997) which compared to non-hyperaccumulating plants species is 

considerably higher (normal range 5 n mol g-1- 1.7 p mol g-1).  

 

These notably high levels of Ni within the plant possibly protect plants from 

insect herbivory or fungal and bacterial pathogens (Martens and Boyd, 2002). 

For the plants to have this large concentration of heavy metal within the plant 
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suggest some detoxification of the metal within the plant system. Low 

molecular weight chelators, such as citrine, have been suggested to play a 

role in metal detoxification (reviewed in Krämer et al., 1997).  

 

Studies of Ni hyperaccumulators, namely T. goesingense have revealed that 

hypertolerance of Ni is due to the storage of Ni2+ -organic acid complex within 

the vacuole. Besides vacuolar compartmentalization Ni is also accumulated 

outside of the vacuole (Krämer et al. 1997; Krämer et al. 2000; Küpper et al., 

2001; Persans et al., 2001). 

 

A more recent study that is relevant to this thesis, was the study of the 

hyperaccumulator of Zn and Ni, T. caerulescens (Vacchina et al., 2003). It 

was reported that a Ni 2+ complex with the metal chelate nicotianamine, which 

has been suggested plays an important role in detoxification of extravacuolar 

Ni in plant hyperaccumulators. Evidence to support this lies with the 

constitutive overproduction of nicotianamine and the corresponding enzyme 

nicotianamine synthase within T. caerulescens and A. halleri (reported by 

Vacchina et al., 2003; Becher et al., 2004; Weber et al., 2004). Krämer et al., 

(1996) report on another metal chelator, histidine, which possibly forms a 

complex with Ni to aid transport in the xylem. The observed links between 

species and between types of metal suggests that the exclusive study of 

uptake of one metal is not useful. 
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1.2.2.2 Cd Hyperaccumulation 

Cadmium (Cd) is not an essential or beneficial metal to plants however it can 

be found in plant roots and to a lesser extent in shoots. Cadmium is taken up 

by the roots before being transported to the leaves and seeds, although 

uptake is greater at low soil pH and varies between plant species (Assunçáo 

et al., 2003b). Elevated Cd levels (10-200 mg kg-1, sometimes even higher) 

are generally found in soils containing waste materials from the mining of ZnS 

and other Zn ores, but may also occur in soils treated with industrial wastes or 

Cd-rich phosphate fertilisers. Cadmium concentrations in plants are generally 

<3 mg kg-1 but may reach 20 mg kg-1 or more in plants growing on Cd-

enriched soils. Tissue concentrations >100 mg kg-1 may be regarded as 

exceptional, even on Cd contaminated sites. Sedum alfredii, a known Cd 

hyperaccumulator, has been recorded to accumulate between 3317 and 4512 

mg kg−1 d. wt. in the stem and leaf respectively when grown on 400 μM Cd 

nutrient solution without showing any sign of phytotoxicity (Ni and Wei, 2003). 

This species has the benefit over T. caerulescens because of its characteristic 

fast growth, large biomass, it reproduces asexually and can grow up to 40 cm 

in height. If the environmental conditions are suitable it can propagate 3–4 

times in a year (Yang et al., 2000). There are currently only four species of Cd 

hyperaccumulators, all of which also accumulate Zn, which possibly suggests 

a common genetic basis. Several studies have highlighted a correlation 

between Zn accumulation variation and Cd variation among populations of T. 

caerulescens (reviewed in Verbruggen et al., 2009). 

 



Chapter 1: Introduction  

24 
 

Cadmium is deemed to be a major environmental pollutant that 

bioaccumulates in the food chain, entering through plant uptake from the soil. 

Therefore it is important that the genes responsible for this trait are known in 

order to control this. 

1.2.2.3 Zn Hyperaccumulation 

Possibly the first recording of a heavy metal tolerant plant accumulating 

exceptional high levels of Zn in its aerial parts was in the late 19th Century, in 

the calmine flora or “galmei” (Thlaspi calmainare now Thlaspi caerulescens), 

found on the border of Germany and Belgium in the Aachen region 

(Forchhammer, 1855; reviewed in Reeves and Baker, 2000; Assunçáo et al., 

2003a). Soon after this, Thlaspi alpestre L. was reported as having a shoot Zn 

concentration of >1% d. wt. (Sachs 1865 reviewed in Reeves and Baker, 

2000). Following these discoveries, Zn hyperaccumulation was defined as the 

presence of >10,000 μg Zn g-1 d. wt. in a plant’s aerial parts when growing in 

its natural environment (Baker and Brooks, 1989; reviewed in Broadley et al., 

2007). At present there are twelve known Zn hyperaccumulators within the 

Brassicaceae family, 11 of which are within the genera Thlaspi and one 

belongs to the genus Arabidopsis (Arabidopsis halleri) (Pollard et al., 2002; 

Assuncăo et al., 2003). Table 1.2 gives a list of Zn hyperaccumulators that 

have been reported in the ecological literature as containing >0.3 % Zn as d. 

wt. They have been discussed as a potential means of transferring the 

characteristic to crop species for use in phytoremediation, phytomining and 

crop biofortification (Baker and Brooks, 1989; reviewed in Broadley et al., 
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2007; Chaney, 1993; Gueriot & Salt, 2001; Krämer, 2005; Macnair, 2003; Salt 

et al., 1998).  
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Table 1.2 Plant species whose [Zn]shoot has been observed to exceed 0.3% d. wt. (unless stated) where grown under natural conditions 

 

 

Speciesa 
Potential synonymsa Family (Order) Locality 

Maximum 

[Zn]shoot  

(% d.wt 

observed). References and Comments 

Acer pseudoplatanus L. – Sapindaceae 

(Sapindales) 

UK 0.35 Johnston & Proctor (1977) 

Arenaria patula Michx. Minuartia patula (Michx.) Mattf. Caryophyllaceae 

(Caryophyllales) 

USA 1.31 Brooks (1998). Uncertain 

record (Macnair, 2003; R. D. 

Reeves, pers. comm.) 

Arabidopsis arenosa (L.) Lawalrée Cardaminopsis arenosa (L.) Hayek Brassicaceae 

(Brassicales) 

France 0.52 Reeves et al., (2001) 

Arabidopsis halleri (L.) O'Kane & Al-

Shehbaz 

Arabis gemmifera Makino, Cardaminopsis 

halleri (L.) Hayek, C. ovirensis (Wulf.) O. 

Schwarz 

Brassicaceae France 2.07 R. D. Reeves, pers. comm. 

Arabidopsis thaliana (L.) Heynh. Arabis thaliana L., Sisymbrium thalianum 

(L.) J. Gay & Monnard, Stenophragma 

thalianum (L.) Čelak. 

Brassicaceae USA 2.67 Reeves (1988) 

Biscutella laevigata L. Biscutella alsatica Jord., B. austriaca 

Jord., B. longifolia Vill., B. lucida Balb. ex 

Brassicaceae France 0.41 R. D. Reeves, pers. comm. 
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DC., B. sempervirens L., B. varia Dumort., 

B. variegata Boiss. & Reut., B. vincentina 

(Samp.) Rothm. ex Guinea 

Cochlearia pyrenaica DC. Cochlearia officinalis L. subsp. pyrenaica 

(DC.) Rouy & Foucaud 

Brassicaceae UK 0.53 Reeves (1988) 

Dianthus sp. – Caryophyllaceae France 0.49 R. D. Reeves, pers. comm. 

Dichapetalum gelonioides (Roxb.) 

Engl. 

Chailletia gelonioides (Roxb.) J. D. Hook., 

Dichapetalum howii Merrill & Chun., 

Moacurra gelonioides Roxb. 

Dichapetalaceae 

(Malpighiales) 

Indonesia, 

Malaysia, 

Philippines 

3.00 Reeves & Baker (2000) 

Galium mollugo L. Galium album Mill., G. cinereum All., G. 

corrudifolium Vill., G. elatum Thuill., G. 

insubricum Gaudin, G. kerneranum 

Klokov, G. lucidum All., G. neglectum Le 

Gall ex Gren., G. tyrolense Willd. 

Rubiaceae 

(Gentianales) 

France 0.30 Reeves et al., (2001) 

Gomphrena canescens R. Br. – Amaranthaceae 

(Caryophyllales) 

Australia 0.90 Nicolls et al., (1965) 

Haumaniastrum katangense (S. Moore) 

Duvign. & Plancke. 

– Lamiaceae 

(Lamiales) 

D. R. of the 

Congo 

1.98 Brooks (1998). Uncertain record (Paton 

& Brooks, 1996; Macnair, 2003) 

Minuartia verna (L.) Hiern Alsine verna (L.) Wahlenb., Arenaria 

verna L., Minuartia caespitosa (Ehrh.) 

Degen 

Caryophyllaceae Yugoslavia 1.14 Various studies cited in Reeves & 

Baker (2000) 
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Noccaea boeotica F. K. Mey. – Brassicaceae Greece 0.31 R. D. Reeves, pers. comm. 

Noccaea eburneosa F. K. Mey. Noccaea salisii (Brugger) F. K. Mey, 

Thlaspi salisii Brugger 

Brassicaceae Switzerland 1.05 Reeves & Brooks (1983), taxonomic 

status uncertain (R. D. Reeves, pers. 

comm.) 

Polycarpaea synandra F. Muell. – Caryophyllaceae Australia 0.70 Reeves & Baker (2000) 

Rumex acetosa L. – Polygonaceae 

(Caryophyllales) 

UK 1.10 Johnston & Proctor (1977) 

Rumex acetosella L. Acetosella vulgaris Fourr., Rumex 

acetoselloides Balansa, R. angiocarpus 

Murb., R. fascilobus Klokov, R. multifidus 

L., R. pyrenaicus Pourr. ex Lapeyr., R. 

salicifolius auct., R. tenuifolius (Wallr.) Á. 

Löve  

Polygonaceae France 0.31 Reeves et al., (2001) 

Sedum alfredii Hance – Crassulaceae 

(Saxifragales) 

China 0.50 Yang et al., (2002) 

Silene vulgaris (Moench) Garcke Silene angustifolia Mill., S. campanulata 

Saut., S. cucubalus Wibel, S. inflata Sm., 

S. latifolia (Mill.) Britten & Rendle, non 

Poir., S. tenoreana Colla, S. venosa 

Asch., S. vulgaris (Moench) Garck 

Caryophyllaceae USA 0.47 Brooks (1998) 

Thlaspi apterum Velen. Noccaea aptera (Velen.) F. K. Mey. Brassicaceae Bulgaria 0.31 Reeves & Brooks (1983). Uncertain 



Chapter 1: Introduction  

29 
 

record (R. D. Reeves, pers. comm.) 

Thlaspi alpinum Crantz Noccaea alpestris (Jacq.) Kerguélen, N. 

sylvia (Gaudin) F. K. Mey., T. sylvium 

Gaudin 

 

Brassicaceae France 0.54 Reeves et al., (2001) 

Thlaspi brachypetalum Jord. Noccaea brachypetala (Jord.) F. K. Mey. Brassicaceae France 1.53 Reeves & Brooks (1983) 

Thlaspi brevistylum (DC.) Mutel. Noccaea brevistyla Steud. Brassicaceae Corsica 0.31 Taylor (2004) 

Thlaspi bulbosum Spruner ex Boiss. Raparia bulbosa (Boiss.) F. K. Mey. Brassicaceae Greece 1.05 Brooks (1998) 

Thlaspi caerulescens J. & C. Presl. Noccaea arenaria (J. E. Duby) F. K. Mey., 

N. caerulescens (J. & C. Presl) F. K. 

Mey., N. occitanica (Jord.) F. K. Mey., 

Thlaspi alpestre L., T. arenarium Jord., T. 

caerulescens subsp. caerulescens, T. 

caerulescens subsp. calaminare (Lej.) Lej. 

& Court, T. caerulescens subsp. 

occitanicum (Jord.) M. Laínz, T. 

caerulescens subsp. tatrense (Zapał.) 

Dvořáková, T. gaudinianum Jord., T. 

huteri A. Kern., T. mureti Gremli, T. 

occitanicum Jord., T. pratulorum Gand., T. 

rhaeticum Jord., T. salisii Brugger, T. 

suecicum Jord., T. sylvestre Jord., T. 

Brassicaceae W. and C. 

Europe 

4.37 Various studies (Reeves & Baker, 

2000). Also a Cd hyperaccumulator 
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tatrense Zapał., T. virgatum Gren. & 

Godr., T. villarsianum Jord., T. 

vogesiacum Jord., T. vulcanorum Lamotte 

Thlaspi cepaeifolium (Wulfen) W. D. J. 

Koch 

Noccaea cepaeifolia (Wulfen) Rchb., N. 

limosellifolia (Burnat) F. K. Mey., N. 

rotundifolia (L.) Moench, Thlaspi 

cepaeifolium subsp. rotundifolium (L.) 

Greuter & Burdet, T. limosellifolium Reut. 

ex Rouy & Fouc., T. rotundifolium (L.) 

Gaudin subsp. cepaeifolium (Wulfen) 

Rouy & Fouc. 

Brassicaceae Italy 2.10 Various studies (Reeves & Baker, 

2000) 

Thlaspi epirotum Hal. Noccaea epirota (Hal.) F. K. Mey. Brassicaceae Greece <0.30 Reeves & Brooks (1983) 

Thlaspi goesingense Hal. Noccaea goesingensis (Hal.) F. K. Mey., 

Thlaspi tymphaeum Hausskn., T. 

umbrosum Waisb. 

Brassicaceae Austria 0.38 Reeves & Baker (1984) 

Thlaspi graecum Jord. Noccaea graeca (Jord.) F. K. Mey., 

Thlaspi taygeteum Boiss. 

Brassicaceae Greece  <0.30 Reeves & Brooks (1983) 

Thlaspi kovatsii Heuff. Noccaea kovatsii (Heuffel) F. K. Mey., 

Thlaspi affine Schott & Kotschy, T. 

avalanum Panč., T. jankae Kern., T. 

trojagense Zapał. 

Brassicaceae Bulgaria 0.49 Reeves & Brooks (1983) 

Thlaspi magellanicum Pers. Noccaea magellanica (Pers.) J. Holub Brassicaceae Argentina 0.39 Reeves (1988) 
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Thlaspi montanum L. Noccaea alpestris (Jacq.) Kerguélen 

subsp. sylvium (Gaudin), N. montana (L.) 

F. K. Mey., Thlaspi lotharingum Jord. 

Brassicaceae USA 0.43 Hobbs & Streit (1986) 

Thlaspi ochroleucum Boiss. & Heldr. Noccaea lutescens (Velen.) F. K. Mey., N. 

ochroleuca (Boiss. & Heldr.) F. K. Mey., 

N. phrygia (Bornm.) F. K. Mey., N. 

rhodopensis F. K. Mey., N. versicolor 

(Stoj. & Kitanov) F. K. Mey., Thlaspi 

balcanicum Janka, T. heterochroum 

Boiss., T. lutescens Velen., T. phrygium 

Bornm. 

Brassicaceae Turkey 0.63 Reeves & Brooks (1983), Reeves 

(1988) 

Thlaspi parviflorum A. Nels. Noccaea parviflora (A. Nels.) Holub Brassicaceae USA 0.31 Reeves et al., (1983) 

Thlaspi pindicum Hausskn. Noccaea pindica (Hausskn.) J. Holub, N. 

tymphaea (Hausskn.) F. K. Mey., Thlaspi 

tymphaeum Hausskn. 

Brassicaceae Greece <0.10 Taylor & Macnair, 2006. Note, plants 

collected from serpentine soils with low 

[Zn]soil. [Zn]shoot >1.00% d. wt. observed 

under laboratory conditions. 

Thlaspi praecox Wulf. Noccaea praecox (Wulf.) F. K. Mey, 

Thlaspi affine Schott & Kotschy ex Bioss. 

Brassicaceae Bulgaria 2.10 Brooks (1998). Cd hyperaccumulator 

(Vogel-Mikušet al.,, 2005) 

Thlaspi stenopterum Boiss. & Reut. Noccaea stenoptera (Boiss. & Reut.) F. K. 

Mey. 

Brassicaceae Spain 1.60 Brooks (1998) 
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Thlaspi viridisepalum (Podp.) Greuter & 

Burdet 

Noccaea viridisepala (Podp.) F. K. Mey. Brassicaceae Bulgaria 0.63 Reeves & Brooks (1983) 

Viola calaminaria (Gingins) Lej. Viola tricolor L. Violaceae 

(Malpighiales) 

Germany 1.00 Brooks (1998). Note, uncertain record 

(Macnair, 2003; R. D. Reeves, pers. 

comm.) 

 

a Nomenclature and potential synonyms compiled from (i) original data sources, (ii) Flora Euopaea (digital online edition; http://rbg-

web2.rbge.org.uk/FE/fe.html), (iii) http://www.diversityoflife.org/, (iv) USDA, ARS, National Genetic Resources Program.Germplasm 

Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland, 

http://www.ars-grin.gov/cgi-bin/npgs/html/taxgenform.pl, (v) Muséum national d'Histoire naturelle [Ed]. 2003-2006 . Inventaire national 

du Patrimoine naturel, http://inpn.mnhn.fr., (vi) CWRIS PGR Forum Crop Wild Relative Information System, 

http://www.pgrforum.org/cwris/cwris.asp?fact=426656.  
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Thlaspi caerulescens J. & C. Presl is by far the most studied Zn hyperaccumulator to 

date (Milner and Kochian 2008). T. caerulescens is a short-lived, non-mycorrhizal 

perennial plant that can be found on calamine (containing high Zn, Pb and 

sometimes Cd concentrations), serpentine (containing high Co, Cr, Fe, Mg and Ni 

concentrations) and non-mineral soils. T. caerulescens is highly tolerant of Zn and 

can accumulate up to 30 mg Zng-1 shoot dry weight without showing toxicity 

symptoms when grown experimentally under hydroponic systems (Broadley et al., 

2007).  

 

1.2.3 Hyperaccumulators; environmental and sociological impacts  

Hyperaccumulator plant species make an interesting topic for study due to their 

potential involvement in phytoremediation of soils. Contaminated soils are 

increasingly becoming a health risk to humans and also large areas are deemed 

useless agronomically through excessive Zinc in this ever-increasing period of 

farmable land shortage. Hyperaccumulator plants or their genes may offer an 

economical and bio-friendly method for cleaning contaminated land when a better 

understanding of the plants physiological and molecular genetics has been gained 

(Assunção et al., 2003a; Krämer, 2005; Salt et al., 1998; Whiting et al., 2003). There 

are at least two strategies for phytoremediation of soils: phytostabilisation and 

phytoextraction. The former employs tolerant vegetation to cover contaminated land 

to stabilise the soil from erosion by wind and rain. Plants that would be employed 

must develop a good rooting system, give good soil cover and preferably contain 

contaminants within the rhizosphere. Phytoextraction is more favoured, but is also 

more technical. These plants have to concentrate the heavy metal in their aerial 

parts so they can be harvested, dried, or incinerated. The waste must be disposed of 
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safely or smelted down. The cultivated crop must be able to accumulate large 

amounts of Zn in comparison to the soil concentrations in order for it to be 

economically feasible. This is where transgenic approaches are favourable to 

transfer the trait to plants with a high biomass, such as trees. However the 

transformation of such species is less advanced due to time scales in their growth. 

(Krämer, 2005). Further analysis of genes responsible for Zn accumulation will 

enable genetic engineering of fast growing crop species for phytoremediation 

purposes. Phytoremediation technologies have been successfully used in the 

removal of arsenic from soils. Naturally selected ferns that hyperaccumulate arsenic 

have been employed and accumulate arsenic at very high levels in their upper 

tissues (Gonzaga et al., 2006; Kertulis-Tartar et al., 2006; Ma et al., 2001). 

 

More recently, hyperaccumulators have been highlighted as a potential source to 

increase the nutritional value of food for those people living on a predominately 

vegetarian diet, this is known as biofortification. The human diet requires at least 22 

elements to fulfil its metabolic role (White and Broadley, 2009). Anything below the 

required amount can lead to poor health and sickness, particularly in children where 

a balanced diet is essential for growth and development. It is recommended that 

male adults take in 15 mg Zn a day and adult females 12 mg (FAQ/WHO, 2000; 

reviewed in Welch and Graham, 2004). The preferred delivery of these 

micronutrients is directly from agricultural products. However, in developing nations 

agricultural systems cannot always support this. It is estimated that over 1.5 billion 

people world wide currently suffer from zinc deficiency. Indeed, deficiencies in Zn, Fe 

(Iron) and vitamin A account for almost two thirds of childhood deaths throughout the 
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world (Welch and Graham, 2004; White and Broadley, 2005; White and Broadley, 

2009). 

 

The development of micronutrient-enriched crop plants can be achieved in one of 

two ways, either by traditional plant breeding or through plant genetic manipulation. 

The latter technique, by far harbours the most powerful means of introducing 

micronutrients to edible plants and therefore could greatly benefit many susceptible 

people (Assunção et al., 2003a; Welch and Graham, 2004; White and Broadley, 

2005; White and Broadley, 2009). Examples of biofortified crops include “golden rice” 

(rice grains that are engineered to contain higher than average levels of β-carotene, 

a precursor to vitamin A) (Ye et al., 2000) and high ferritin-Fe rice grains (Lucca et 

al., 2001). By genetically altering crop plants with genes responsible for Zn uptake, 

plants may be created that accumulate higher levels of Zn, which may be used to 

“treat” people affected by Zn deficiency due to consuming a predominantly 

vegetative diet (Welch and Graham, 2004; White and Broadley, 2005; White and 

Broadley, 2009). 

 

1.3 The selective advantages of the hyperaccumulation trait 

The selective advantage of the plant heavy metal hyperaccumulator trait is yet 

unknown however it is thought that Zn hyperaccumulation has evolved probably only 

three times in angiosperms (Macnair, 2003; Broadley et al., 2007). Taxonomic 

studies of the genus Thlaspi L. have determined that it is likely that its background is 

polyphyletic (derived from more than one ancestral type), and through analysis of 

seed coat and sequence data has divided the genus into several genera including 

Thlaspi s.s., Vania and a clade containing Thlaspiceras, Noccaea, Raparia, 
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Microthlaspi and Neurotropis. The hyperaccumulation trait is most commonly a 

feature of Noccaea and Raparia (Taylor, 2004; reviewed in Broadley 2007). The 

Thlaspiceras genus does however contain hypertolerant species (e.g. Thlaspiceras 

oxyceras), the more distantly related genera Microthlaspi and Neurotropis contain 

only non-Zn hypertolerant species. This therefore suggests that the trait most likely 

evolved at the base of the Noccaea/Raparia clade or less likely at the base of the 

Noccaea/Raparia/Thlaspiceras clade which would involve a reversion to low [Zn]shoot 

trait in Thlaspiceras. It has been suggested that Zn hyperaccumulation may actually 

be a modification to the Ni hyperaccumulation trait as this has also been shown to 

have evolved at the base of the Noccaea/Raparia clade. As there are more Ni 

hyperaccumulators than Zn, this and the previously discussed occurrences suggest 

that Zn hyperaccumulation has evolved more recently at two evolutionary events 

within Brassicaceae and isolated events elsewhere amongst the angiosperms 

(possibly in Sedum L.) (Macnair, 2003; Taylor, 2004; reviewed in Broadley 2007). 

 

Five hypotheses have been summarized for the potential reasons behind the 

selective advantages of the trait (Boyd; 2007; Boyd and Martens, 1992) which 

include (1) a method of increasing metal tolerance, (2) metal based allelopathy, (3) 

drought resistance, (4) cation uptake which has been termed “inadvertent uptake” 

and (5) resistance to pathogens and herbivory. (reviewed in Pollard et al., 2002). 

 

It has been proposed that metal hyperaccumulation evolved as an adaptive trait 

allowing plants to develop on niche areas. The current opinion is that the trait 

evolved independently in different species and genera. The most plausible reason 

for evolution of the trait to date was suggested by Boyd and Martens, (1992) 
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(reviewed by Assunção et al., 2003a) who hypothesized that the trait evolved as a 

means to reduce damage caused by insect herbivory and parasitism. Many studies 

into this theory have been carried out and produced data that supports the 

hypothesis (Assunção et al., 2003a; Jiang et al, 2005; Pollard and Baker, 1997). 

 

There is more supporting evidence for the hypothesis that the selective advantage 

for this trait is that of defence against herbivory and pathogens, termed the “defence 

hypothesis” (Boyd 2007) maybe because more studies have been carried out in this 

area. Experiments have concentrated on the feeding habits of herbivores of various 

species on metal hyperaccumulators. The aims of the experiments have been to 

determine if heavy metal concentrations at toxic levels could provide a deterrent to 

pathogens and herbivores (Boyd and Martens, 1992; Pollard and Baker, 1997). It 

was found that herbivores such as locusts, slugs and caterpillars may have a 

preference for Thlaspi caerulescens leaves low in Zn. However for Arabidosis halleri 

snails showed no preference for leaves of varying Zn concentrations. Therefore the 

hypothesis of the evolution of hyperaccumulation as a deterrent against herbivory 

may well be different depending on the metal accumulator species (Huitson and 

Macnair, 2003; Pollard and Baker, 1997). Boyd (2007) reports on the 34 studies 

carried out over a period of 13 years and includes defence against herbivory and 

pathogens shown by hyperaccumulated As, Cd, Ni, Se and Zn. The plant taxa 

studied have been limited along with the natural enemies included in the studies. 

Half of these studies looked at Ni accumulation and used indicators such as survival 

and growth as measures of amount of insect herbivory. The effect of Zn on plants’ 

defence against insects was covered by 8 studies and of these three tests showed 

that levels of Zn above the threshold for hyperaccumulation (10,000 mg kg-1) 
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defended the test plant and three failed to defend the plant against folivores. Two of 

the three positive studies report that the plant tested was T. caerulescens and 

focused on leaf chewing/scraping insects. Studies involved in the accumulation and 

hyperaccumulation of Se showed defence effects in 12 out of 14 tests. Three tests 

confirmed Cd defence against herbivory and arsenic has only one reported study 

which confirmed it contributed to defence against herbivory. 

 

In order to understand the basis of the evolution of this trait it may be of interest to 

study variation within populations as it is at this level that natural selection may act to 

evolve the hyperaccumulation trait; if for example, plants that are able to accumulate 

higher levels of metal are more reproductively successful. However little research 

has been done in this area; focus has been given to sib families, families that share 

at least one parent. This can be achieved by collecting seeds from individual 

maternal plants and has been used to show significant differences between sib 

families of T. caerulescens on zinc concentrations in two independent studies 

suggesting genetic variation in ability to hyperaccumulate Zn (Meerts and Van 

Isacker, 1997; reviewed in Pollard et al., 2002; Pollard and Baker, 1996). Similarly 

variation has been observed for both Zn and Cd hyperaccumulation and Zn 

hyperaccumulation in A. halleri (Escarré et al., 2000; Macnair, 2002; reviewed in 

Pollard et al., 2002). Heavy metal accumulation in Thlaspi spp. has been associated 

with limestone and serpentine soils, which are generally found to be low in nutrients 

with the exception of calcium and magnesium in limestone and serpentine soils 

respectively. Therefore this has led to the hypothesis that hyperaccumulation has 

resulted more from “inadvertent uptake” on nutrient poor soil instead of a specific 

selection of the zinc (Macnair, 2003). 
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1.4 Mechanisms of hyperaccumulation 

The molecular mechanisms that are responsible for the traits involved in 

hyperaccumulation are largely unknown. However it is known that 

hyperaccumulators of Zn exhibit several adaptations that contribute to this trait. 

Thlaspi caerulescens has been noted to express three features of Zn homeostasis 

that have been linked to its ability to hyperaccumulate Zn, (i) an unusually high active 

mechanism of Zn uptake and translocation, (ii) the synthesis of organic acids that 

may help in detoxification and (iii) the compartmentalising of Zn to epidermal cell 

vacuoles and cell walls of shoot tissues (Broadley et al., 2007).  

 

1.4.1 Zincophilic root foraging 

Hyperaccumulators show zincophilic root foraging. When grown in a natural 

environment, hyperaccumulators show root proliferation in areas of higher zinc 

concentrations (Haines 2002; Whiting et al., 2000). Whiting et al., (2000) concluded 

that T. caerulescens did exhibit root responses to localised Zn enrichment i.e. a high 

root to shoot mass ratio and long root hairs. However it was not possible to confirm 

that the roots were foraging for Zn. T. caerulescens has been reported to exhibit 

such root foraging when grown in industrially contaminated, heterogeneous soils 

containing patches of high Zn and/or Cd concentrations (Schwartz et al., 1999). 

Similar studies carried out in other species have shown that active root foraging 

occurs for the nutrients phosphorus and nitrogen by way of increased root growth 

and root branching in high nutrient patches of soil (Hodge, 2004). Of particular 

interest has been the isolation of a gene (ANR1) thought to be responsible for 

increased lateral root proliferation in localised patches of nitrate (NO3
-) (Zhang and 

Forde, 1998). Not all accessions of T. caerulescens possess the root foraging trait 
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and the possession of this trait did not correlate with total Zn accumulation (Haines, 

2002). Indeed, the accession containing highest tissue Zn concentrations did not 

possess the Zn root foraging trait. Thus, it is clear that zincophilic root foraging is not 

a prerequisite for Zn hyperaccumulation. Further studies on metal tolerant plants 

have suggested that root foraging may be associated with tolerance rather than 

accumulation, since the most tolerant species possess the trait (Haines, 2002; 

Whiting et al., 2000). At present a clear explanation as to why the plants exhibit this 

mechanism is unavailable (Assunção et al., 2003a; Haines, 2002). 

 

1.4.2 Zn uptake, efflux and translocation 

Zinc enters the plant as the Zn2+ ion, entering the root cell wall free space by 

diffusion. The movement across the plasma membrane is via transport proteins, an 

active process. At present, there is evidence that members of least six families of 

transport proteins can transport Zn. These include ZIPs (Zrt (Zinc regulated protein) 

and Irt (Iron regulated protein) related proteins, CDFs (Cation Diffusion Facilitator 

proteins), P type ATPases (metal transporting ATPases), NRAMPs (natural 

resistance-associated macrophage proteins) and CAXs (calcium and other divalent 

cation exchange antiporters) (Colangelo and Guerinot, 2006). (Fig.1.3). 

 

Hyperaccumulators of Zn express a higher rate of uptake of Zn than closely related 

non-hyperaccumulator species, possibly due to a higher expression of Zn-

transporting genes in root and shoot cells. Lasat et al., (1996) compared Thlaspi 

arvense (a non-hyperaccumulator) with Thlaspi caerulescens (a hyperaccumulator) 

using a radiotracer flux technique to quantify the rate of Zn2+ influx into the root. They 

showed that Zn uptake followed a Michaelis-Menten relationship with increasing 
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external Zn concentrations in both species. It was shown that although the Km values 

(the external Zn concentrations at which Zn2+ uptake was half the maximum) for both 

species were similar the Vmax, (the maximum rate of Zn2+ uptake) was considerably 

higher in T. caerulescens than in T. arvense. This is consistent with a greater 

expression of genes encoding transport proteins facilitating Zn uptake in T. 

caerulescens compared to T. arvense (Lasat et al., 1996; 1998; 2000). 

 

ZIP proteins are known to be involved in Zn homeostasis through their function as 

cation transporters into the cytoplasm. They consist of eight transmembrane 

domains and a histidine rich variable loop between the transmembrane domains III 

and IV. To date over a 100 ZIP proteins have been characterised and functionally 

analysed in plants, animals, bacteria and yeast.  

 

Lasat et al., (2000) isolated a Zn transporter gene (ZNT1) from T. caerulescens, 

which showed homology to transporter genes in Arabidopsis thaliana (ZIP family). 

Functional complementation of the yeast zhy3 mutant, which is defective in Zn 

uptake, with the ZNT1 gene restored its capacity to take up Zn. Both ZNT1 and 

related genes were found to be expressed in non-hyperaccumulators (T. arvense) 

only during Zn deficiency, whereas they were constitutively expressed in T. 

caerulescens, the hyperaccumulator (Lasat et al., 2000). This feature allows the 

hyperaccumulator to prevent toxic build up of Zn accumulating in the roots enabling 

high Zn concentrations to be tolerated in the soil. 

 

There is strong evidence suggesting a correlation between the expression of genes 

encoding heavy metal transporters, such as TcZNT1, TcZNT2 and TcZTP1 and the 
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hyperaccumulation trait. Their expression has been found to be constitutively higher 

in both roots and shoots of T. caerulescens compared with T. arvense (Assuncăo et 

al., 2001; Pence et al., 2000). TcZNT1 and TcZNT2 share sequence and structural 

similarities with members of the ZIP transporter family, which are thought to be 

responsible for translocating essential metals within the cell and the detoxification of 

unwanted toxic metals (Pence et al., 2000).  

 

P-type ATPases translocate cations across biological membranes facilitated by the 

energy derived from ATP hydrolysis. In one subfamily, P1B-ATPases, the heavy 

metal transporters consist of eight transmembrane spanning domains, a CPx motif 

responsible for translocation and a putative metal-binding domain. In Arabidopsis the 

eight P-type ATPases have been designated HMA1-8. Studies in yeast, of HMA2 

and HMA4 have given evidence of enzymatic functions associated with Zn uptake 

and translocation. Expression of HMA4 within the heterologous systems of wild type 

and heavy metal sensitive yeast strains has indicated HMA4 transports Zn, Cd and 

Pb. Reverse genetics experiments in plants have yielded corresponding results 

(Williams et al., 2000). 

 

The CDF family of metal transporters consist of six transmembrane domains and 

function as proton antiporters that efflux heavy metals out of the cytoplasm. The first 

CDF protein to be described was discovered in A. thaliana, named ZAT1 or Zinc 

transporter gene, later renamed Metal Tolerance Protein 1 (MTP1). Overexpression 

and knockouts of this gene have confirmed its role in Zn tolerance. Also localisation 

studies of the MTP1 protein with GFP expression has shown its expression is 
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localised in the vacuolar membranes of root and leaf cells which suggests it may 

function in Zn sequestration in the vacuole (Dr�ger et al., 2004; Kobae et al., 2004). 

Long distance transport of Zn2+ ions occurs via the xylem stream. Concentration of 

Zn in the xylem sap has been shown to vary from 2 to nearly 100 μM. Zn transport 

through the phloem is not thought to occur at significant volumes (Hacisalihoglu and 

Kochian, 2003). 
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Fig.1.3 A summary of the genes involved in zinc uptake and transport in plants. Zinc 

must pass through many membranes in the root before reaching the xylem where it 

can be delivered to the growing tissues. In the root two P1B-ATPases, HMA2 and 

HMA4 are responsible for translocating zinc from root to aerial tissues. Zinc 

homeostasis is shown in the plant cell. ZIP transporters are known to assist entry 

into the cell. Nicotianamine and glutathione are low molecular weight ligands for zinc. 

Possibly Metallochaperones are also involved in zinc binding. HMA2 and HMA4 may 

also be involved to export zinc to the apoplast (not shown). Finally detoxification and 

compartmentalisation may occur by transporting zinc to the vacuole by MTP1. Here 

zinc may be chelated by organic acid anions or other unknown binding mechanisms.  
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1.4.3 Metal detoxification 

Detoxification methods are required by some plants to manage the high levels of 

heavy metals accumulated within the plant. Metals chelators, including organic acids, 

phytochelators and metallothioneins all play roles in detoxification. (Assuncăo et al., 

2003a). Zn Hyperaccumulators typically display high levels of several organic acids, 

usually citrate or malate. In T. caerulescens it has been shown that genes regulating 

malate and citrate levels in the leaves are constitutively expressed. However in the 

roots their expression increases upon exposure to heavy metals (Assuncăo et al., 

2003a; Salt et al., 1999). 

 

The amino acid, histidine, has been shown to play a role in Zn homeostasis. 

However it plays a greater role in Ni (nickel) hyperaccumulation. Zn-histidine 

complexes are found to be very stable within the cytoplasm and this suggests a 

similar role as with Ni hyperaccumulation.  

 

Phytochelators and their role in T. caerulescens have been studied in some detail in 

response to Cadmium (Cd) accumulation. Levels of phytochelators have been found 

to rise in response to increasing levels of Cd. Metallothioniens’ (MT) role in 

hyperaccumulator and metal tolerant species is as yet undecided however their 

transcript abundance in plant tissues is reportedly very high, close to 3% of all the 

transcribed genes studied. For example amongst 700 T. caerulescens ESTs around 

10 MT like genes were present. A suggested explanation for their presence has 

been a role in Cd homeostasis (Assuncăo et al., 2003a). 
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1.4.4 Zn compartmentalisation 

Finally it is known that hyperaccumulators show the ability to translocate Zn to 

specific shoot cell types for storage. Elemental distribution maps are able to show 

specifically the distribution of essential elements within the plant. Frey (2000) 

showed that Zn is primarily located within the epidermal cells of plants, where it can 

exist in an ionic form at concentrations exceeding 60 mg Zn g-1 d. wt. This 

compartmentalising of Zn prevents toxic levels accumulating in the cytoplasm, Zn is 

rarely found in the meosophyll or stomatal complexes of hyperaccumulator species. 

Fig.1.4 shows first the black and white image along side the false colour distribution 

map for Zn. The epidermal and subsidiary cell can be seen, clearly showing the high 

concentrations of Zn within the epidermal cell. 
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Fig.1.4 Elemental distribution maps. The first image is the black and white 

microscopic view showing epidermal (E) cell and subsidiary (S) cell. Along side is the 

elemental map for Zn. Other elemental maps can be seen below. The map shows Zn 

concentration is highest within the epidermal cell (white and red shows the highest 

concentration with blue being the lowest (Frey et al., 2000). 
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1.5 Strategies to determine the genes involved in hyperaccumulation 

Many techniques and approaches have been used to study hyperaccumulators to try 

to determine the genes responsible for the trait discussed. Here are some of the 

approaches to date, some of which will be employed in this thesis. 

 

1.5.1 Yeast Expression Libraries 

Initial identification of candidate genes involved in Zn hyperaccumulation came via 

the screening of cDNA expression libraries in yeast. Yeast is easily manipulated and 

studied due to its relatively small genome size. Having been widely studied, 

protocols for its transformation and gene cloning are available along with its widely 

available libraries and mutants making it an excellent tool to aid the identification of 

putative genes in other species. A yeast mutant defective in Zn uptake (zhy3) was 

used to carry out a functional complementation test to isolate a Zn transporter gene 

from T. caerulescens (Pence et al. 2000). A T. caerulescens cDNA library was 

constructed within a yeast expression vector which was used to transform the zhy3 

mutant. The transformed yeast strains that grew (20 initial colonies) on a Zn-limited 

medium highlighted cDNAs of interest. Of the 20 colonies 7 were found capable of 

restoration of growth on low Zn-medium. Sequence analysis of the cDNA clones 

showed that of the seven clones, five represented the same gene, which was 

subsequently, called ZNT1. Insertion of the ZNT1 gene into the zhy3 mutant restored 

the yeast’s ability to uptake Zn. Sequence analysis further confirmed that this gene 

showed homology with the IRT1 gene, a putative Fe transporter isolated from 

Arabidopsis thaliana (Zhao & Eide, 1996), ZRT1, a high affinity Zn transporter 

discovered in yeast (Zhao & Eide, 1996) and ZIP4, one of four Zn transporters 

isolated from Arabidopsis (Grotz et al., 1998; Lasat et al., 2000). 
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1.5.2 Mutants 

Due to the number of available centres stocking knockout mutant lines (for example, 

The National Arabidopsis stock centre (NASC) situated within The University of 

Nottingham) this method of studying gene function is widely used. Any putative 

genes may be investigated by studying the “knockout” mutant (a mutant with a 

particular gene switched off) within the gene of interest. This has been facilitated by 

whole genome sequencing of agronomically important crops and model plant 

species such as Arabidopsis thaliana, the first plant to have its genome sequenced 

(Bouche and Bouchez, 2001). Previously with molecular genetics, as with this study 

to some degree, genes were identified that controlled a biological function. More 

recently with the production of mutant libraries, in particular through T-DNA 

insertions, biological functions are being assigned to genes using reverse genomics 

or functional genomics as it is termed (Bouche and Bouchez, 2001).  

 

Mutants, whether naturally occurring or laboratory induced have been used to 

determine gene function on many previous occasions e.g. for determining flowering 

control in plants (Samach and Coupland, 2000). Laboratory induced mutants may be 

induced by physical means e.g. gamma rays or by chemical means e.g. ethyl 

methane sulphonate (EMS). 

 

Naturally occurring mutants can be identified by screening populations under stress 

conditions either at low or high zinc concentrations to pick out a mutant deficient in 

Zn uptake among a population of hyperaccumulators or a hyperaccumulator among 

a population of non-accumulators respectively (Cobbett, 2003). 
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1.5.3 QTL 

Forward genetics approaches have traditionally been the starting point to many 

genetic studies in plants in the past. The ability of the plant to self-pollinate and with 

a limited out-crossing rate allows the scientist to investigate the genetic variation of 

metal accumulation in two different populations of, for example, T. caerulescens. 

(Assuncăo et al., 2006; 2003b; Deniau et al., 2001; Pollard and Baker, 1996). QTL 

(Quantitative Trait Locus) mapping has been employed as a tool for gene discovery 

for over two decades. This method allows phenotypes to be linked to known loci. In 

terms of plant breeding this allows phenotypes for yield or quality to be mapped and 

advantageous alleles to be combined together. One successful use of this approach 

was used on the hyperaccumulator Arabidopsis halleri. A cross was carried out 

between A. halleri and its close relative A. petraea. This allowed the location and 

number of genomic regions associated with Zn hyperaccumulation to be determined. 

Twenty five markers were identified on all eight chromosomes following the cross of 

the two plants being grown on high (100 µM) and low (10 µM) Zn concentrations 

(Filatov et al., 2007). In more recent years other genetic tools have been developed 

to assist the work of QTL mapping so it is no longer used alone. Additional 

techniques include microarrays, genome sequencing and knockout lines (Borevitz 

and Chory, 2004; Macnair et al., 2003). 

 

1.5.4 Transcriptomics  

Whole-genome transcriptomic profiling is becoming a valuable tool in revealing the 

functions of genes. Microarrays allow the comparison of two whole transcriptomes 

either from different species or of the same species but subjected to different 

conditions. One reported example is the comparison of T. caerulescens with T. 
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arvense. This allows the identification of genes that are up regulated in the 

hyperaccumulator but that are not transcribed in the non-hyperaccumulator. In this 

case approximately 5000 genes were highlighted as differentially expressed in the 

hyperaccumulator compared with the non-hyperaccumulator. From this several of 

the putative heavy metal accumulator genes were analysed by quantitative real time 

PCR to confirm the initial findings (Hammond et al., 2006) (Chapter 3 of this thesis). 

 

Similarly other known hyperaccumulators were compared to closely related non-

hyperaccumulators in this way, namely, Becher et al., (2004) and Weber et al., 

(2004) who made comparisons between Arabidopsis halleri, a plant 

hyperaccumulator and Arabidopsis thaliana, a closely related non-hyperaccumulator. 

Filatov et al., (2006) compared A. halleri with its relative and non-hyperaccumulator, 

Arabidopsis petraea. A review of these studies can be found in chapter 3.1. 

 

1.5.5 Genetic manipulation approaches 

The development of genetic manipulation as a research tool and not just a means of 

improving an agronomically important tool, has benefited the progress of functional 

gene analysis. Putative genes can be studied in planta or in heterologous species 

either using knockout, overexpression or promoter fusion constructs (Assunção et 

al., 2003a).  

 

Antisense methods were originally the easiest and most commonly used method of 

silencing or knocking out genes using DNA or RNA of the complementary sequence 

to the gene you wish to silence. These two sequences subsequently annealed to 

each other effectively halting or reducing translation. Issues with this method include 
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incomplete efficiency and artefacts (Hammond et al., 2001). More recently the 

discovery of the RNAi technique has improved efficiency considerably. Originally 

used in the model worm, Caenorhabidtis elegans, the presence of a few molecules 

of dsRNA per cell initiates gene silencing. With C. elegans it is necessary only to 

soak the worms in dsRNA or to feed them E. coli cells that are expressing the 

dsRNA. This method of gene silencing differs in that its effect is post transcription 

(Hammond et al., 2001). 

 

Mutant lines produced through T-DNA, previously discussed, are produced by 

genetic manipulation. Random insertions of T-DNA of Agrobacterium tumefaciens 

are inserted to produce plant lines that have insertions that collectively almost cover 

the whole genome. PCR can then be used to clone genes using primers for the 

known insertion sequence (Bouché and Bouchez, 2001).  

 

Other methods of creating gene knockouts include specific gene knockouts for 

example using, antisense constructs or RNAi (RNA interference) constructs. This will 

be discussed in more detail in chapter 4 of this thesis as this method was employed 

to study the HMA4 gene.  

 

Of further interest in studying gene function is the use of promoter fusions. The most 

commonly used reporters are GUS (β-glucuronidase) and GFP (Green Fluorescent 

Protein, taken from the jelly fish Aequorea victoria). Constructs are designed to 

include the gene of interest’s promoter fused to the reporter gene and inserted into 

the plant. Whenever the gene of interest would normally be transcribed the reporter 

gene will also be transcribed. This allows studies to be made into what conditions 



Chapter 1: Introduction  

53 
 

stimulate the gene of interest. This has been successfully used in many higher plants 

including tobacco (Chiu et al., 1996). 

 

1.5.6 Localisation studies  

As shown in Fig.1.4, elemental distribution maps allow the localisation of the heavy 

metal to be determined. This allows investigation at the tissue or organelle level to 

determine gene expression. Such methods include the use of immunology, for 

example Kobae et al., (2004) created antibodies against the AtMTP1 and 

immunoblots of microsomal fractions were analysed to determine the localisation in 

different organelles and also its change in expression in response to altering levels 

of Zn concentration.  

 

1.6 Aims of this thesis 

The aim of this thesis was to determine the genetic control of zinc 

hyperaccumulation in Thlaspi caerulescens, the model heavy metal accumulator 

plant. Previous work had identified Thlaspi caerulescens as a potential model plant 

due to it genetic similarities to the model plant species, Arabidopsis thaliana, for 

which there are considerable resources available. The aim of the work was to 

highlight potential candidate genes that could be studied through transformation 

methods such as gene knockouts. Prior to the commencement of this project 

progress had been made with a microarray using Thlaspi caerulescens cDNA and an 

Arabidopsis thaliana chip, a novel approach made possible through the genetic 

homology between the two species. This study gave a basis to narrow down the 

search for a potential candidate gene. The long term aim was to transfer the heavy 



Chapter 1: Introduction  

54 
 

metal hyperaccumulating trait to agricultural important crop species for biofortification 

purposes or phytoremediation. 

 

The starting point for this thesis was to study the hyperaccumulator species, Thlaspi 

caerulescens, physiologically and compare it with its close relative, non-

hyperaccumulator, Thlaspi arvense. The physiological studies aimed to confirm 

previous reported work that the plant indeed could tolerate and accumulate 

excessive amounts of heavy metals, in this case the focus being zinc. All 

documented reports of hyperaccumulation in Thlaspi caerulescens had previously 

been carried out hydroponically or in soil. This thesis differs as it studied Thlaspi 

caerulescens grown in vitro. The physiological studies would evaluate the amounts 

of zinc that were taken up by the plants and also how this affected growth. This was 

achieved using radio labelled zinc, again a novel method. 

 

The microarray experiment, carried out prior to the commencement of this project, 

highlighted many genes that were differentially expressed, either upregulated or 

downregulated in the presence of zinc.  In this study a short-list of genes, of potential 

interest as candidate genes responsible for hyperaccumulation, was created. These 

genes were picked as previous work had been carried out looking at their role in zinc 

uptake in yeast and Arabidopsis. A qPCR experiment was then used to determine if 

in fact the microarray was correct at identifying that these genes were up regulated 

in the presence of zinc. Therefore following the microarray and the qPCR the gene 

HMA4 (Heavy metal accumulating gene 4), part of a family of heavy metal 

transporting gene was identified a potential candidate gene to be studied further. 
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Having identified potential genes that were differentially expressed in the microarray 

experiment, narrowing down the genes to be further confirmed by the qPCR and 

finally highlighting a candidate gene, HMA4, the next step was to analyse its function 

in planta. This was to be done by transformation of Thlaspi caerulescens using a 

knockout construct. There is no efficient protocol available for transformation of 

Thlaspi species. Therefore part of this study focussed on developing a 

transformation protocol. Both tissue culture and floral dip methods were explored. 

 

Ultimately, transformation of Thlaspi caerulescens was not possible however a 

HMA4 RNAi construct was produced to analyse the effects of knocking out the 

HMA4 gene, through transgenic approaches on the hyperaccumulation trait.  

 

The following figure gives an outline plan of the thesis detailing how each part links 

in. 
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2. Comparing the accumulation and tolerance of 

zinc in T. caerulescens and T. arvense 

 

The aim of this chapter was to compare the responses to increasing external Zn 

concentrations of the model hyperaccumulating plant, Thlaspi caerulescens and its 

close relative T. arvense which does not possess the hyperaccumulation trait. Basic 

physiological tests were carried out to determine the levels of zinc (Zn) the plants 

can accumulate and to determine the plants’ level of tolerance to increasing Zn 

concentrations. These experiments are background investigations to confirm 

hyperaccumulation status in T. caerulescens. 

 

2.1 Introduction 

Thlaspi caerulescens is a well studied model for heavy metal hyperaccumulation. In 

this particular study Thlaspi caerulescens accession Ganges (France) (Fig.2.1), was 

chosen as the hyperaccumulator with comparisons being made with the non-

hyperaccumulator Thlaspi arvense accession Wellesbourne (Warwick, UK) (Fig.2.2). 

There has been much interest in studying hyperaccumulating plant species for a 

varying number of reasons. As population size increases so does the demand for 

food however the land available for farming has not changed. In order to keep up 

with demand changes must be made either to farmable land or to the tolerance of 

plants to abiotic stresses such as metal or salt tolerance. Secondly the interest in this 

area stems from their possible use as phytoremediators of contaminated land. 

Figures collected in 1998 stated that 1,400,000 sites in Western Europe were 

contaminated with heavy metals including Zn, Cd, Pb and Cu, 50,000-100,000 of 
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these sites are located in the UK alone. This has potential health hazards as it may 

easily contaminate water courses and find its way into food chains (Collins, 1999; 

Mulligan et al., 2001). Hyperaccumulators have the potential to clean up soils 

through absorption, accumulation and detoxification. Current remediation 

technologies, which are not suitable on the large scale, render soil biologically 

inactive (McGrath et al., 2001). Lastly the hyperaccumulators have increased 

peoples’ interest in them as potential means of biofortification. Presently the half the 

world’s population is suffering from lack of micronutrients in their diet, according to 

UN data (Broadley et al., 2007). 

 

2.1.1 Plant Hyperaccumulators 

It has been well documented that many plant species possess the ability to 

accumulate and tolerate high levels of heavy metals with no signs of toxicity. To date 

there has been noted over 400 taxa holding this trait. These plants have been found 

all over the world but notably have been found on metalliferous soils (Reeves and 

Baker, 2000). The uptake and hyperaccumulation of these metals is an active trait 

that has evolved possibly as a defence mechanism against predators and disease. 

Alongside the ability to accumulate and tolerate these usually deadly levels of heavy 

metals the plants also possess the ability to scavenge and seek out the metals 

(Haines, 2002). 

 

Studies in the 1970s on plants that accumulated Ni first led to the term 

hyperaccumulators and referred to plants that contained nickel at levels above 1000 

μg g-1 dry weight (Brooks et al., 1977). Later studies defined the thresholds for other 

levels of heavy metals such as 100 μg g-1 dry weight of cadmium, 100 μg g-1 dry 
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weights for copper, cobalt and lead and 10,000 μg g-1 dry weight for zinc and 

manganese (Baker and Brooks, 1989). 

 

The majority of the 400 plus hyperaccumulator species are nickel 

hyperaccumulators, found within 45 different families, the highest occurrence being 

within the Brassicaceae family (Reeves and Baker, 2000). Zinc hyperaccumulators 

make up the second largest group (described in Baker et al., 1992; Bert et al., 2002; 

Brooks, 1994; Meerts and Van Isacker 1997; Schat et al., 2000). 

 

The first reported evidence of Zn hyperaccumulation was in Viola calaminaria (Ging.) 

Lej in the Aachen region on the border of Belgium and Germany when >1 % Zn was 

reported in the ash of the plants aerial parts in 1855. Shortly after this in 1865 >1 % 

[Zn]shoot d. wt. was reported in Thlaspi caerulescens (previously Thlaspi alpestre L.) 

(Reeves and Baker, 2000). Reports more recently have described levels up to 3 % d. 

wt. in the plant’s aerial parts (Kochian, 2002). 

 

2.2. Materials and methods  

2.2.1 Plant Materials, culture media and culture conditions 

Seeds of T. caerulescens cv. Ganges (France) were surface sterilized with 70 % 

(v/v) ethanol for 10 min followed by a wash in reverse osmosis purified water. The 

seeds were then immersed in 50 % (v/v) “Domestos™” bleach solution (NaOCl 

Sodium hypochlorite 1 % active chlorine) (Diversey Levre, Northampton, UK) for 20 

min with a final 6 washes in reverse osmosis purified water. This procedure was 

carried out in a Bassaire class II cabinet (Bassaire LTD, Southhampton, UK) to 
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ensure sterile working conditions. The seeds were refrigerated at 5 ºC for 6 days to 

induce germination. 

 

The culture medium used to germinate the seeds was composed of MS basal salts 

(Murashige and Skoog, 1962) 4.3 g L-1 inorganic salts (Appendix 8.1), 10 g L-1 

sucrose and 8 g L-1 agar adjusted to a pH of 5.6 with 0.1 M NaOH. Zinc sulphate was 

used to produce agar at the following zinc concentrations 3, 30, 150, 300, 600, 1200, 

1800 μM. The medium was autoclaved at 121 ºC at 104 kPa for 20 min. After 

autoclaving the agar was spiked with activity concentration of 2.1 KBq 
65

Zn μmol Zn 

to trace the amount of Zn uptake.  

 

As the MS basal salts contained zinc the zinc concentrations had to be made up to 

take this into account. The 1/10 basal salt mixture used contained 3 μM of zinc. The 

table 2.1 summarises how the agar was prepared to the final zinc concentrations 

needed. 
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Zn Concentration 

Required (μM) 

Amount of 1 M ZnSO4 

needed in 1 L agar (μl) 

3 0 

30 27 

60 57 

150 147 

300 297 

600 597 

1200 1197 

1800 1797 

Table 2.1 The concentration on ZnSO4 required to make agar to test the 

accumulation and tolerance of the two Thlaspi species. 

 

Plants were sown into sterile polycarbonate boxes (10x11x9.5 cm) with 75 ml of the 

appropriate agar. The boxes were marked to show T. arvense seeds on one side 

and T. caerulescens on the other side. Six of each species were sown per box; the 

boxes were sealed with Nescofilm™ (Bando Chemical Co., Kombe, Japan) to 

eliminate fungal and bacterial contamination. Three replicates of each concentration 

were prepared for comparison. The plants were cultured in vitro at 24 + 1 ºC in a 16 

h photoperiod at a light intensity of 50-80 μmol m-2 s –1 under 58 W of white 

halophosphate fluorescent tube lighting (Crompton Lighting, Germany) and 8 h 

darkness. 
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2.2.2 Plant harvesting 

Four randomly selected plants, per species per box were harvested at 18 days post 

sowing by excising the shoots from the agar, separating from the roots, and placing 

in separate pre weighed 5 ml tubes. Root and shoot fresh weight (f.wt.) was 

recorded. Samples were dried in an 80 ºC oven for three days and reweighed to give 

root and shoot dry weight (d. wt.). The samples were then measured in a gamma 

counter (Wallac 1480 Wizard 3” Automatic Gamma Counter, Perkin Elmer Life 

sciences, Turku, Finland) to determine the amount of radioactivity in the sample and 

therefore calculate the total amount of Zn uptake by the plant. 

 

2.2.3 Determining the concentration of Zn using radiolabeled 65Zn  

Tissue Zn concentration was determined using radiolabeled 65Zn. The 
65

Zn γ-

emissions were counted for 600 seconds per sample using an automated well-type 

gamma counter (Wallac 1480 Wizard, Perkin-Elmer Life Sciences, Turku, Finland) 

designed for counting high-energy samples (up to 2000 keV). The detector consists 

of a thallium (Tl) activated NaI crystal of the end well design. The NaI crystal has 

dimensions 80 mm in height and diameter of 75 mm. The principal mechanism of 

gamma-ray detection in the crystal is through a photoelectric effect, where 

photoelectrons of varying energies are emitted from the atomic electron shells of the 

NaI following absorption of gamma-rays (photons). The photoelectrons are amplified, 

and converted subsequently to a digital output via an electrical pulse. The gamma 

counter was normalized to adjust the parameters for detection of 
65

Zn according to 

the manufacturer’s guidelines. After normalization, the background activity of 
65

Zn 

was determined when an empty tube was placed in the detection well. This 
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background reading was carried out before measurement of plant samples each time 

the counter was used. The background 
65

Zn activity ranged from 6.2 to 16.2 counts 

per minute (cpm) with a mean value of 9 cpm. These background values were 

subsequently subtracted automatically from the counts per minute measured from 

the plant samples. 

 

Each agar sample prepared contained an activity concentration of 2.1 kBq 
65

Zn μmol 

Zn. For each experiment agar samples where taken to be analysed at the same time 

as analysing harvested plants. The 
65

Zn γ-emissions were counted for 600 seconds 

per agar sample using an automated well-type gamma counter (Wallac 1480 Wizard, 

Perkin-Elmer Life Sciences, Turku, Finland), at the same time as the plant tissue 

samples were analysed- giving a reading in counts per minute (cpm). Since a known 

concentration of stable Zn was added to the agar sample (e.g. 3 µM = 3 µmoles per 

litre, or 3/1000 µmoles per mL), the cpm of 
65

Zn can be related to the number of 

moles of Zn. By knowing the weight of plant, and the cpm, it is possible to calculate 

the number of moles of Zn per gram of plant material. It is possible to directly relate 

cpm to moles as there is no discrimination between stable zinc and radioactive zinc 

during plant uptake (S. Donnelly pers.com.).  
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Worked example of sample of 3 µM agar-emiting 60cpm 

3 µM = 3 µmoles in 1L  

In one ml agar sample= 3/1000 µmoles in 1L 

=0.003 µmoles Zn 

1 mole Zn = 65.39 g Zn 

1 µmole Zn = 65.39 µg Zn 

0.003 µmoles Zn = 0.19617 µg Zn 

Therefore 0.19617 µg Zn gives 60 cpm 

Therefore 1cpm =0.003265 µg Zn 

 

2.2.4 Statistical analysis  

The statistical program Genstat (VSN International, Hemel Hempstead, UK) was 

used to analyse the data collected from root and shoot fresh and dry weight and the 

quantity of zinc accumulated in the sample. Analysis of Variance (ANOVA) was used 

to test for significance between zinc concentrations and between species.  
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Fig.2.1 Thlaspi caerulescens Ganges the model hyperaccumulator 

 



Chapter 2: Accumulation and tolerance experiments 

66 
 

 

 

Fig.2.2 Thlaspi arvense Wellesbourne the non-hyperaccumulating relative of T. 

caerulescens used for comparison.  

 

2.3 Results 

The aim of this chapter was to evaluate the differences between Thlaspi 

caerulescens and T. arvense in terms of Zn accumulation and tolerance. The two 

plant species were grown on agar supplemented with increasing concentrations of 

Zn, which was radiolabelled with 65Zn. The differences in growth were assessed by 

measuring the root and shoot fresh and dry weights and the accumulation of Zn 

quantified by assessing the uptake of 65Zn measured using an automatic gamma 

counter. 
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2.3.1 Plant growth of Thlaspi caerulescens and Thlaspi arvense 

T. caerulescens and T. avense were grown at a range of external Zn concentrations. 

Fresh weight and shoot zinc concentrations were recorded; Thlaspi caerulescens 

showed positive growth at all Zn concentrations with the exception of the highest 

(1800 µM), which is almost 34 times greater than the amount of Zn provided by the 

basal salts used to make the agar; that is 34 times greater than a plant requires for 

normal growth. The growth of T. caerulescens increased up until 300 µM then above 

this level the growth decreased. However some growth is maintained even at the 

highest Zn concentrations. When making comparisons with T. arvense it can be 

seen that root and shoot fresh weights were greatest in the 3 and 30 µM Zn 

concentrations. Growth above these levels decreased sharply and at levels above 

600 µM no growth was observed (Fig.2.3). 

 

In all replications T. arvense plants were visibly larger in terms of height and leaf size 

than T. caerulescens in the 3 and 30 µM treatments due to T. arvense having a 

faster growth rate. At levels above 150 µM in T. arvense the shoot and root size was 

greatly reduced, making harvesting and measurement more difficult. Plants 

remained in the cotyledon stage and were visibly chlorotic.  

 

At levels of 600 µM only 12 plants of T. arvense successfully germinated; above this 

level no seeds germinated. Comparatively T. caerulescens were able to grow to the 

very highest concentrations despite being notably smaller.  

 

Statistical evaluation of the data showed a significant difference in growth for both 

species at increasing Zn concentrations (P<0.001) T. arvense shoot and root 
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amounts were higher than T. caerulescens for 3, 30 and 60 µM concentrations. T. 

arvense root fresh weight reached the highest quantity at 30 µM (0.0477 g) and 

shoot fresh weight at 3 µM (0.1701 g). Comparatively T. caerulescens root and shoot 

fresh weights were greatest at 300 µM [Zn] (0.0211 g and 0.0658 g respectively). 

Shoot and root fresh weight for T. caerulescens was lowest at the highest 

concentration of 1800 µM (0.0064 g and 0.0141 g respectively.)  

 

There was a significant difference between Zn concentrations in the root fresh weight 

(P=0.005) but not between the two Thlaspi species (P=0.059) (Fig.2.3 a). There was 

however a significant difference between species and between Zn concentrations for 

shoot fresh weights (Fig.2.3b). 
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Fig.2.3 Effect of increasing Zn concentrations on the mean fresh weight of a) shoots 

and b) roots of Thlaspi caerulescens and Thlaspi arvense. Those not germinating 

were plotted as 0 g. The error bars represent two times the standard error of the 

mean. 
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The data for shoot and root dry weights were similar to the fresh weights for the 

increasing range of Zn concentrations (Fig.2.4 a and b). Root dry weight was 

greatest for T. arvense in the 30 µM Zn concentration (0.0031 g), and the greatest 

shoot weight was in the 3 µM concentration of Zn (0.0149 g). Again, T. caerulescens 

shoot and root dry weights were highest at 300 µM concentration of zinc (0.0021 g 

and 0.0081 g respectively). Root and shoot dry weights were greater in T. arvense 

than T. caerulescens for 3 and 30 µM treatments, shoot dry weight was also found to 

be greater then T. caerulescens at 60 µM Zn concentrations. At levels above this it 

was found that T. caerulescens greatly exceeded the dry weights of T. arvense. 

Similarly to the fresh weight data there was a significant difference between Zn 

concentrations between species with regards to shoot and root dry weights 

(P<0.001) and a significant difference between species in terms of shoot and root dry 

weights (P=0.001). In contrast to the data described for shoot and root fresh weight, 

there was a significant difference between root dry weights between species 

(P=0.010), however there was no significant difference between shoot dry weight 

between species (P=0.116) (Fig.2.4). 
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Fig.2.4 Effect of increasing Zn concentrations on the mean dry weights of a) shoots 

and b) roots of Thlaspi caerulescens and Thlaspi arvense. Those not germinating 

were plotted as 0 g.  The error bars represent two times the standard error of the 

mean. 
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2.3.2 Zinc accumulation in Thlaspi caerulescens and Thlaspi arvense 

The levels of Zn accumulation in the plant were measured by the presence of 65Zn 

by a gamma counter. Root and shoot accumulation data was recorded for both 

Thlaspi caerulescens and T. arvense. This data was collected from the dry mass of 

the plants.  

 

There was a significant difference (P<0.001) in zinc accumulation concentrations 

(µmol Zn g-1 dry weight) between the two species in the roots. Thlaspi caerulescens 

accumulated higher concentrations of Zn at all Zn external treatments with the 

exception of 30 and 60 µM concentrations. Accumulated levels of Zn were higher in 

T. arvense in the roots at concentrations between 60 and 600 µM external Zn 

concentrations, above and below which T. caerulescens accumulated Zn to a higher 

degree. Overall however the difference in Zn accumulation in the shoots between the 

two species was not significantly different (P=0.095). The maximum accumulated 

concentrations of Zn in the roots and shoots of T. caerulescens were 1061.4 µmol g-1 

at concentration 1200 µM and 331.3 µmol g-1 at substrate concentration 1800 µM, 

respectively. The root concentration of Zn was approximately three times greater 

than was found in the shoots of T. caerulescens. The maximum Zn concentration 

reached by the shoots of T. arvense was 206 µmol g-1 at a substrate concentration of 

300 µM. The corresponding value for roots was 62 µmol g-1 which was attained at 

150 µM. The lowest Zn concentrations for both species was found at treatment 3 µM.  

The Thlaspi caerulescens shoot concentrations increased gradually as the Zn 

external concentration increased. This allowed a greater accumulation to be 

achieved in comparison to T. arvense. The Zn concentrations in the shoots of T. 
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arvense increased at a greater rate than in T caerulescens until external Zn 

concentration reached 300 µM after this point accumulating levels dropped. There 

was however no data after 600 µM due to the seeds not being able to germinate at 

high Zn concentrations. In contrast the roots of T. caerulescens accumulated Zn at a 

similar level to in the shoots however between external Zn concentrations of 1200 

µM and 1800 µM the accumulation levels appear to begin to decline. As for T. 

arvense the accumulation of Zn in the roots remained low at all external Zn 

concentrations. (Fig.2.5).  

 

There was a significant difference between the accumulated Zn levels at increasing 

external Zn concentrations (P=0.015; Fig.2.5b). Accumulated Zn concentrations in 

the shoots was significantly different at increasing external Zn concentrations in both 

species (P=0.03; Fig.2.5a).  
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Fig.2.5 Effect of increasing [Zn] in the agar on the Zn content (µmol g-1 dry weight) of 

a) shoots and b) roots of Thlaspi caerulescens and T. arvense. Those not 

germinating were plotted as 0 g. The error bars represent two times the standard 

error of the mean. 

 

Data expressed in terms of µg g-1 dry weight showed a similar pattern as data 

expressed in terms of µmol g-1 dry weight, this is as expected because molarity is a 

function of the mass of Zn per unit tissue volume (Fig.2.6). Therefore the highest and 
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lowest Zn concentrations in the shoots and roots of both plant species occurred at 

the same external Zn concentrations. 

 

The highest Zn concentration in the roots of T. arvense was 4060 µg g-1; the 

corresponding value for the shoot was 13,474 µg g-1. These values were surpassed 

by T. caerulescens, in which the highest concentrations in the roots and shoots were 

respectively 67,713 and 21,671 µg g-1. The maximum values for both species are 

much higher than the typical values of 3-300 µg g-1 reported by Marschner (1995). T. 

caerulescens accumulated 226 times of the maximum value cited by Marschner in its 

roots, whilst T. arvense achieved a maximum concentration in its shoots almost 44 

times greater than this value. However, although T. arvense was capable of attaining 

concentrations much higher than in many plant species, this only occurred up to a 

point as germination was inhibited at substrate zinc concentrations exceeding 600 

µM; by contrast, T. caerulescens continued to germinate even at a substrate 

concentration of 1800 µM Zn and accumulated extremely high concentrations of 

zinc.  

 

Zinc concentrations in the roots differed significantly between species (P<0.001; Fig. 

2.7b) and substrate Zn concentrations (P=0.015). A significant species*substrate Zn 

concentration interaction was detected (P<0.001). Zinc concentration in the shoot 

also varied significantly depending on substrate zinc concentration (P=0.003; Fig. 

2.7a), but did not differ significantly between species (P=0.095).  
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Fig.2.6 Effect of increasing [Zn] in the agar on the Zn content (µg g-1 dry weight) of 

a) shoots and b) roots of Thlaspi caerulescens (Ganges) and T. arvense.  Those not 

germinating were plotted as 0 g. The error bars represent two times the standard 

error of the mean. 

2.4 Summary  

The work carried out in this chapter aimed to compare the growth of two plant 

species on different zinc agarconcentrations, one a known metal hyperaccumulator, 
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Thlaspi caerulescens Ganges and the second a non-hyperaccumulator, Thlaspi 

arvense Wellesborne. The study intended to quantify the amount of zinc taken up by 

the plants. Other similar studies have been carried out on the plants, T. arvense and 

T. caerulescens and these experiments were carried out to compare actual findings 

with published data (Brown et al., 1995; Reeves and Baker, 2002). Secondly it was 

of interest to see if the presence of high zinc concentrations actually stimulated 

growth of the hyperaccumulator and whether this could be linked to growth of such 

plants on contaminated soils. 

 

The method used to determine Zn concentration employed the use of radiolabelled 

tracers. The use of radioactive 65Zn as a tracer has been used in Thlaspi 

caerulescens previously which made employing this method to the project feasible. 

Lasat et al., (1996, 2000) used 65Zn to measure Zn transport into the shoot and 

translocation into the shoot. Similar studies have since employed this method, for 

example Li et al., (2007) using 65Zn to study Zn adsorbtion and desorbtion in root 

cells of Sedum alfredii Hance- a hyperaccumulator. 

 

The results confirmed that there was differential growth between Thlaspi 

caerulescens and T. arvense at increasing zinc concentrations. Thlaspi caerulescens 

grew well at all concentrations of zinc except the highest concentrations (1800 µM), 

which is 34 times higher than the basal salts provide for normal plant growth in vitro. 

In comparison to T. arvense which managed growth at 3 and 30 µM Zn however all 

levels above this growth decreased sharply. At levels above 600 µM no seeds were 

able to germinate. 
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In terms of accumulation of Zn in the roots and shoots of T. caerulescens there was 

an overall difference in comparison with T. arvense. In most cases, T. caerulescens 

accumulated higher levels of Zn in its roots compared with T. arvense with the 

exception of results at 30 and 60 µM Zn. This is not as reported in other studies, 

where all cases have reported higher concentrations of Zn in the shoot compared 

with the root in Thlaspi species and other known hyperaccumulators (Lasat et al., 

1998; Xing et al., 2008.) This may be because in this study plants were grown in very 

humid atmospheres within the polycarbonate boxes. This would have limited 

transpiration and therefore may have affected or limited the amount of Zn that was 

transported to the roots from the shoots. In the shoots Zn concentrations were higher 

in T. arvense at concentrations between 60 and 600 µM Zn. The concentration of Zn 

in the shoots was higher in T. caerulescens at levels above and below those stated 

above. Concentrations of Zn in T. caerulescens reached 1061.4 µmol Zn g-1 at a 

substrate concentration of 1200 µM. Concentrations of Zn in T. arvense reached 

62.1 µmol Zn g-1 at a substrate concentration of 150 µM. 
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3. Transcriptomic analysis of Thlaspi species 

 

This chapter aims to outline the experiments that led to the identification of 

candidate genes involved in the hyperaccumulation of Zn in Thlaspi 

caerulescens. The methods that are detailed in this chapter include 

microarrays and qPCR (Quantitative polymerase chain reaction). These 

techniques aimed to highlight genes that were differentially expressed at 

increased zinc concentrations and also compared differential expression 

between the hyperaccumulator Thlaspi caerulescens and Thlaspi arvense, its 

non-hyperaccumulating relative. The microarray experiment was carried out 

prior to the start of this project and aimed to identify potential candidate genes 

involved in the hyperaccumulation trait. The qPCR, carried out at the start of 

this PhD experiment followed the microarray experiment to confirm findings in 

the microarray experiment. The microarray and qPCR were done as a 

collaborative project between University of Nottingham and Warwick HRI. 

 

3.1 Introduction 

Studying the products of gene expression gives an indication of how a trait 

may be controlled. Confirming the existence of a gene within a genome, and 

knowing its sequence does not give any indication of a part, if any it plays in 

the working of an organism It is only the first step in knowing its function. 

Gene expression is a process where gene sequences are transcribed to 

produce a gene product that has a function within the organism. Regulation of 

gene expression is a complex interaction of genes with the environment, 



Chapter 3: Thlaspi sp.Transcriptomic Experiments 

80 
 

resulting in the production of RNAs and proteins that are responsible for 

changes in growth, development, behavior and regulation of homeostasis 

within an organism. Therefore by comparing the expression of genes between 

species exhibiting different traits, for example, it is possible to link genes to 

playing a potential role (Schena, 1996).  

 

Whole genome transciptome profiling techniques using microarrays have 

greatly improved our knowledge of biological systems, particularly how they 

are regulated at the transciptome level. Typically these studies have been 

restricted to several “model species” or the species with commercial interest 

for which the microarrays have been developed. In plant research such 

microarray platforms are currently commercially available for Arabidopsis 

thaliana (L.) Heynh., barley (Hordeum vulgare), rice (Oryza sativa), maize 

(Zea mays), tomato (Lycopersicon esculentum), soybean (Glycine max), 

sugar cane (Saccharum officinarum), grape (Vitis vinifera) and wheat (Triticum 

aestivum) (Reviewed in Aharoni and Vorst, 2001 and Donson et al., 2002). 

 

To begin studying other plant species in this way would require sequencing 

and production of custom arrays, which is too costly and laborious. However a 

method has been developed to profile and compare the transcriptomics of two 

non-model plant species, Thlaspi caerulescens J & C Presl., a zinc 

hyperaccumlator and T. arvense L., a nonhyperaccumulator using an 

Affymetrix A. thaliana ATH1-121501 (ATH1) GeneChip® array (Affymetrix, 

Santa Clara, CA, USA) (Hammond et al., 2006). 
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It has been found that the RNA of one plant species can be used to hybridise 

to a microarray designed towards a different plant species as a means of 

studying the transcriptomics of a related species (“cross-species 

transcriptomics” (Becher et al., 2004; Caceres et al., 2003; Chismar et al., 

2002; Enard et al., 2002; Filatov, 2006; Hammond et al., 2005; Higgins et al., 

2003; Khaitovich et al., 2004; Uddin et al., 2004; Weber et al., 2004). Of these 

references several were carried out in animal systems. More relevent to this 

thesis are those studies that were carried out on plant species. Becher et al., 

(2004) and Weber et al., (2004) made comparisons between Arabidopsis 

halleri, a plant hyperaccumulator and Arabidopsis thaliana, a closely related 

non-hyperaccumulator. Filatov et al., (2006) compared A. halleri with its 

relative and non- hyperaccumulator, Arabidopsis petraea.  

 

Becher et al., (2004) used hydroponically grown plants which, after 4 days, 

had the hydroponic solution replaced with either “low zinc” (1 µM zinc) or “high 

zinc” (100 µM or 300 µM zinc). RNA was extracted using a Trizol extraction 

method which was subsequently used to produce the cDNA for the 

Microarray, which was carried out on Affymetrix Arabidopsis GeneChips which 

contained the probes for approximately 8300 genes. The microarray 

successfully identified significantly higher transcript abundance of several 

genes in A. halleri when compared with A. thaliana. In particular the genes 

highlighted code for proteins that were closely related to the A. thaliana 

proteins AtZIP6 a putative Zn uptake protein which is part of the zinc 

regulated transporter (ZRT)- iron regulated transporter (IRT)-like protein ZIP 

family of metal transporters, AtHMA3 a P-type metal ATPase, ZAT/AtCDF1- a 
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cation diffusion and AtNAS3 a nicotianamine synthase. Other genes that were 

found to show significantly higher expression in A. halleri was nicotianamine 

(NA) synthase and a CDF gene, a gene that has been found to be related to a 

ZAT gene, which has been linked to tolerance of Zn by T. caerulescens 

(Assunção et al., 2001). 

 

RT-PCR was used to confirm the initial findings of the microarray. Along side 

this yeast complementation experiments were carried out to determine the 

function of the genes. Zn hypersensitive yeast mutants were used to test 

selected genes to determine if the encoded proteins have any function in Zn 

or Cd detoxification in A. halleri. Results suggested that AtHMA3, AhCDF1-3 

and AhNAS3 play some role in Zn detoxification.  

 

Similarly Weber et al., (2004) carried out a microaaray comparing A. thaliana 

with A. halleri. The same Affymetrix A. thaliana GeneChip® was used with 

probes representing approximately 8000 genes. In this case plants were 

initially grown hydroponically before being transferred to pots. Before roots 

were harvested, plants were supplemented for 1 week before harvesting with 

either “normal” medium (0.8 µM Zn2+), medium without Zn2+ or medium 

containing 30 µM Zn2+. The microarray identified genes that were more highly 

expressed in A. halleri than in A. thaliana. Of particular significance was the 

highly expressed nicotianamine (NA) gene and ZIP9 gene in A. halleri 

compared with A. thaliana. Conclusions from the evidence given in this paper 

link the presence of NA to Zn homeostasis and Zn hyperaccumulation in A. 

halleri (Weber et al., 2004). This supports other studies that names NA as a 
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metal chelator and that has been linked to iron uptake in plants (Mori, 1999). 

ZIP9, a member of the ZIP metal transporter family, has previously been 

associated with Zn2+ and Fe2+ uptake in yeast and plants (Guerinot, 2000). 

 

Filatov et al., (2006) were interested in the study of evolutionary genetics by 

comparing how the transcriptome has changed associated with the 

hyperaccumulation trait. It is important to separate targeted transcriptional 

changes that are associated with the evolving trait from the unrelated, 

irrelevant evolutionary changes that have taken place alongside. In order to 

determine which changes are related to the characteristic studied and which 

are unrelated, transcriptional changes, interspecies crosses and segregated 

families of plants are used. In this study, as the test organism was closely 

related to the sequenced model species, A. thaliana, it was possible to use 

synteny between the two genomes to deduce regions containing quantitative 

trait loci (QTL). In this study crosses were made between A. halleri and A. 

petraea to produce an F2 population which, segregated extensively for the 

hyperaccumulation phenotype. Further crosses were made by crossing F2 

plants displaying similar phenotypes to produce an F3 population that display 

a range of mean Zn accumulation phenotype. The extreme phenotypes of this 

F3 population, displaying phenotypes similar to the parent Zn accumulation 

phenotype, along with a. halleri and A. petraea were compared at the 

transcriptome level using an ATH1GeneChip® (Affymetrix) microarray. This 

approach is termed the ‘bulked segregant analysis’ approach (Michelmore et 

al., 1991, reviewed in Filatov et al., 2006) which enables any gene involved in 

the hyperaccumulation trait to be identified as any changes in transcript 
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between the parent species should also be seen between the bulked 

extremes (non-accumulating and accumulating ) of the F3 generation. 

 

This experiment used hydroponically grown plants, grown on a series of 

concentrations of increasing Zn concentration (10, 100, 500 and 1000 µM Zn) 

to determine the Zn accumulation phenotype of the F2 generation. The 

grouped F2 plants were then allowed to cross pollinate naturally within their 

groups but not between groups. 

 

F3 generation plants were treated similarly in that they were grown 

hydroponically along side A. halleri and A. petraea first at 10 µM Zn for 32 

days then 100 µM Zn for 5 weeks to determine their Zn accumulation 

phenotype.  

 

For the microarray plants were grown on sand until they were large enough to 

be transferred to a hydroponic system. Two independent microarray 

experiments were conducted, one to compare A. halleri transcriptomes with 

the transcriptome of A. petraea and the second to compare extreme plants 

from the F3 population. Results showed 10 % of genes on the GeneChip® 

were differentially expressed between A. halleri and A. petraea. When 

comparing the F3 generation this figure fell by three or four times. Of this, 141 

leaf genes and 140 root genes were shown to be differentially expressed 

between accumulator and non-accumulator phenotypes. Also consistently 

greater expression was found in accumulator phenotypes under both high and 

low zinc conditions for 97 leaf genes and 48 root expressed genes. 
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The assumption was made that A. halleri genes that hybridized to A. thaliana 

genes have similar functions to the corresponding homolog. From this, 8 

genes were highlighted as being interesting as they were found in both leaves 

and roots and therefore suggested a link to the hyperaccumulation trait. 

Namely, these genes were AtNRAMP3 (At2g23150) which in A. thaliana has 

been assigned the function of a transport protein for Fe, Mn, Cd and possibly 

Zn. Previous studies have identified this gene also (Thomine et al., 2000, 

2003, reviewed in Filatov et al., 2006 and Weber et al., 2004) and have 

deduced that its product is located on the tonoplast where it functions as an 

exporter of iron and cadmium from the vacuole. Similarly to the results found 

in Becher et al., (2004) the cation transporter ZIP6 (At2g30080) was found to 

be constitutively expressed in leaves of all accumulator species and in the 

roots of the F3 accumulators in the comparison between A. halleri and A. 

thaliana. Other genes that were highlighted are the carbonic anydrase (CA; 

At1g23730), a zinc cofactor affected by zinc supply, cytosolic aconitase 

(At4g35830) and thioredoxin (At1g45145), which has roles in iron and redox 

homeostasis. The aconitase gene has been identified in mammals where a 

suggested role has been assigned with iron acquisition despite any previous 

evidence for such a role within plants it was still considered important to this 

study. Three further genes, linked to signal transduction, common to both 

leaves and roots, are an F-box protein (At1g27540), a leucine-rich repeat 

receptor kinase (At2g20850) and a MAP kinase (AtMPK5, At4g11330). The 

final two genes have no obvious roles Zn hyperaccumulation; these are a 

ribosomal 40S protein (At4g34670) and At3g07950. 
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To confirm the results found in the microarray experiment an RT-PCR was 

carried out on RNA extracted from A. halleri and compared with RNA from A. 

petraea. Of particular significance was the lack of amplification of three genes 

from genomic DNA of A. petraea showing that this species is deficient in the 

genes, (At2g20850, leucine-rich repeat protein kinase; At1g27540, F-Box 

protein; and At4g34670, 40S ribosomal protein). The RT-PCR confirmed the 

expression of NRAMP3 (At2g23150) and ZIP6 giving a similar expression 

pattern to that seen in the microarray.  

 

This paper reported by Filatov et al., (2006) was novel in that the differences 

in expression observed between A. halleri and A. petraea were used as 

heritable markers. By using synteny between the test organisms and A. 

thaliana they identified mapped potential candiadate genes to two 

chromosomal regions on chromosome 3 and 7.  

 

Prior to the commencement of the microarray work described in this chapter 

to determine differential expression of genes involved in Zn 

hyperaccumulation a reliable and efficient method was developed using an 

Arabidopsis thaliana Genechip probed with Brassica oleracea.  This study 

was novel in that a probe based selection method was developed to study 

plant genomes for which GeneChips® arrays are not available. (Hammond et 

al., 2005) 

 

Previous studies have used Arabidopsis thaliana GeneChip® arrays 

(representing 8,300 genes) to study genes involved in Zn transport. The 
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experiment demonstrated that genes associated with Zn homeostasis and 

transport were differentially expressed in shoots and roots of the Zn tolerant, 

Zn hyperaccumulator species A. halleri compared with the 

nonhyperaccumulator A. thaliana (Becher et al., 2004; Weber et al., 2004). 

Affymetrix high-density oligonucleotide (oligo) GeneChip® arrays are a 

valuable and extensively used tool for transcriptional profiling (Hennig et al., 

2003; Lipshultz et al., 1999). Each array represents every gene from the 

particular genome and has multiple corresponding oligo probes. Probes 

representing a gene are collectively called a probe set, each set being made 

up of between 11 and 20 probe pairs. Each probe pair is made up of a perfect 

match probe (PM) and a mismatch probe (MM), which has a single mismatch 

at the 13th base pair from the PM probe. The PM probe consists of a 25-base 

sequence, complementary to the 3’ end of the target sequence. RNA that is 

fluorescently labelled is hybridised to the array and the signal emitted is 

imaged and quantified in order to determine the level of transcript in the 

sample tested. GeneChip® array technology provides reproducible, accurate 

data at a high throughput rate; data can then be collated and made widely 

available for all. Within plant biology data from several thousand GeneChip® 

array studies on the model species A. thaliana have been made publicly 

available. Due to conservation between members of the Brassicaceae, the A. 

thaliana chip can be used to determine and compare transcriptomic 

differences between the nonhyperaccumulator and hyperaccumulator species 

of Thlaspi to highlight putative genes responsible for the trait. 

 



Chapter 3: Thlaspi sp.Transcriptomic Experiments 

88 
 

From this experiment a list of over 5000 genes were highlighted as 

differentially expressed in shoots of Thlaspi caerulescens compared with T. 

arvense to further investigate several of these genes qPCR (quantitative real 

time PCR) was used to verify the difference in expression. 

 

Individual gene mRNA levels are typical quantified by either northern blot 

analysis or RNAse protection assay. The development of the real time 

quantitative PCR technique has provided an alternative to these traditional 

methods. This allows the elimination of the use of radiolabelled probes with 

the added benefit of higher sensitivity. It is possible in fact to quantify RNA 

from a single cell and in theory it should be possible to detect one mRNA copy 

(Lockey et al., 1998). 

 

The dye SYBR Green (Applied Biosystems), binds to double stranded DNA 

which in turn emits a stronger fluorescence. As more double stranded 

amplicons are produced the fluorescence increases (Fig.3.1). 
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Fig.3.1 SYBR Green assisted qPCR. SYBR Green dye binds to double 

stranded DNA product and fluoresces which can be visualised and quantified 

by computers.  

 

The main aim for this study was to identify and confirm genes involved in the 

hyperaccumulation of Zn using a commercially available GeneChip® array 

designed for A. thaliana. Secondly the aim was to identify and confirm genes 
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that are differentially expressed between two Thlaspi species, T. caerulescens 

and T.arvense, a heavy metal hyperaccumuator, and non-hyperaccumulator 

respectively. Further to the microarray experiment a qPCR would be used to 

confirm differential expression of potential hyperaccumulating genes identified 

by the microarray experiment. 

 

3.2 Materials and methods 

3.2.1 Plant material and growth conditions 

3.2.1.1 For microarray analysis 

Seeds of T. caerulescens J& C Presl. (Viviez population, France, Reeves et 

al., 2001) and T. arvense L. (collected by AJM Baker, in Toronto, Canada) 

were surface sterilized with 70 % (v/v) ethanol for 10 min followed by a wash 

in reverse osmosis purified water. The seeds were then immersed in NaOCl 

(1 % active chlorine) for 20 min with a final 6 washes in reverse osmosis 

purified water. Seeds were imbibed for 4 d in sterile deionised water at 4ºC to 

break dormancy. The culture medium used to germinate the seeds was 

composed of MS basal salts (Murashige and Skoog, 1962) 4.3 g L-1 inorganic 

salts (Appendix 8.1), 10g L-1 sucrose and 8 g L-1 agar adjusted to a pH of 5.6 

with 0.1 M NaOH (MS agar). The MS basal salt agar mix contains 0.03 mM 

Zn. The medium was autoclaved at 121 ºC at 104 kPa for 20 min. Plants were 

sown in unvented polycarbonate boxes (Sigma-Aldrich, Dorset, UK) on 75 ml 

of the 0.8 % agar mentioned with approximately 30 seeds per box; the boxes  

were sealed with Nescofilm® (Bando Chemical Co., Kobe, Japan) to eliminate 

contamination. The plants were cultured in vitro in a growth room at 24 +/- 1 
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ºC in a 16 h photoperiod at an intensity of 50-80 μmol photons m-2 s –1 under 

100 W of cool fluorescent tube lighting at plant height (Type 84 Philips, 

Eindhoven, the Netherlands) and 8 h darkness. 

 

To provide a growth comparison, seeds were also sown in pots containing a 

mix of 25% sand and 75% (v/v) peat (Shamrock medium grade Sphagnum 

peat, Scotts, UK, Bromford, Suffolk); the Zn content of the compost mix was 

0.2 mg L-1(+ 0.04 standard error of the mean (SEM); n=3). Plants were grown 

at a constant temperature of 22 ºC under a 16 h photoperiod. Plant shoots 

were harvested 64 days after sowing. Three independent samples from T. 

caerulescens and T. arvense plants grown in agar and two samples from 

plants grown in compost were harvested. Shoot material was then bulked 

from between three and eight plants per sample, and snap frozen in liquid 

nitrogen. Samples were stored in sterile screw-cap Eppendorf tubes and 

stored at -70 ºC before RNA extraction was carried out. 

 

To identify constitutive differences in gene expression between shoots of T. 

caerulescens and T. arvense, microarray analyses were conducted. Five T. 

caerulescens microarrays were compared with five T. arvense microarrays. 

Three of the five microarray analyses for each species were conducted on 

agar-grown plants, at a single Zn-level (0.03 mM Zn) and the remaining two 

using plants grown on compost (at 0.2 mg Zn l-1). Since a cluster analysis 

(Hammond et al., 2006; Fig.2) revealed that gene expression was affected to 

a much lesser extent by environment than by species, all downstream 
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analyses were conducted using the normalised mean of five experimental 

replicates per species (Hammond et al., 2006). 

3.2.1.2 For quantitative, real time PCR (qPCR) 

To confirm data collected from the array a qPCR was carried out on T. 

caerulescens and T. arvense genes that had their coding sequence available 

(GenBank®, 13/05/07). Different seed populations were used in this 

experiment due to supplies. T. caerulescens (Ganges population, France) and 

T. arvense (Wellesbourne, collected from Wharf Ground field, Wellesbourne, 

Warwickshire, UK) were sterilized, with 70 % (v/v) ethanol for 10 min followed 

by a wash in reverse osmosis purified water. The seeds were then immersed 

in NaOCl (1 % active chlorine) for 20 min with a final 6 washes in reverse 

osmosis purified water. Seeds were imbibed for 4 d in sterile deionised water 

at 4 ºC to break dormancy. 

 

The culture medium used to germinate the seeds was composed of MS basal 

salts (Murashige and Skoog, 1962) 4.3 g L-1 inorganic salts (Appendix 8.1), 10 

g L-1 sucrose and 8 g L-1 agar adjusted to a pH of 5.6 with 0.1 M NaOH. The 

Murashige and Skoog basal salt agar mix (MS agar) contains 0.03 mM Zn. 

The medium was autoclaved at 121 ºC at 104 kPa for 20 min. The seeds were 

sown on agar supplemented with ZnSO4 to provide Zn external concentrations 

in the agar [Zn] ext) of 3, 30, 60, 150, 300, 600, 1200 and 1800 μM. To confirm 

accurately the quantities of Zn within plant tissues 65Zn was supplemented in 

the agar to a total activity of 2.1 kBq 65Zn μmol-1 Zn (section 2.2.3). Plants 

were sown in unvented polycarbonate boxes (Sigma-Aldrich, Dorset, UK) on 



Chapter 3: Thlaspi sp.Transcriptomic Experiments 

93 
 

75 ml of the 0.8 % agar mentioned with approximately 30 seeds per box; the 

boxes were sealed with Nescofilm® (Bando Chemical Co., Kobe, Japan) to 

eliminate contamination. Plant shoots were harvested 42 days after sowing, 

the samples were split and a subsample snap frozen in liquid nitrogen and 

stored at –70 ºC before RNA extraction as described. Fresh and dry weights 

were taken from subsamples and the 65Zn γ-emissions were counted for 600 s 

per samples on an automatic well-type gamma counter (Wallac 1480 Wizard; 

Perkin-Elmer Life Sciences, Turku, Finland) (section 2.2.3 on determining Zn 

concentrations from counts per minute). 

 

3.2.2 RNA extraction and hybridisation 

RNA was extracted from T. caerulescens and T. arvense using methods 

described by Hammond et al., 2005; 2006. Each plant sample had 1 ml of 

TRIzol® reagent added to it and subsequently manufacturer’s instructions 

were followed to extract total DNA (Invitrogen, Gaitherburg, MD, USA). 

Several modifications were made to the protocol (i) after homogenisation with 

TRIzol® reagent, remaining plant material was removed by centrifugation and 

the remaining supernatant transferred to a new eppendorf tube, (ii) the 

precipitation of RNA was aided through the addition of 0.25 ml of isopropanol 

and 0.25 ml of a 1.2 M NaCl solution containing 0.8 M sodium citrate. This 

protocol maintained the proteoglycans and polysaccharides in a soluble form. 

Total RNA extracted was cleaned and purified using the ‘RNA Cleanup’ for 

RNeasy columns (Quiagen, West Sussex, UK). The quantity and purity of the 

RNA was determined using an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Boblingen, Germany). The first strand of DNA was synthesized 
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by reverse transcribing 5 μg of total RNA at 42ºC for 1 h. 100 pmol of oligo 

dT(24) primer was used containing a 5’-T7 RNA polymerase promoter 

sequence, 50 mM Tris-HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2, 10 mM 

dithiothreitol (DTT), 10 mM dNTPs and 2000 units SuperScript® II reverse 

transcriptase (Invitrogen, Gaitherburg, MD, USA). Second strand synthesis 

was achieved using 10 units of Escherichia coli polymerase I, 10 units of E. 

coli. DNA ligase and 2 units of RNase H in the reaction containing 25 mM Tris 

HCl (pH 7.5), 100 mM KCl, 5 mM MgCl2, 10 mM (NH4)2SO4, 0.15 mMb-NAD+ 

and 10 mM dNTPs. The synthesis of the second strand was undertaken at 16 

ºC for 2 h before 10 units of T4 DNA polymerase was added and allowed to 

continue reacting for a further 5 min. Termination of the reaction was achieved 

through the addition of 0.5 M EDTA. The GeneChip® Sample cleanup Module 

(Affymetrix, Santa Clara, CA, USA) was used to purify the double stranded 

cDNA products. The synthesized cDNAs were in vitro transcribed by T7 RNA 

polymerase (ENZO BioArray High Yield RNA Transcript Labelling Kit; Enzo 

Life Sciences Inc, Farmingdale, NY, USA) using biotinylated nucleotides to 

generate biotinylated complementary RNAs (cRNAs). The GeneChip® 

Sample cleanup Module (Affymetrix, Santa Clara, CA, USA) was used to 

purify the cRNAs. This was then followed by random fragmentation of the 

cRNAs at 94 ºC for 35 min by a buffer containing 40 mM Tris-acetate (pH 8.1), 

100 mM potassium acetate, and 30 mM magnesium acetate, producing 

molecules of approximately 35-200 bp. Affymetrix A. thaliana ATH1-121501 

(ATH1) GeneChip® arrays were hybridised to 15 μg of fragmented labelled 

cRNA for 16 h at 45 ºC as in the Affymetrix Technical Analysis Manual 

(Fig.3.1). Streptavidin-Phycoerythrin solution was used to stain the 
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GeneChip® arrays and these were scanned using an Agilent G2500A 

GeneArray Scanner (Agilent Technologies, Palo Alto, CA, USA). The program 

Microarray Analysis Suite (MAS version 5.0; Affymetrix) was used to generate 

RNA signal intensities.  
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Fig.3.1 Target RNA labelling for GeneChip® probe array (adapted from 

Affymetrix Inc, www.affymetrix.com). 
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3.2.3 GeneChip® array manufacture 

GeneChip® arrays are produced and made commercially available by 

Affymetrix, Santa Clara, CA, USA. The Affymetrix A. thaliana ATH1-121501 

(ATH1), like other similar Affymetrix GenChips®, are constructed via light-

directed synthesis. Photolithography and solid-phase DNA synthesis are used 

to produce high-density DNA probe arrays (Fig.3.2). Quartz wafer is used as 

the substrate for the oligonucleotides. The wafer is naturally hydroxylated 

which allows the attachment of linker molecules, which help position the 

probes on the array. Silane (SiH4- a silicon analogue of methane) is used to 

attach the linker molecules to the quartz; a reaction between the hydroxyl 

groups and the silane forms a matrix of covalently linked molecules. 

Photolithographic masks are then used, carrying 18-20 square windows that 

correspond to the desired sequence of the probes. Ultraviolet light is shone 

over the mask, unprotecting the exposed linkers, enabling them to become 

available to nucleotide coupling. A solution containing one single 

deoxynucleotide group with a removable protection group is washed over the 

wafer. Deoxynucleotides are able to attach to the activated linkers. The step 

of deprotection and coupling is repeated until the precise lengths of the 

probes are reached. In the final step the wafers are deprotected, diced and 

packaged in flowcell cartridges. (Affymetrix Inc www.affymetrix.com). 
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Fig.3. 2 Affymetrix GeneChip array construction. The manufacturing process 

using the technique, photolithography. A mask covers the wafer to direct 

oligonucleotide synthesis. (Adapted from Affymetrix Inc, www.affymetrix.com).  

 

3.2.4 Masking strategies employed to allow microarray experiments in 

heterologous systems 

GeneChip® arrays use probe sets to quantify the abundance of a transcript. 

The probe sets consist of between 11 and 20 probe pairs; each probe-pair is 

made up of a perfect-match (PM) and a mismatch (MM) probe. The PM probe 

is a 25-base sequence which is complementary to the target transcript; the 

MM is identical to the PM with the exception of a single mismatch at the 13th 

base.  

 

To allow the use of a GeneChip® array designed for one species to be used 

on a closely related species a novel technique to improve sensitivity of high-
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density oligonucleotide arrays was developed (Hammond et al., 2005). This 

technique involves selecting probe-pairs based on the hybridisation efficiency 

of the PM oligonucleotide probe with genomic DNA from the target species for 

which the GeneChip® was not designed. If all probe sets were used 

sequence polymorphisms between the two species would result in an 

underestimate of transcript abundance. To determine which probe-set were to 

beused in subsequent transcript analyses the hybridisation intensities of the 

PM with the gDNA were assessed and a set threshold level determined. 

 

To provide the gDNA a DNA extraction method described by Thomas et al., 

(1994) was adapted for both T. caerulescens and T. arvense. A pestle and 

mortar was used to macerate cells under liquid nitrogen. Extraction using 

phenol: chloroform (1:1 v/v) was repeated twice. The BioPrime DNA labelling 

system (Invitrogen, Gaitherburg, MD, USA) was used according to the 

manufacturer’s instructions to biotinylate the genomic DNA from both T. 

caerulescens and T. arvense. 

 

Standard Affymetrix protocols for RNA hybridisation were used to hybridise 

DNA without the need to fragment the labelled DNA since the labelling 

reaction produces fragments of the correct length. Hybridisation was carried 

out at 45 ºC for 16 h. Following hybridisation the Affymetrix eukaryotic wash 

was carried out which included staining of antibodies. Hybridisation was 

carried out between 0.5 μg of labelled gDNA and the ATH1 GeneChip®. The 

resulting hybridisation was scanned on a G2500A Gene Array scanner which 

generated a cell intensity file (.cel file) using Microarray Analysis Suite (MAS 
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Version 5.0; Affymetrix). Two .cel files were produced which contained the 

gDNA hybridisation intensities between T. caerulescens and T. arvense 

fragments respectively. Probe-pairs from the .cel file were selected for 

subsequent transcriptome analysis using a .cel file parser script (Xspecies 

Version 1.1) written in the Perl programming language http://www.perl.com. 

The Perl script was designed to create probe mask (.cdf) files compatible with 

a range of microarray analysis software packages. Selection of a probe-set 

was made when it was represented by one or more PM probe pair(s) per 

probe set, which subsequently means that a minimum of 25 bp of homologous 

probe sequence of A. thaliana was required for future transcriptome analysis 

of T. caerulescens and T. arvense. The program was designed to allow a 

user-defined gDNA hybridisation intensity threshold for probe mask file 

generation to be set. Therefore the probe mask files were generated by 

analysing a range of gDNA hybridisation intensity thresholds ranging between 

0 and 1000. 

 

3.2.5 Interpretation of the Thlaspi transcriptome data  

The 10 RNA CEL files created represented replicates of both species grown 

under both soil and agar conditions. These were analysed using the 

GeneSpring™ analysis software (GeneSpring™ 7.2; Silicon Genetics, CA, 

USA) using the Robust Multichip Average (RMA) prenormalisation algorithm, 

a 3 step normalisation, using the 24 CDF files in turn (Irizarry et al., 2003). 

This is a 3 step process that involves background correction of data; chip 

background is taken away from PM values. Secondly data is normalised. 

Normalisation involves the division of data by a common variable to allow the 



Chapter 3: Thlaspi sp.Transcriptomic Experiments 

101 
 

effect of this variable to cancelled out and therefore compare underlying 

characteristics of the data to be compared. The final step in the RMA analysis 

is summarisation, which is performed in a log base 2 scale to fit a linear 

model. Summarisation combines the multiple probe intensities for each 

probeset to produce a single expression value for each probe set 

 

Prior to analysis using the 24 CDF files, to determine the optimal gDNA 

hybridisation threshold for interpreting transcriptional data, the non-scaled 

RNA CEL files were pre-normalised in GeneSpring™ and taken as a whole 

experimental group using the A. thaliana CDF file (i.e. with no probe 

selection). 

 

Each of the 10 RNA CEL files from the transcriptional analysis was pre-

normalised together. From this, 25 sets of data, each containing the 10 

grouped RNA CEL files, were produced. These sets of data consisted of one 

set with no probe selection, 12 with probe selection based on T. caerulescens 

gDNA hybridization and 12 with probe selection based on T. arvense gDNA 

hybridization. 

 

The 25 sets of transcriptional data was reduced to 13 sets by combining the 

gDNA hybridization thresholds of the T. caerulescens RNA CEL files, pre-

normalised with a T. caerulescens probe mask file (CDF), with the T. arvense 

RNA CEL file, pre-normalised with a T. arvense probe mask file (CDF). By 

combining the data in this way it ensured that only common probe sets were 

used in all transcriptome comparisons. 
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Normalisation of the probe- set signal values of each gene, within each of the 

13 transcriptome data sets, interpreted at a different gDNA hybridization 

intensity threshold, in which each data set contained 10 RNA CEL files was 

applied as follows: Probe-set signal values from T. caerulescens and T. 

arvense for each biological replicate and growth condition were standardised 

to the probe set value of T. arvense, as this was considered to be the control. 

This was achieved by dividing RMA pre-normalised probe-set signal values 

from T. caerulescens by the RMA pre-normalised probe-set signal values from 

T. arvense. Putative genes (i.e. probe-sets) with differential hybridisation 

intensities were identified between T. caerulescens and T. arvense using a 

two-step process. Firstly genes that were shown to be 2-fold up- or 

downregulated were selected and secondly to determine differential 

expression between T. caerulescens and T. arvense a Welch’s t-test was 

performed using the Benjamini-Hochberg false discover rate (FDR) multiple 

testing correction at 0.05 or 0.005 (False discovery rate control is a statistical 

method used in multiple hypothesis testing to correct for multiple 

comparisons) (Hammond, et al., .2006; 2005). 

 

3.2.6 In silico alignment of A. thaliana sequences and PM probes with 

Thlaspi gene sequences 

Thlaspi gene coding sequences were downloaded from GenBank® database 

(www.ncbi.nlm.nih.gov/entrez website 4) which contained 18 T. caerulescens 

and T. arvense sequences at the time of study (July 2004). Of these, 9 (seven 

T. caerulescens and two T. arvense) T. caerulescens [heavy-metal-associated 



Chapter 3: Thlaspi sp.Transcriptomic Experiments 

103 
 

domain-containing protein 4 (HMA4), TCA567384; nitrate reductase 1 (NR1), 

AY551529; zinc transporter 1 (ZNT1), AF133267; ZNT2/4, 

AF275752/AF292370; ZNT5, AF292029; carbonic anhydrase (CA), 

AY551530; nicotianamine synthase 1 (NAS1), TCA300446) and two T. 

arvense genes (chalcone synthase (CHS), AF144535; metal tolerance protein 

1 (MTP1), AY483146. Corresponding A. Thaliana sequences were identified 

using the BLAST algorithm against the GenBank® database to find the 

closest match to the Thlaspi spp. For further analysis the sequences were 

loaded into the Vector NTI program (Version 9.0.0, Invitrogen, Gaitherburg, 

MD, USA) Sequences were aligned using the ClustralW algorithm. 

 

3.2.7 Quantitative real-time PCR (qPCR) 

At the commencement of this thesis the microarray data was available for 

analysis. To confirm validity of the microarray data qPCR was performed, with 

assistance from Warwick HRI, on Thlaspi caerulescens and T. arvense genes 

for which the coding sequences were available in GenBank™. 

3.2.7.1 qPCR primer design 

The microarray highlighted over 5000 genes as differentially expressed in T. 

caerulescens compared with T. arvense.  It was necessary to select a smaller 

number of genes to confirm their differential expression using qPCR. This 

selection of genes was limited to those that had sequences available on 

GenBank®. GenBank® is a genetic sequence database containing a collection 

of all publically available annotated DNA sequences built by the National 

Center for Biotechnology Information (NCBI), a division of the National Library 
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of Medicine (NLM), located on the campus of the US National Institutes of 

Health (NIH) in Bethesda, MD, USA. The sequences are submitted from 

individual laboratories and sequencing projects, covering 140,000 organisms 

(Benson et al., 2004). Through GenBank®, sequences can be searched for 

using entrez  (http://www.ncbi.nlm.nih.gov/entrez). Also Sequence similarity 

searches maybe carried out using BLAST within the GenBank® site.  

 

Seven genes from T. caerulescens were chosen to be studied in further detail 

by qPCR. These genes were selected as they were highlighted as 

differentially expressed in the microarray in T. caerulescens compared with T. 

arvense, the non-hyperaccumulator. Also these genes had sequences 

available on GenBank® (http://www.ncbi.nlm.nih.gov/entrez) at the time of 

study. The chosen genes were; heavy-metal-associated-domain-containing 

protein 4 (HMA4), TCA567384; nitrate reductase 1 (NRT1), AY551529; zinc 

transporter 1 (ZNT1), AF133267; ZNT2/4, AF275752/AF292370; ZNT5, 

AF292029; carbonic anhydrase (CA), AY551530; nicotianamine synthase 1 

(NAS1), TCA300446 and two T. arvense genes; chalcone synthase (CHS), 

and Metal Transporter Protein 1 (MTP1). The primers were designed to the 

cDNA sequences of the genes (Table 3.1) using Primer 3 design tool 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3.cgi). An 18s rRNA gene was 

included as a control; this gene was taken from Arabidopsis thaliana. The 

primer select program (DNASTAR inc., Madison, WI, USA) was used to check 

for secondary structures. A BLAST search was subsequently carried out using 

sequences from the GenBank® database on the primer sequences to look for 

short, near exact sequences (7-20bp) that could cause inaccuracies in the 
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results and to be sure on Thlaspi cDNA was in target. Primers that created 

loops or dimers or those with homology to other sequences were disregarded 

and new ones selected.  
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Table 3.1 The primers used in qPCR anaylsis of T. caerulescens and T. arvens

Gene Species 

18S 

rRNA 

Arabidopsis 

thaliana 

GenBank Identifier Forward Primer Reverse Primer Amplicon length 

CHS Thlaspi arvense X16077 CATAAACGATGCCGACCAG AGCCTTGCGACCATACTCC 108 

MTP1 Thlaspi arvense AF144535 GGACGAGATGAGGAGGAAG CCGAAACCAAACAAGACAC 84 

CA Thlaspi 

caerulescens 

AY483145 CTCTCGTCTTTTCGGTTATC CCCTCTTCCAGTTTCGTAG 115 

HMA4 Thlaspi 

caerulescens 

AY551530 TCTTCCTCTTCCTCCTCCTC ATTCGGTTCCCATCTCTTC 136 

NAS1 Thlaspi 

caerulescens 

TCA567384 GATAAGAAAAGCCAAGAGAAGG ACAACAACCAGAGTGAAGATG 81 

NR1 Thlaspi 

caerulescens 

TCA300446 ACTCACTCGCTTCTCTCC TCTCCTCCTTGTTCATCC 150 

ZNT1 Thlaspi 

caerulescens 

AY551529 GGAGGCACAGGGATAACTC TGCGTAAACCACAAACATCTC 90 

ZNT2/4 a Thlaspi 

caerulescens 

AF133267 TGAGAGTAAGCAACAGAGGAAC CACAACCACGGGAAGAAC 88 

ZNT5 Thlaspi 

caerulescens 

AF275752/AF292370 GAAGGGAACGATGAGAAAGTG TGAGTGTGATTATGTGTATGGTGAG 101 
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3.2.7.2 RNA extraction and running the qPCR 

Total RNA was extracted from the plants described at the start of this chapter as in 

the microarray paper (Hammond et al., 2006). Residual chromosomal DNA was 

removed during RNA purification using the Quiagen RNeasy column kit, using the 

on-column DNase column according to the manufacture’s instructions.  

 

Reverse transcription was carried out on 1 μl of RNA extracted using the 

ThermoScript RT-PCR system (Invitrogen, Gaitherburg, MD, USA). The synthesis of 

cDNA was performed using random hexamers (50 ng μl-1). The primers were 

designed to the cDNA of nine genes (ZNT1 (Zinc transporter 1) ZNT2/4, ZNT5, 

HMA4 (heavy-metal associated domain-containing protein 4), NR1 (Nitrate 

reductase 1), CA (Carbonic anhydrase), NAS1 (nicotianamine synthase 1), MTP1 

(metal tolerance protein 1), CHS (chalcone synthase) and a 18s rRNA control gene 

using Primer3 (website 4). The program DNASTAR (DNASTAR INC, Madison, WI, 

USA) was used to check for secondary structures using the PrimerSelect program. 

The GenBank® database was again used to perform short BLAST sequences to find 

near match sequences to ensure that the primers were indeed specific to the target 

Thlaspi cDNA sequences. 

 

Quantification of the nine genes was successful in the shoots of T. caerulescens and 

T. arvense using the ‘standard curve’ method of mRNA quantification with 

normalisation to the control gene 18S rRNA (Wong and Medrano, 2005). The 

quantification of all nine genes was carried out from plants grown at 3 and 30 μM 
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[Zn]ext. The expression of HMA4, ZNT2/4 and NR1 genes was also quantified at all 

eight levels of [Zn]ext. 

 

The quantification of genes was achieved by qPCR using the fluorescent dye 

SYBR® Green (Applied Biosystems, Warrington, UK) and an ABI prism 7900 HT 

sequence detection system (Applied Biosystems). Triplicate replications were used 

to ensure accuracy, both biological and technical. The qPCR reactions were carried 

out in 384-well plates with 15 μl of sample per well, made up of 2 ng of cDNA, 1 μM 

5’ and 3’ primer and 7.5 μl of 2x SYBR® Green PCR master mix (Applied 

Biosystems). The conditions for the qPCR reaction were 50 ºC for 2 min and 95ºC 

for 10 min for 1 cycle, followed by 95 ºC 15 s and 60ºC for 1 min for 40 cycles. A 

step consisting of 95 ºC for 15 s, 60 ºC for 15 s and 95 ºC for 15 s was used as a 

dissociation step for melting curve analysis to allow the detection of primer dimers 

and non-specific products. Control samples contained either 2 ng of total RNA or 

Rnase free water to test for gDNA contamination in the samples. A standard curve 

for each gene allows the quantification of unknown samples. For the standard curves 

of the genes HMA4, NR1, ZNT2/4, ZNT1, ZNT5, CA and NAS1 a dilution series of 

20, 2, 0.2 ,0.02 ng of reverse transcribed T. caerulescens total RNA was used and 

the same was done for CHS and MTP1 using T. arvense total RNA. Transcript levels 

of each gene were normalised to 18S rRNA and the expression of genes was 

measured relative to the transcript quantities of T. arvense grown at 3 μM Zn. 

 

3.3 Results  

The aim of this chapter was to identify genes that were differential expressed in 

Thlaspi caerulescens compared with Thlaspi arvense. Secondly the genes that were 
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highlighted in the microarray as differentially expressed were then studied using 

qPCR at varying zinc concentrations. Thirdly the microarray that was carried out was 

novel in that non-model plant species were studied using an Affymetrix Arabidopsis 

thaliana ATH1-121501 Gene Chip®. This was possible due to the sequence 

homology between the species. A gDNA based probe selection strategy was 

employed based on the hybridization of T. caerulescens and T. arvense with A. 

thaliana probes. 

 

3.3.1 Sequence comparison of A. thaliana and T. caerulescens  

Sequences of seven T. caerulescens genes and two T. arvense genes were chosen 

to validate the gDNA-based probe selection strategy by identifying homologous A. 

thaliana sequences. Homologous Thlaspi and A. thaliana sequences were aligned to 

determine the similarities between the species at the sequence level. The average 

similarities between these sequences was observed as 81.5 %. The greatest 

similarity was shown in the carbonic anhydrase gene, with a 89.4 % of the 

nucleotides in the coding region being identical between T. caerulescens and A. 

thaliana. When the PM sequences were aligned with Thlaspi gene sequences an 

average of 87 % of the nucleotides were found to be identical, which is the 

equivalent of 240 identical nucleotides. The TcHMA4 gene had the lowest homology 

to the PM probe sequences. 

 

3.3.2 Masking strategies employed to allow microarray experiments in 

heterologous systems 

Sequence polymorphisms between Thlaspi spp. and A. thaliana would affect the 

transcript abundance if all probe sets were used. Therefore a gDNA based probe 
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selection method was employed by using 13 probe mask files with gDNA 

hybridisation intensity thresholds ranging from 0 to 1000 to determine an optimum 

level. It was shown that A. thaliana PM probes hybridised extensively to Thlaspi. sp 

genomic DNA (Fig.3.4) as the gDNA hybridisation intensity threshold was increased 

from 0 to 1000, PM probe retention decreased rapidly. Comparatively retention of 

whole probe sets, representing transcripts, were less sensitive to increasing gDNA 

hybridisation intensities, due to the fact that only a minimum of one PM probe was 

required to retain a whole probe set. With the chosen gDNA hybridisation intensity 

threshold set at 300 masked >50 % of the PM oligo probes with the loss of 3 % 

available A. thaliana probe-sets. If the threshold level was set higher than 300 too 

many probe sets are lost.  
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Fig.3.4 (a) Genomic DNA hybridisation intensity values generated from the binding 

of Arabidopsis thaliana perfect-match (PM) probes and probe sets from the 

Affymetrix A. thaliana ATH1-121501 GeneChip® array with the transcriptomes of 

Thlaspi caerulescens and Thlaspi arvense, used to generate the probe mask files. 

Squares represent T. caerulescens and circles T. arvense. Closed symbols are 

scaled to the left-hand y-axis (i.e. probe sets used in probe mask files), and open 

symbols are scaled to the right-hand y-axis (i.e. PM probes retained in probe mask 

files). (b) gDNA hybridization intensity thresholds to show Probe sets in common 

between T. caerulescens and T. arvense, used to generate the probe mask files. 

 

From the growth comparison of genomic DNA between agar and compost grown 

plants it was found that the transcript profiles were of close association indicating 

that substrate effect on gene expression was small in comparison to the differential 
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expression between plant species and that genomic DNA does not change in 

relation to where it is grown.  

 

Probe selection was used at a gDNA hybridisation intensity threshold level of 300 

and probe-set signals were normalised to the median value across all the 

GeneChip® array data. The use of probe mask files increased the number of genes 

differentially expressed more or less than 2-fold between T. caerulescens and T. 

arvense (Fig.3.5). When no probe selection was used 159 genes were shown to 

differentially expressed (>2-fold or >0.5-fold), (72 higher and 87 lower expression) in 

the shoots of T. caerulescens compared with T. arvense. With the use of the probe 

selection at a gDNA hybridisation intensity of 300 was used the number of genes 

found to be differentially expressed (>2-fold or >0.5-fold) rose significantly to 5782 

genes (3816 higher and 1966 lower expression). This concludes that the use of the 

probe selection to detect transcript differences between the two species increases 

the sensitivity of the analysis. 
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Fig.3.5 Genes differentially expressed in the shoots of Thlaspi caerulescens and 

Thlaspi arvense at increasing gDNA hybridization intensity levels used to generate 

probe mask files for the transcriptome analysis. (a) Genes expressed significantly 

>2-fold and (b) < 0.5-fold in T. caerulescens compared with T. arvense. 

 

3.3.3 Microarray analysis to compare differential gene expression between T. 

caerulescens and T. arvense 

The microarray was successful in several ways. Firstly it showed that whole genome 

transcriptome profiling can be carried out on a non-model plant species provided 

there is a GeneChip® array of a model species with enough conservation to give a 
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feasible hybridisation. This array highlighted in total, 4947 genes that were 

differentially expressed, both up and downregulated, in T. caerulescens compared to 

T. arvense. Of these genes many included those known to be involved in Zn 

transport and compartmentalisation. 3349 genes were found to be upregulated in the 

shoots of T. caerulescens compared to T. arvense and 1598 transcripts were found 

to be lower. This was found to be true for both agar and compost grown plants. 

Table 3.1 shows genes which were differentially expressed in Thlaspi caerulescens 

compared with Thlaspi arvense (ten of these genes with highest expression and ten 

with the lowest expression). 
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Table 3.2 Microarray data that shows the ten highest expressed transcripts and the 

ten lowest transcripts in the shoots of agar and compost grown Thlaspi caerulescens 

compared with Thlaspi arvense. 

 

The study highlighted two genes associated with plant defensins, PDF1.1 

(At1g75830) and PDF2.3 (At2g02130). These were found to be amongst the 10 most 

highly expressed genes in the shoots of T. caerulescens compared to T. arvense 

grown in agar. Also two endoplasmic reticulum–localized fatty acid desaturase genes 

(FAD2/FAD3; At3g12120/At2g29980) and a two-pore calcium channel gene (TPC1 

At4g03560) were found amongst the 10 genes expressed at lower levels in the 

shoots of T. caerulescens compared to T. arvense. However it is at present unclear 

of the biological significance of this (Table 3.2). 
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Of great importance was the identification of transcript homologous to A. thaliana 

genes known to be members of transport protein families, which have been 

suggested to be involved in Zn transport. These were found to have a significantly 

different expression in shoots of T. caerulescens compared to T. arvense. 

Specifically three homologs to members of the A. thaliana ZIP (ZRT, IRT-like 

proteins) transporter family were found to have increased expression in T. 

caerulescens, including AtIRT3 (19 and 6.7 fold difference in agar and compost 

grown plants respectively; At1g60960), AtZIP6 (2.3 and 3.4 fold, At2g30080) and in 

agar grown conditions only, AtZIP10I (0.5-fold; At1g31260). The P-type ATPase 

proteins were found to have higher expression levels in shoots of T. caerulescens 

compared to T. arvense: AtHMA3 (3.5 and 3.9 fold; At4g30120) and AtHMA4 (2.2 

and 2.2 fold; At2g19110), the calcium transporter AtACA13 (5.4 and 4.7 fold; 

At3g22920), and the Ca2+ AtACA12 (3.7 fold; At3g63380) in agar grown plants only. 

The third family of genes identified was the CDF transporters; transcripts to three 

CDF transporters were shown to have a significantly higher expression in shoots of 

T. caerulescens compared to T. arvense (At2g39450, At2g04620 and At3g12100). 

Three alcohol dehydrogenases including cinnamyl-alcohol dehydrogenases (up to 26 

fold ; At1g09500), a histidinol dehydrogenase (up to 5 fold; At5g63890), a beta-

lactamase (2.1 fold; At5g63420), two carbonic anhydrases (including At4g20990, up 

to 18 fold), a metalloprotease (6.2 fold; At2g32480), a metallothionein (2.5 fold; 

At3g15353) and several genes involved in glutathione metabolism (up to 11 fold for 

AtGST16; At2g02930) were all found to be higher in shoots of T. caerulescens 

compared to T. arvense in at least one growth condition. Along side the genes 

identified over 1770 of the genes with a significantly different level of expression 

between the two plant species have no known function. 



Chapter 3: Thlaspi sp.Transcriptomic Experiments 

117 
 

3.3.4 Quantitative PCR to confirm differential gene expression between T. 

caerulescens and T. arvense 

To confirm this differential expression, qPCR was adopted to analyse this further. 

Nine genes, seven from T. caerulescens and two from T. arvense were chosen 

according to sequence data that was publicly available. Fig.3.5 shows the shoot 

transcript abundances of the nine chosen genes in T. caerulescens and T. arvense 

at 3 and 30 μM [Zn] ext, normalized to Thlaspi arvense at 3 µM [Zn] ext. Of particular 

interest are the genes ZNT2/4, HMA4 and NR1. The expression of these genes are 

significantly greater in T. caerulescens than T. arvense. There is also a marked 

difference in expression of these genes between concentrations of [Zn] ext. This could 

be studied further by looking at the spatial expression and distribution of these 

genes. Using the same qPCR data, Fig.3.6 shows the average transcript abundance 

of the biological replicates for Thlaspi caerulescens compared with Thlaspi arvense 

for each of the 9 genes separately. Represented this way, HMA4 and NR1 

expression is interesting; there was a overall significant difference between the 

expression of of T. caerulescens and T. arvense with T. caerulescens showing 

considerably higher expression than T. arvense. Looking at the expression of HMA4 

and NR1 in T. caerulescens at the two Zn concentrations it can be seen that the 

expression doubles at 30 µM [Zn] ext compared with 3 µM [Zn] ext. Also of interest is 

the expression of ZNT2/4 genes. Again comparing the expression in T. caerulescens 

with T. arvense there is a significantly higher expression shown in T. caerulescens 

over T. arvense. Looking at the expression of the gene in T. caerulescens at 3 and 

30 µM [Zn] ext it can be seen that the gene appears to be down regulated at higher 

zinc concentrations. For T. arvense the opposite can be seen with expression of the 

ZNT2/4 genes being upregulated at higher Zn levels. The expression of ZNT1 shows 
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a similar pattern with higher expression overall in T. caerulescens than in T. arvense. 

Expression in T. caerulescens is again downregulated at elevated Zn levels though 

the difference in transcript abundance between 3 and 30 µM [Zn] ext is closer for 

ZNT1 than ZNT2/4. The expression in ZNT5 is unlike any other genes studied here, 

the gene is downregulated in T. caerulescens at high Zn levels, with the opposite 

occurring in T. arvense where the gene is upregulated at higher Zn levels. The 

expression of the gene in T. arvense at 30 µM [Zn] ext is greater than that found in T. 

caerulescens at 30 µM [Zn]ext. The transcript abundance of the CA gene was 

interesting in that for T. caerulescens expression remained low at both Zn levels, 

with only a small elevation at 30 µM [Zn] ext compared with 3 µM [Zn] ext. However for 

T. arvense there was a significant increased at elevated Zn levels, over double that 

of T. caerulescens. For NAS1 expression was significantly higher in T. caerulescens 

compared with T. arvense with the expression becoming reduced in both plant 

species at increase Zn concentrations. The expression of the CHS gene was higher 

in T. arvense.  When comparing the expression of CHS at the different Zn 

concentrations it can be seen that for both T. arvense and T. caerulescens the 

expression was downregulated at 30 µM [Zn] ext when compared with 3 µM [Zn] ext. 

Lastly the expression of the MTP1 gene was similar to that of CHS in that expression 

was highest in T. arvense and that expression was downregulated at higher Zn 

levels. 
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Fig.3.5 Real-time quantitative PCR (qPCR) of shoot transcript abundance in T. 

caerulescens and T. arvense at 3 and 30 μM [Zn] ext. for nine heavy metal 

accumulating associated genes (ZNT1 (Zinc transporter 1) ZNT2/4, ZNT5, HMA4 

(heavy-metal associated domain-containing protein 4), NR1 (Nitrate reductase 1), 

CA (Carbonic anhydrase), NAS1 (nicotianamine synthase 1), MTP1 (metal tolerance 

protein 1), CHS (chalcone synthase). The data represents the average abundance 

normalized to T. arvense at 3 μM [Zn] ext. Error bars represent +/- the standard error 

of the mean. 
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Fig.3.6 Real-time quantitative PCR (qPCR) of shoot transcript abundance in T. caerulescens and T. 

arvense at 3 and 30μ [Zn] ext. for nine heavy metal accumulating associated genes (ZNT1 (Zinc transporter 

1) ZNT2/4, ZNT5, HMA4 (heavy-metal associated domain-containing protein 4), NR1 (Nitrase reductase 1), 

CA (Carbonic anhydrase), NAS1 (nicotianamine synthase 1), MTP1 (metal tolerance protein 1), CHS 

(chalcone synthase). Normalised to the 18s ribosomal transcript. Error bars represent two times the 

standard error of the mean. 
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3.3.4.1 Expression of HMA4, ZNT 2/4 and NR1 in T. caerulescens under 

increasing external zinc concentrations  

Following the above results a further experiment looked in more detail at the 

expression of HMA4, ZNT 2/4 and NR1 this time at increasing zinc concentrations 

from 3 to 3000 µM. These three genes were chosen as they were highlighted in the 

first qPCR experiment to have a considerably higher expression in T. caerulescens 

than T. arvense. The results for this experiment (plus physiological results for 

comparison) are shown in Fig.3.7. The results for each of the genes were varied. 

First looking at the expression of HMA4 there was little difference between 3 and 30 

µM [Zn]ext however a significant increase in expression occurred at 150 and 300 µM 

[Zn]ext before returning to basal levels at 600 µM [Zn]ext. When looking at the 

expression data collected for ZNT2/4 a very different picture is given. Between 3 and 

30 µM [Zn]ext the level of expression rises slightly then at levels above 30 µM [Zn]ext 

drops significantly. Considering NR1 last, the expression data suggests that this 

gene was less affected by increased zinc levels. However at levels above 1200 µM 

[Zn]ext there is a significant rise in its expression. 
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Fig.3.7 a) Shows the shoot fresh weight (FW) values and b) shoot zinc (Zn) content 

of Thlaspi caerulescens (white squares) and Thlaspi arvense (black circles) to 

increasing external zinc concentrations [Zn] ext. (mean + standard error of the mean 

(SEM) n=3).c-e) shows shoot expression of 3 genes, T. caerulescens heavy metal 

associated domain-containing protein 4 (HMA4), zinc transporter 2/4 (ZNT2/4) and 

Nitrase reductase 1 (NRT1), measured via quantitative real time PCR (qPCR). 

Primers were designed to published data sequences and data normalised to an 18s 

rRNA control (mean + SEM n=3). 
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3.4 Summary 

The aim of this chapter was to identify genes that were differentially expressed in 

Thlaspi caerulescens compared with T. arvense through a cross species microarray 

approach. Secondly the aim was to confirm the differential expression of some of 

these genes via qPCR.  

 

The microarray was successful in that it showed that whole genome transcriptome 

profiling can be carried out on non-model plant species, provided there is a 

GeneChip® array of a model species with enough conservation to give feasible 

hybridization. The microarray was successful at identifying several thousand genes 

that were differentially expressed in Thlaspi caerulescens compared with T. arvense. 

In total 3349 genes were found to be upregulated in T. caerulescens and 1598 were 

down regulated. Of particular interest were nine genes that had their sequences 

available in GenBank®. These genes were heavy-metal-associated-domain-

containing protein 4 (HMA4), TCA567384; nitrate reductase 1 (NRT1), AY551529; 

zinc transporter 1 (ZNT1), AF133267; ZNT2/4, AF275752/AF292370; ZNT5, 

AF292029; carbonic anhydrase (CA), AY551530; nicotianamine synthase 1 (NAS1), 

TCA300446 and two T. arvense genes chalcone synthase (CHS) and Metal 

Transporter Protein 1 (MTP). 

 

qPCR experiments confirmed the findings of the microarray, that these genes were 

differentially expressed in T. caerulescens compared with T. arvense. The data from 

both studies were found not to be significantly different from each other. Of greatest 

important were the ZNT2/4, HMA4 and NR1 genes that showed significant 

upregulation in T. caerulescens.  
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From these experiments it was decided to study HMA4 further in planta. The reason 

for this was it showed significantly different upregulation in T. caerulescens, 

sequenced data was available and previous studies had placed this gene in a 

potential role in heavy metal transport in other organisms, such as Arabidopsis 

thaliana and Saccharomyces cerevisiae (Hussain et al., 2004; Mills et al., 2003). 

This will now be discussed in the following two chapters. 

 



Chapter 4: HMA4 RNAi Construct Design 

 
125 

 

4. Design of a HMA4 RNAi construct for 

transformation of T. caerulescens 

4.1 Introduction 

Previous chapters have detailed how a candidate gene involved in the 

hyperaccumulation of Zn in Thlaspi caerulescens has been identified by a 

microarray experiment. Confirmation of the differential expression of this gene 

was achieved through qPCR. This chapter discusses the design of an RNAi 

construct to the HMA4 candidate gene. The aim of designing and creating this 

construct was to study the effects of silencing the gene in planta. The 

following chapter will outline steps made in the attempt to transform Thlaspi 

caerulescens using this construct. A paper reporting on successful 

transformation of Thlaspi caerulescens using only reporter genes indicated 

that transformation should be feasible. The transformation experiments sought 

to test different constructs for floral dip and tissue culture methods for Thlaspi 

caerulescens and T. arvense. 

 

4.1.1 Heavy metal transporter genes  

Transition metals or heavy metals such as Zn, Fe, Cu and Mn are essential to 

plant growth however at high concentrations they become toxic to plants. 

Therefore for the plant to remain healthy it must develop a way to successfully 

uptake and transport them around the plant whilst carefully monitoring their 

concentrations within plant cells and organelles (Hall and Williams, 2003). It is 

thought that a complex process involving many different genes is involved 
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mainly in membrane transport. This area of research is key to this thesis and 

has been studied in great detail by others in the past decade. Much progress 

has been made through the use of yeast, Saccharomyces cerevisiae, using 

complementation experiments with candidate genes and also through the 

study of candidate genes in model plants species, for example Arabidopsis 

thaliana (Hussain et al., 2004; Mills et al., 2003). The number of genes that 

have been highlighted as playing a putative role is large and includes, eight 

heavy metal ATPases, six Nramps and 15 ZIPs (Hall and Williams, 2003). 

This chapter will now focus on one gene, HMA4 a member of the P1B-ATPase 

family, a sub family of the superfamily P-type ATPases.  

4.1.1.1 P-type ATPase gene family 

The P-type ATPases are enzymes that are found in all living organisms from 

bacteria to humans and are known to pump a range of cations across 

membranes using ATP against their electrochemical gradients. The name P-

type refers to the mechanism by which they work which is conserved amongst 

all within the family. This mechanism involves a phosphorylated reaction cycle 

intermediate. All of the members of this family pump cations across 

membranes using the energy generated from exergonic ATP hydrolysis. 

Sequencing of the rice (Oryza sativa) and Arabidopsis thaliana genomes has 

identified 8 genes among the P-type ATPase HMA gene family. In comparison 

other eukaryotes only normally possess one or two of these genes. Work 

carried out on A. thaliana has found that HMA1-4 are involved in Zn, Cd Pb 

and Co transport and HMA5-8 are involved in the transport of Cu and Ag 

(Verret et al., 2004).  



Chapter 4: HMA4 RNAi Construct Design 

 
127 

 

P1B-ATPases have eight transmembrane helices, a CPx/SPC motif in 

transmembrane domain six, with possible transmembrane binding domains at 

the N or C-termini (Williams and Mills, 2005) (Fig.4.1).  

 

Knockout mutants have been successfully used to determine their function in 

the plant while lethal effects experienced through deleting more than one 

gene shows the importance of their role in transition metal transport (Williams 

and Mills, 2005). A number of metals transported by these P1B-ATPases have 

been revealed through their expression in E. coli and yeast, while methods of 

this metal transportation have been shown in yeast, bacteria and Arabidopsis 

e.g. AtHMA6/PAA1 and AtHMA8/PAA2 are both closely related and involved 

in transporting Cu to some chloroplast proteins. Mutant studies involving gene 

knocks out have proved invaluable in determining their function and 

importance e.g. paa1 paa2 double mutants are seedling lethal (Abdel-Ghany 

et al., 2005). They also demonstrated that AtHMA6/PAA1 was present in both 

shoots and roots, indicating a function in both green and non-green plastids. 

AtHMA8/PAA2 however was thought to have a function in supplying metals to 

the thylakoid membrane of chloroplasts (Abdel-Ghany et al., 2005).  

 

4.1.1.2 P1b ATP HMA4 

Studies of the HMA4 gene have taken place in A. thaliana, Saccharomyces 

cerevisiae and the Escherichia coli zntA mutant. Initially HMA4 was isolated 

and cloned from A. thaliana (Mills et al., 2003) and found to cluster 

phylogeneticlly with Zn/Co/Cd/Pb pumps. Sequencing analysis confirmed that 
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it possessed the characteristic groups of a P1b-ATPases including the eight 

transmembrane domains, metal binding sites and a CPx/SPC motif located in 

the sixth transmembrane domain. In this same study the gene was expressed 

in E. coli to determine which metals were transported or bind to this putative 

metal pump. The AtHMA4 gene was expressed in E. coli mutants and a wild 

type strain. The E. coli mutants contain a disruption in ZntA or CopA. ZntA 

had previously been designated a P-type ATPase that catalyses the efflux of 

Zn, Cd and Pb and CopA a Cu-translocating efflux pump. The mutants were 

exposed to a variety of metals and differing concentrations and found to be 

extremely sensitive to Zn at 200 µM compared with the wild type. This 

sensitivity was almost completely complemented in the mutant when 

transformed with the AtHMA4 gene. No significant differences between the 

wild type and transformed mutants were observed when studying the 

response to other metals such as Cu, Co, Cd, Mn and Pb. Similarly the 

AtHMA4 was unable to reverse the sensitivity to Cu in the CopA mutants 

grown on a range of Cu concentrations. Mills et al., (2003) also tested metal 

specificity of the AtHMA4 gene in yeast of all the metals tested (Zn, Cu, Cd, 

Co, Ni, Mn) the most significant difference in metal sensitivity between the 

wild type and yeast transformed with the AtHMA4 was in the prescence of Cd. 

It was found that the expression of the AtHMA4 gene decreased the sensitivity 

to Cd. Finally this study looked at the localization of this gene within 

Arabidopsis plants. Tissue specific expression of the HMA4 gene was 

achieved using RT-PCR and concluded that the gene was expressed in all 

tissues studied however highest expression was observed in roots. The 

expression of the gene was analysed in the presence of several metals and 
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was found to be upregulated at elevated Zn and Mn but downregulated by Cd. 

These studies concluded that the genes may have a function in Zn efflux in 

the plasma membrane (Mills et al., 2003) 

 

Mutant plants were created to study this gene. A double mutant for hma2 

hma4 was produced. This showed that these genes had putative roles with 

zinc homeostasis in plant cells. In order to rescue the mutant exogenous 

applications of Zn were required and later promoter-GUS constructs 

demonstrated that AtHMA4 was expressed in cells surrounding the root 

vascular tissue (Hussain et al., 2004). This suggested that AtHMA2 and 

AtHMA4 were involved in xylem loading of Zn to be transported to the shoot 

(Hussain et al., 2004). 

 

Yeast complementation studies have revealed other putative functions for 

AtHMA4 such as metal detoxification of Cd and Zn (Mills et al., 2003). The 

AtHMA genes are thought to transfer high Zn and Cd from the roots to the 

leaves where they have less potential to cause damage. The transcription of 

the pump involved in sending high Zn levels to the shoots is regulated by 

metals, however it is not known if it is post–transcriptionally controlled 

(Williams and Mills, 2005).  

 

There have been no transgenic studies on the HMA4 gene in T. caerulescens 

however other studies have been carried out; the TcHMA4 gene was first 

identified using complementation tests in yeast under Cd exposure (Bernard, 

2004). This gene has already been sequenced and is available for public use, 
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which allowed primers for this sequence to be designed (Papoyan and 

Kochian, 2004). A structure for the HMA4 gene has also been identified and 

as discussed previously in this chapter is made up of eight transmembrane 

domains, and two potential metal binding domains at the N and C termini 

(Fig.4.1). 

 

 

Fig.4.1 Structure of the P1B-ATPase HMA4 gene showing eight 

transmembrane domains (green cylinders), possible metal-binding domains at 

the N and C termini and a CPx/SPC motif in transmembrane domain six.  

 

Most recently the HMA4 gene has been studied in A. halleri, a 

hyperaccumulating plant related to A. thaliana. Hanikenne et al., (2008) used 

a RNAi gene silencing method to study the gene in planta and also transfer 

the gene to the non- hyperaccumulator A. thaliana. The AhHMA4 gene was 

isolated from A. halleri cDNA using proofreading polymerase to carry out the 
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PCR. The HMA4 sequence (2541-2997 bp) was inserted into a Gateway 

binary vector, pJAWOHL8 by site directed recombination. This vector 

generates a hairpin construct that consists of an antisense AhHMA4 fragment-

intron-sense AhHMA4 fragment which is downstream from a CaMV 35S 

promoter. 

 

RT-PCR was used to assess the transcript levels of HMA4 in A. halleri 

transformed with the RNAi construct. It was found that transcript levels of 

HMA4 were reduced by between 45% and 10% compared with wild types. 

Morphologically these plants were deemed normal by comparing the root 

elongation with that of wild types when grown hydroponically on solution 

supplemented with increasing Zn concentrations. The levels of Zn contained 

within the transformed plants were closer to those forund in the non-

hyperaccumulator A. thaliana, between 12 and 35% lower. Transformed lines 

were found to contain higher levels of Zn in the roots (49-137 fold higher) than 

the shoots, a characteristic found in A. thaliana. In wild type A. halleri the 

opposite is normally observed, which suggests a root to shoot mechanism of 

metal translocation. This evidence suggests that AhHMA4 is required for 

effiecient root to shoot flux. 

 

In this same study, fluorescent imaging was used to determine the effect 

HMA4 has on Zn localisation within the roots of A. halleri, using the fluroscent 

indicator Zinpyr-1.This study showed that wild type plants had the majority of 

its Zn localised in the xylem vessels, inwards of the vascular pericycle. 

Comparatively, the RNAi transgenic lines had the majority of Zn localised in 
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the pericycle cell layer. A similar feature was observed in the A. thaliana 

HMA4 mutant compared with wild type plants. This suggests that the silencing 

of the AhHMA4 gene inhibits the movement of Zn from the root symplast to 

the apoplastic xylem vessels which is in fact the primary route of solutes from 

the roots to the shoots which explains the lack of Zn in the shoots of the RNAi 

transgenic plants.  

 

Also in this study is the reported transfer of HMA4 mini-gene into A. thaliana, 

a non-hyperaccumulator, to determine whether increased HMA4 activity is 

necessary for altered heavy metal accumulation. This mini-gene consisted of 

an AhHMA4 cDNA linked to the AhHMA4-1 promoter. Transformants were 

found to show moderately elevated levels of HMA4 transcript levels. (2.44 + 

0.08 and 2.85 + 0.89 fold in roots and shoots, respectively), compared with 

the wild type levels. Localisation studies using the fluorescent indicator Zinpyr-

1 showed high levels of Zn in xylem vessels which is what can be found in 

wild type A. halleri plants. This concludes that transformation of A. thaliana 

with AhHMA4 is adequate to provide Zn distribution typical of A. halleri in the 

roots of A. thaliana.  

 

This leads to Zn partitioning in the xylem vessels and transcriptional 

upregulation of Zn deficiency response genes A. thaliana also contained 

increased transcript levels of the Zn defieciency response genes ZIP4 and 

IRT3, again similar to that found in wild type A. halleri. It is therefore 

suggested that Zn flux into the xylem is HMA4 dependent and that this flux 
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depletes symplastic pools of Zn which in turn triggers the upregulation of Zn 

deficiency response genes in the roots.  

 

A. thaliana transformed with the AhHMA4 were grown in media supplemented 

with toxic levels of 150 µM Zn or 40 µM Cd. They were shown to have leaf 

chlorosis and smaller rosettes, signs of Zn and Cd hypersensitivity. In 

comparison when grown on 5 µM Zn, transgenic lines were deemed healthy 

and were shown to accumulate higher levels of Zn than non-transgenic lines. 

These results suggest that AhHMA4 is required for more efficient transfer of 

metals from roots to leaves however due to the sensitivity of shoots it is 

thought that additional genes are required for metal detoxification in order for 

the plants to survive elevated HMA4 dependent flux into the shoots of A. 

halleri. 

 

As well as to the silencing the AhHMA4 gene Hanikenne et al., (2008) also 

studied the effect of over expression of the AhHMA4 gene in A. halleri. Effect 

of this overexpression was monitored by RT-PCR to determine how the 

expression of Zn deficiency genes changed in relation to the overexpression 

of HMA4. The roots of the RNAi lines were shown to have a positive 

correlation of the expression of IRT3 and ZIP4 genes in relation to the 

transcript abundance of HMA4. The Zn deficiency genes mentioned belong to 

the same family of proteins associated with the uptake of Zn. It has therefore 

been proposed that the expression of these genes in the roots of wild type A. 

halleri is an outcome of the increased HMA4 activity and as a result further 

increases metal accumulation.  
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4.1.2 RNA interference-a method of gene silencing using a GATEWAY™ 

cloning system 

The proposed method of creating the RNAi construct is through the use of the 

GATEWAY™ cloning system (Invitrogen, Gaitherburg, MD, USA). This 

relatively new method of cloning is able to provide a fast and reliable 

alternative to more traditional cloning methods. The GATEWAY™ cloning 

system eliminates the need for traditional ligase mediated cloning due to using 

the bacteriophage lambda, site-specific recombination system. The process 

that occurs between E. coli and bacteriophage lambda in which phage lambda 

becomes integrated into E. coli DNA or is excised from E. coli DNA involves 

steps that have been adapted for the GATEWAY™ system. Integration occurs 

between the attP (242 bp) of bacteriophage and the attB site (25 bp) of the E. 

coli. As a result bacteriophage lambda is flanked by the attL (100 bp) and attR 

(168bp) sites (the BP reaction). In the reverse reaction, to excise the phage 

DNA, recombination occurs between attL and attR sites (LR reaction). The BP 

reaction requires two enzymes to work; the phage integrase (Int) and the E. 

coli integration host factor (IHF) (Nakagawa et al., 2009). 

 

The site specific recombination system of the GATEWAY™ cloning method 

allows sequences to be moved between plasmids containing compatible 

recombination sites. The first step in creating the construct involves using 

topoisomerase-mediated cloning which eliminates any conventional DNA 

ligase mediated cloning. This involves using amplification of the target gene 

using a forward primer that includes the sequence CACC at the 5’ end. This 

sequence enables integration into Invitrogen’s pENTR/D-TOPO entry vector 
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(Earley et al., 2006; Shuman, 1994). The recombinant plasmid produced has 

the target gene DNA flanked by the attL recombination sequences. The attL 

recombination sites allow recombination with attR sites using the LR clonase 

reaction mix (Invitrogen, Gaitherburg, MD, USA). The reaction with the LR 

clonase mix (which contains the enzymes phage lambda integrase, the E. coli 

integration host factor and the phage protein excisionase (Xis)) transfers the 

target DNA into the destination vector. The destination vectors contain a gene, 

ccdB, which is lethal to most E. coli strains; this feature is used as a method of 

selection during the transformation. ‘Empty’ destination vectors are selected 

against upon transformation with E. coli cells in the recombination reaction. 

This negative selection method is used alongside a positive selection for 

antibiotic resistance to ensure that colonies grown contain only plasmids that 

have undergone recombination (Fig.4.2). Although the topoisomerase-

mediated cloning is the most popular method for producing the entry vector 

there are two alternative methods. The first is to use traditional ligase-

mediated insertion into the entry vector at the multiple cloning sites that are 

flanked by the attL sites. The second option is to use BP clonase reaction mix 

(Invitrogen, Gaitherburg, MD, USA) to recombine a PCR product of the target 

gene, flanked by attB sites, into the donor vector containing the attP 

recombination site. The recombination reaction involving the BP clonase mix 

(containing the phage lambda integrase enzyme and the E. coli integration 

host factor enzyme) results in a target sequence that is flanked by attL 

sequences. These sequences allow further recombinations to occur with the 

destination vector chosen. The destination vector contains attR sites which 

recombine with the entry clone. The Products from the LR reaction between 
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an entry vector and a destination vector are an expression clone with attB 

recognition sites and a by-product with attB sites. The BP reaction is in effect 

the revese reaction when the attB sites recombine with the attP sites to create 

vectors with attL and attR sites. Plant destination vectors are available for a 

variety of different purposes including, promoter fusion analysis, protein 

localisation, gene overexpression, analysis of protein/protein interaction and 

gene knockdown by RNA interference (as discussed in this chapter) (Earley et 

al., 2006; http://www.invitrogen.com). 
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Fig.4.2 Overview of GATEWAY cloning involving topoisomerase-mediated 

capture and recombinational cloning. 1) The gene of interest is amplified by 

PCR using a forward primer containing the sequence CACC to facilitate the 

cloning into the pENTR/D-TOPO vector. 2) PCR products are mixed with the 

pENTR/D-TOPO vector. This vector has topoisomerase molecules that 

catalyse the ligation of the target gene and vector sequences. The attL1 and 

attL2 sites that flank the cloning site initiate following recombination reactions. 

3) The target gene is recombined into the chosen destination vector using the 

LR clonase reaction enzyme mix (Invitrogen, Gaitherburg, MD, USA); this 

reaction mix contains the necessary enzymes required for the recombination 

between attL and attR sites. The gene CmR, responsible for chloramphenicol 

resistance, is located between the attR sites of the destination vector. This 

gene is lethal to most strains of E. coli and therefore only E. coli strains 

containing plasmids that have undergone successful recombination are able 

to survive. 4) The finished product (Earling et al., 2006). 
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Now many genomes of different organisms have been sequenced it is 

possible to determine the function of these genes. RNA interference (RNAi) is 

a post transcriptional gene–silencing technology that has been successfully 

used to assign gene functions in many different organisms. RNAi is a process 

in which the translation of a cell’s messenger RNA (mRNA) sequences is 

prevented due to the presence of double stranded RNA sequences. Under 

normal circumstances within a cell, RNA exists as a single stranded molecule. 

Within a cell’s nucleus mRNA is produced and transported to the ribosomes 

within the cytoplasm as a single strand. Double stranded RNA (dsRNA) is 

normally only found within the cell under circumstances that pose a threat, for 

example during an infection by a dsRNA virus. In these circumstances the cell 

detects the dsRNA and uses endoribonuclease enzymes (termed dicer) to 

cleave the RNA into small fragments (20-25 bp long), known as small inferring 

RNAs (siRNAs) which results in inactivation of the RNA and in the case of 

viruses, inhibits viral replication, which ultimately protects the cell from harm. 

Alongside the degradation of dsRNA these fragments of mRNA prevent any 

further expression of mRNA containing the same sequence and therefore the 

protein it encodes will not be translated, in effect the gene is turned off. It is 

thought that the dsRNA produced from the initial cleavage act is involved in 

further cleavage of mRNA. One strand of the dsRNA, known as the guide 

strand, is incorporated into the RNA-induced silencing complex (RISC) where 

it targets complementary mRNA strands. 

 

The RISC complex uses the siRNA as a template for recognizing 

complementary mRNA. The guide strands are bound to the argonaute 
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proteins with the RISC; this protein has endonuclease activity. When the RISC 

complex with the bound siRNA finds a complementary strand of mRNA, it 

activates RNase (ribonuclease) activity and cleaves the mRNA into more 

siRNA strands. At present it is unclear how the RISC complex locates the 

complementary mRNA (Ambros, 2001; Gura, 2000; Rueyling, and Avery, 

1999). (Fig.4.3) 

 

This mechanism is self-sustaining as new fragments can then target any new 

mRNA produced. These argonaute proteins as well as being partially 

responsible for the guide strand selection are also responsible for the 

degradation of the passenger strand of the siRNA (the other half of the siRNA 

sometimes called the anti-guide strand). It is because of this ability to 

downregulate genes that this mechanism has been exploited for research of 

plant genes (Ambros, 2001; Gura, 2000; Rueyling, and Avery, 1999). The 

mechanisms for plant gene research are much the same in that double 

stranded RNA is introduced into the plant through the insertion of a sequence 

of DNA that consists of the gene of interest in the forward and reverse 

direction separated by an intron. Upon transcription into mRNA the strand 

folds round on itself producing a hairpin structure which in effect is a dsRNA 

strand which leaves the nucleus and is detected by the cell and cleaved as 

described above in the siRNA fragments. The siRNA fragments as described 

knock-down the genes expression which silences the gene allowing its 

function in the plant to be studied. 
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Fig. 4.3 Overview of the RNAi mechanism. DNA is transcribed into mRNA 

within the nucleus. The transformed plants contain a sequence of DNA that 

consists of the forward and reverse sequence of the target gene separated by 

an intron. Upon transcription the mRNA forms a hairpin structure which in 

effect is a dsRNA strand. This moves into the cytoplasm where it is cleaved 

into siRNA fragments (20-25 bp) by an endonuclease (sometimes called 

dicer). One strand of the siRNA fragments, the guide strand, becomes 

associated with the argonaute protein with the RISC (RNA induced silencing 

complex) which targets complementary mRNA strands. The RISC complex 

degrades complementary mRNA strands along with the other siRNA strand, 

the passenger strand. The degradation of any complementary mRNA strand 
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inhibits any protein synthesis and therefore silences or down-regulates the 

gene (Adapted from Guru, 2000). 

4.2. Materials and methods  

4.2.1 Primer Design 

The HMA4 Gene sequence published by Papoyan and Kochian (2004) was 

some 1185 bp long and showed a high degree of conservation to the 

Arabidopsis thaliana HMA4 gene sequence (Fig.4.4). For the construct, 

primers were designed to anneal to a region that lacked introns that produced 

a PCR product size of 420 bp (using Primer3 (www.primer3.com)). The small 

size was necessary for the cloning procedure. Added to the beginning of the 

chosen left or forward primer was the short sequence CACC, which is the 

recognition site required in the cloning system. The primers were ordered 

online from MWG (http://www.eurofinsdna.com/home.html). 

 Left or Forward Primer: 

5’ CACCGCTAGGGAATGCTTTGGATG 3’ 

Right or Reverse Primer: 

5’ CTTCTCTCGCAGAAGCAACA 3’ 
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AtHMA4  109   CAA-AACAAAGAAGAAGAGAAAAAGA-AAGTGAAGAAGTTGCAAAAGAGTTACTTCGATG  166 
              ||| |||||||||||||| ||||||| ||  |||||||| ||| |||||||||||||| | 
TcHMA4  21    CAAGAACAAAGAAGAAGATAAAAAGACAA-AGAAGAAGTGGCAGAAGAGTTACTTCGACG  79 
 
AtHMA4  167   TTCTCGGAATCTGTTGTACATCGGAAG-TTCCTATAATCGAGAATATTCTCAAGTCACTT  225 
              || | ||||||||||||||||||| || ||||| | |||||||||||||||||||| ||  
TcHMA4  80    TTTTGGGAATCTGTTGTACATCGG-AGATTCCTCTGATCGAGAATATTCTCAAGTCTCTC  138 
 
AtHMA4  226   GACGGCGTTAAAGAATATTCCGTCATCGTTCCCTCGAGAACCGTGATTGTTGTTCACGAC  285 
              ||||||||||| |||||| ||||||||||||| |||||||||||||| ||||| |||||| 
TcHMA4  139   GACGGCGTTAAGGAATATACCGTCATCGTTCCGTCGAGAACCGTGATCGTTGTCCACGAC  198 
 
AtHMA4  286   AGTCTCCTCATCTCTCCC-TTCCAAATTGCTAAGGCACTAAACGAAGCTAGGTTAGAAGC  344 
              |||||||||||| | ||| |||||||||||||||||||| ||| |||| ||||||||||| 
TcHMA4  199   AGTCTCCTCATC-CCCCCGTTCCAAATTGCTAAGGCACTGAACCAAGCGAGGTTAGAAGC  257 
 
AtHMA4  345   AAACGTGAGGGTAAACGGAGAAACTAGCTTCAAGAACAAATGGCCGAGCCCTTTCGCCGT  404 
              ||||||||  |||||||||||||| ||||||||||| |||||||||||||||||||| || 
TcHMA4  258   AAACGTGAAAGTAAACGGAGAAACCAGCTTCAAGAATAAATGGCCGAGCCCTTTCGCGGT  317 
 
AtHMA4  405   AGTTTCCGGCTTACTT-CTCCTCCTATCCTTCCTAAAGTTTGTCTACTCGCCT-TTACGT  462 
              ||||||||| || || |||||||  |||||| |||| ||||| ||| | ||| || ||  
TcHMA4  318   GGTTTCCGGCATA-TTCCTCCTCCCCTCCTTCTTAAAATTTGTATACCCACCTCTT-CGA  375 
 
AtHMA4  463   TGGCT--C-GCCGTGGCAGCAGTTGCCGCCGGTATCTATCCGATTCTTGCCAAAGCCTTT  519 
              |||||  | | |||||  || || || || ||||| |||||||||||||| |||||| |  
TcHMA4  376   TGGCTAGCTGTCGTGG--GC-GTCGCTGCTGGTATTTATCCGATTCTTGCAAAAGCCGTC  432 
 
AtHMA4  520   GCTTCCATTAA-AAGGCCTAGGATCGACATCAACATATTGGTCATAATAACCGTGATTGC  578 
              ||||| | ||| ||||| |||| |||||||||||||  |  |||| || || |||  ||| 
TcHMA4  433   GCTTCTA-TAAGAAGGCTTAGGGTCGACATCAACATCCTAATCATTATCACAGTGGCTGC  491 
 
AtHMA4  579   AACACTTGCAATGCAAGATTTCATGGAGGCAGCAGCAGTTGTGTTCCTATTCACCATATC  638 
              |||||||||||||||||||| ||||||||| ||||||||||| ||| ||||||||| | | 
TcHMA4  492   AACACTTGCAATGCAAGATTACATGGAGGCTGCAGCAGTTGTCTTCTTATTCACCACAGC  551 
 
AtHMA4  639   CGACTGGCTCGAAACAAGAGCTAGCTACAAGGCGACCTCGGTAATGCAGTCTCTGATGAG  698 
              |||||||| ||||||||||||||||||||||| | |||||| ||||||||||||||||| 
TcHMA4  552   TGACTGGCTGGAAACAAGAGCTAGCTACAAGGCCAACTCGGTGATGCAGTCTCTGATGAG  611 
 
AtHMA4  699   CTTAGCTCCACAAAAGGCTA-TAATAGCAGAGACTGGTGAAGAAGTTGAAGTAGATGAGG  757 
              |||||||||||||||||| | | |||||||||||||| |||||||||||||||||||||| 
TcHMA4  612   CTTAGCTCCACAAAAGGC-AGTCATAGCAGAGACTGGAGAAGAAGTTGAAGTAGATGAGG  670 
 
AtHMA4  758   TTAAGGTTGATACAGTTGTAGCAGTTAAAGCTGGTGAAACCATACCAATTGATGGAATTG  817 
              || || |  | ||| |  ||||||||||||| |||||||||||||| ||||||||||||| 
TcHMA4  671   TTCAGCTCAACACAATCATAGCAGTTAAAGCCGGTGAAACCATACCTATTGATGGAATTG  730 
 
AtHMA4  818   TGGTGGATGGAAACTGTGAGGTAGACGAGAAAACCTTAACGGGCGAAGCATTTCCTGTGC  877 
              |||| |||||||||||||| |||||||||||||||||||| || |||||||||||||||| 
TcHMA4  731   TGGTCGATGGAAACTGTGAAGTAGACGAGAAAACCTTAACCGGTGAAGCATTTCCTGTGC  790 
 
AtHMA4  878   CTAAACAGAGAGATTCTACGGTTTGGGCTGGCACCATCAATCTAAATGGTTACATATGTG  937 
              |||||||||||||||||||||||| |||||| || || |||||||||||||| ||| ||| 
TcHMA4  791   CTAAACAGAGAGATTCTACGGTTTTGGCTGGAACTATGAATCTAAATGGTTATATAAGTG  850 
 
AtHMA4  938   TGAAAACAACTTCTTTAGCGGGTGATTGCGTGGTTGCGAAA-ATGGCTAAGCTAGTAGAA  996 
              |||| |||||| |||||||  |||||||||||||||| ||| ||||||||||| |||||| 
TcHMA4  851   TGAACACAACTGCTTTAGCTAGTGATTGCGTGGTTGC-AAAGATGGCTAAGCTCGTAGAA  909 
 
AtHMA4  997   GAAGCTCAGAGCAGTAAAACCAAATCTCAGAGACTAATAGACAAATGTTCTCAGTACTAT  1056 
              ||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||| 
TcHMA4  910   GAAGCTCAGGGCAGTAAAACCAAATCTCAGAGACTAATAGACAAATGTTCTCAGTACTAT  969 
 
AtHMA4  1057  ACTCCAGCAATCATCTTAGTATCAGCTTGCGTTGCCATTGTCCCGGTTATAATGAAGGTC  1116 
              ||||||||||||||| || |||| ||| || |||| |||||||||| ||||||||| ||  
TcHMA4  970   ACTCCAGCAATCATCATAATATCGGCTGGCTTTGCGATTGTCCCGGCTATAATGAAAGTT  1029 
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AtHMA4  1117  CACAACCTTAAACATTGGTTCCACCTAGCATTAGTTGTGTTAGTCAGTGGTTGTCCCTGT  1176 
              |||||||| || |||||||| ||  ||||| | |||||||||||||||| |||||||||| 
TcHMA4  1030  CACAACCTCAACCATTGGTTTCATTTAGCACTGGTTGTGTTAGTCAGTGCTTGTCCCTGT  1089 
 
AtHMA4  1177  GGTCTTATCCTCTCTACACCAGTTGCTACTTTCTGTGCACTTACTAAAGCGGCAACTTCA  1236 
              ||||||||||||||||||||||| ||||| |||||||||||||||||||||||||||||| 
TcHMA4  1090  GGTCTTATCCTCTCTACACCAGTAGCTACATTCTGTGCACTTACTAAAGCGGCAACTTCA  1149 
 
 
AtHMA4  1237  GGGCTTCTGATCAAAAGTGCTGATTATCTTGACACACTCTCAAAGATCAAGATTGTTGCT  1296 
              |||||||||||||||||||||| | |||||||||| || ||||||||||| || | |||| 
TcHMA4  1150  GGGCTTCTGATCAAAAGTGCTGGTCATCTTGACACTCTTTCAAAGATCAAAATCGCTGCT  1209 
 
AtHMA4  1297  TTCGATAAAACTGGGACTATTACAAGAGGAGAGTTCATTGTCATAGATTTCAAGTCACTC  1356 
              || || ||||| || ||||| || ||||||||||||||||||||||| |||||||||||| 
TcHMA4  1210  TTTGACAAAACCGGAACTATCACTAGAGGAGAGTTCATTGTCATAGAATTCAAGTCACTC  1269 
 
AtHMA4  1357  TCTAGAGATATAAACCTACGCAGCTTGCTTTACTGGGTATCAAGTGTTGAAAGCAAATCA  1416 
              |||||||| |||| |||||||||||||||||||||||| ||||||||||||||||||||| 
TcHMA4  1270  TCTAGAGACATAAGCCTACGCAGCTTGCTTTACTGGGTGTCAAGTGTTGAAAGCAAATCA  1329 
 
AtHMA4  1417  AGTCATCCAATGGCAGCAACAATCGTGGATTATGCAAAATCTGTTTCTGTTGAGCCTAGG  1476 
              ||||| |||||||||||||| || ||||| ||||| |||||||||||||||||||||||| 
TcHMA4  1330  AGTCACCCAATGGCAGCAACGATTGTGGACTATGCTAAATCTGTTTCTGTTGAGCCTAGG  1389 
 
AtHMA4  1477  CCTGAAGAGGTTGAGGATTACCAGAACTTTCCAGGTGAAGGAATCTACGGGAAGATTGAT  1536 
                |||||||||||||||||| ||||||||||| |||||||||||||| |||||||||||| 
TcHMA4  1390  AGTGAAGAGGTTGAGGATTATCAGAACTTTCCTGGTGAAGGAATCTATGGGAAGATTGAT  1449 
 
AtHMA4  1537  GGTAACGATATCTT-CATTGGGAACAAAAAGATAGCTTCTCGAGCTGGTTGTTCAACAGT  1595 
              || ||| || | || |||||||||||||| ||| ||||| |||||||||||||||||||| 
TcHMA4  1450  GGGAACAATGT-TTACATTGGGAACAAAAGGATTGCTTCACGAGCTGGTTGTTCAACAGT  1508 
 
AtHMA4  1596  TCCAGAGATTGAAGTTGATACCAAAGGCGGGAAGACTGTTGGATACGTCTATGTAGGTGA  1655 
              |||||||||||| ||||||||||||   || |||||||| |||||||||||||||||||| 
TcHMA4  1509  TCCAGAGATTGAGGTTGATACCAAAAAAGGAAAGACTGTCGGATACGTCTATGTAGGTGA  1568 
 
AtHMA4  1656  AAGACTAGCTGGATTTTTCAATCTTTCTGATGCTTGTAGATCTGGTGTTTCTCAAGCAAT  1715 
              |||| |||||||| ||||||||||||| |||||||||||||| || ||  |||||||||| 
TcHMA4  1569  AAGATTAGCTGGAGTTTTCAATCTTTCCGATGCTTGTAGATCCGGAGTAGCTCAAGCAAT  1628 
 
AtHMA4  1716  GGCAGA-ACTGAAATCTCTAGGAATCAAAACCGCAATGCTAACGGGAGATAATCAAGCCG  1774 
              |  ||  ||| |||  ||| ||||||||||||||||||||||| |||||||||||||    
TcHMA4  1629  GA-AGGGACTCAAAGATCTTGGAATCAAAACCGCAATGCTAACAGGAGATAATCAAGATT  1687 
 
AtHMA4  1775  CGGCAATGCATGCTCAAGAACAGCTAGGGAATGTTTTAGATGTTGTACATGGAGATCTTC  1834 
              | |||||||| |||||||||||||||||||||| ||| |||||||| |||||||| |||| 
TcHMA4  1688  CAGCAATGCAAGCTCAAGAACAGCTAGGGAATGCTTTGGATGTTGTTCATGGAGAGCTTC  1747 
 
AtHMA4  1835  TTCCAGAAGATAAGTCCAGAATCATACAAGAGTTTAAGAAAGAGGGACCAACC-GCAATG  1893 
              |||||||||| || |||| |||||||||||||||||||||||| ||||||||  | | || 
TcHMA4  1748  TTCCAGAAGACAAATCCAAAATCATACAAGAGTTTAAGAAAGAAGGACCAACTTGTA-TG  1806 
 
AtHMA4  1894  GTAGGGGACGGTGTGAATGATGCACCAGCTTTAGCTACA-GCTGATATTGGTATCTCCAT  1952 
              ||||| || |||||||||||||||||||||||||||| | |||||||||||||||||||| 
TcHMA4  1807  GTAGGAGATGGTGTGAATGATGCACCAGCTTTAGCTA-ATGCTGATATTGGTATCTCCAT  1865 
     
AtHMA4  1953  GGGAATTTCTGGCTCTGCTCTTGCAACACAAACTGGTAATATTATTCTGATGTCTAATGA  2012 
              ||| |||||||||||||| || || || || |||||| |||| ||||| ||||| ||||| 
TcHMA4  1866  GGGGATTTCTGGCTCTGCGCTCGCGACGCAGACTGGTCATATCATTCTCATGTCAAATGA  1925 
 
AtHMA4  2013  TATAAGAAGGATACCACAAGCGGTGAAGCTAGCGAGAAGAGCAC-GACGCAAAGTTGTTG  2071 
              ||| |||||||||||||||||| | |||||||| |||||||| | | || |||||| ||  
TcHMA4  1926  TATCAGAAGGATACCACAAGCGATAAAGCTAGCAAGAAGAGCTCAG-CGGAAAGTTCTTC  1984 
 
AtHMA4  2072  AAAACGTGTGTC-TATCGATCATTTTAAAAGCAGGAATACTCGCTTTGGCATTTGCTGGT  2130 
              ||||||||  || | || |||| ||| |||| ||| ||||| | ||| |||||||||||| 
TcHMA4  1985  AAAACGTGA-TCATCTCCATCACTTTGAAAGTAGGGATACTGGTTTTAGCATTTGCTGGT  2043 
 
AtHMA4  2131  CATCCTTTGATTTGGGCTGCGGTTCTTGTTGATGTAGGGACTTGTCTGCTTGTGATTTTC  2190 
              ||||||||||||||||||||||| |||  ||||||||||||||| ||| |||||||| || 
TcHMA4  2044  CATCCTTTGATTTGGGCTGCGGTGCTTACTGATGTAGGGACTTGCCTGATTGTGATTCTC  2103 
 
AtHMA4  2191  AATAGTATGTTGCTGCTGCGAGAGAAGAAAAAGAT-TGGGAACAAAAAGTGTTACAGGGC  2249 
              || ||||||||||| |||||||||||| | || || |  || ||| ||||||||||||   
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TcHMA4  2104  AACAGTATGTTGCTTCTGCGAGAGAAGGATAA-ATCTAAGATCAAGAAGTGTTACAGG--  2160 
 
AtHMA4  2250  TTCTACATCTAAGTTGAATGGTAGGAAACTTGAAGGCGAT-GATGATTATGTTGTGGACT  2308 
                  | |     |   ||    |     |||||||||| | |||||  | |   | |||| 
TcHMA4  2161  ----A-A-----G---AA----A-----CTTGAAGGCG-TCGATGACCAAGGCCTTGACT  2197 
 
AtHMA4  2309  TAGAAGCAGGCTTGTTAACAAAGAGCGGGAATGGTCAATGCAAATCAAGCTGTTGTGGAG  2368 
               |||||||||| |||||| |||||||      |   |||||||| ||| | |||||||| | 
TcHMA4  2198  TAGAAGCAGGGTTGTTATCAAAGAG------T---CAATGCAACTCAGGATGTTGTGGTG  2248 
 
AtHMA4  2369  ATAAGAAAAATCAAGAGAACGTTG-TGATGATGAAACCAAG-TAGTAAAACCAGTTCTGA  2426 
              || ||||||  |||||||| || | || |||||| |||| | |||||||||||||||||| 
TcHMA4  2249  ATCAGAAAAGCCAAGAGAAGGT-GATGTTGATGAGACCA-GCTAGTAAAACCAGTTCTGA  2306 
 
AtHMA4  2427  TCATTCT-CACCCTGGTTGTTGTGGCGATAAGAAGGAAGAAAAAGTGAAGCCGCTTGTGA  2485 
               ||| || ||| ||||||||||||| || |||||| |||| |  || ||||   |||||| 
TcHMA4  2307  CCAT-CTTCACTCTGGTTGTTGTGGTGAAAAGAAGCAAGAGAGTGTAAAGC---TTGTGA  2362 
 
AtHMA4  2486  AAGATGGCTGTTGCAGTGAGAAAACTAAGAAATCAGAGGGAGATATGGTTTCATTGAGCT  2545 
              ||||| |||||||| ||||||||| || |||| ||||||||||||||| |||| |||||| 
TcHMA4  2363  AAGATAGCTGTTGCGGTGAGAAAAGTAGGAAACCAGAGGGAGATATGGCTTCACTGAGCT  2422 
 
AtHMA4  2546  CATGTAAGAAGTCTAGTCATGTCAAACATGACCTGAAAATGAAAGGTGGTTCAGGTTGTT  2605 
              |||| ||||||||||   |   |||   ||||||||||||||||||||||||| |||||| 
TcHMA4  2423  CATGCAAGAAGTCTA---A---CAA---TGACCTGAAAATGAAAGGTGGTTCAAGTTGTT  2473 
 
AtHMA4  2606  GTGCTAGCAAAAATGAGAAAGG-GAAGGAAGTAGT-G--GCAAAGAGCTGTTGTGA      2657 
              ||||||| ||||||||||| |  |||||||| ||| |  ||||||||||| ||||| 
TcHMA4  2474  GTGCTAGTAAAAATGAGAA-GCTGAAGGAAGCAGTAGTAGCAAAGAGCTGCTGTGA      2528 

 

Fig. 4.4 Sequence alignment of the TcHMA4 gene to the AtHMA4 gene. The 

genes show 85% alignment. The primer positions are shown in red, the 420bp 

region is highlighted in green. 

 

4.2.2 Plant genomic DNA isolation 

Genomic DNA was extracted from T. caerulescens sp. (Ganges) and T. 

arvense. (Wellesbourne) using the GeneElute™ Plant Genomic DNA Miniprep 

kit (Sigma-Aldrich Gmbh, Steinheim, Germany). Plants taken for DNA 

extraction were grown on a mixture of Levington’s seed compost (Scotts U.K. 

Professional, Ipswich, U.K.), vermiculite and perlite (William Sinclair 

Horticulture Ltd., Lincoln, U.K.) at a 3:1:1 (v/v) ratio, and supplemented with 

50 ml L-1 compost of systemic insecticide “Intercept” [70% (w/w) Imidacloprid] 

prepared at 0.2 g L-1 to prevent scarid fly infestation (Monro South, Wisbech, 

U.K.). Trays were then placed in a miniature incubator in a growth room at 20 
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±2°C for a 16 h photoperiod, at a light intensity of 50 – 80 µmol m-2 s-1 

produced by 58 W white halophosphate fluorescent tubes (Cooper Lighting 

and Security, Doncaster, UK). Following 8-12 days seedlings were transferred 

to the glasshouse and cultured at 24±2°C with a 16 h photoperiod maintained 

by light supplementation from 600 W luminaries using 600 W pressure sodium 

lamp (Philips® Sun-t Pia Green Power, Philips Electricals UK Ltd., Guildford, 

U.K.) for a six to eight weeks. 

 

Leaf discs of plant tissues were frozen in Eppendorf tubes in liquid nitrogen 

and then ground to a fine powder using a micropestle. The genomic DNA was 

released by adding 350 μl of Lysis Solution A and 50 μl of Lysis Solution B 

followed by vortexing for 3 s inversion and an incubation period of 10 minutes 

at 65°C. The debris was removed by adding 130 μl of Preparation Solution 

and mixed by inversion followed by 5 minutes incubation on ice. The debris 

was pelleted out by 5 minutes of centrifugation. The supernatant was then 

transferred to the Blue Filtration Column and spun for 1 minute. 

 

The Binding Column was prepared by adding 700 μl of Binding Solution to the 

filtrate and mixed by inversion. 700 μl of the mix was added to the binding 

column and spun for 1 minute at 1300 rpm and the flow-through discarded. 

This was repeated for the remainder of the mix. The column was then 

transferred to a new tube.  

 

Subsequently, 500 μl of Wash Solution was added and spun for 1 minute. 

Again the column was transferred to a new tube. Another 500 μl of Wash 
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Solution was added and spun for a further 3 minutes. Finally the column was 

transferred to a new tube and the DNA was eluted by adding 100 μl of Elution 

Solution (warmed to 65°C) to the column. This was spun for 1 minute and 

then repeated. The DNA concentration was checked with a NanoDrop® 

(NanoDrop® ND-1000 UV-Vis Spectrophotometer, Wilmington, DE 19810, 

USA) and stored at -20°C. 

 

4.2.3 PCR DNA amplification 

In order to increase the DNA concentration of DNA samples were amplified by 

PCR. The PCR reaction was carried out at a range of concentrations to 

determine the optimum requirements to amplify the DNA (Table 4.1). The 

PCR was run for 2 min at 94 ºC followed by thirty cycles of 94 ºC for 20 s,  56 

ºC for 20 s and 72ºC for 40 s. Completed with 10 min at 72 ºC. 
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Reagents T. caerulescens μl T. arvense μl 

H2O 12.2 9.2 6.2 3.2 8.2 1.2 

10 x biobuffer 2 2 2 2 2 2 

50 mM MgCl2 0.6 0.6 0.6 0.6 0.6 0.6 

10 mM dNTPs 0.4 0.4 0.4 0.4 0.4 0.4 

Left primer 0.8 0.8 0.8 0.8 0.8 0.8 

Right primer 0.8 0.8 0.8 0.8 0.8 0.8 

DNA (3.3 

μg/μl) 

3 6 9 12 7 14 

BioTaq 

(Bioline) 

0.2 0.2 0.2 0.2 0.2 0.2 

Table 4.1. PCR mixture made up to determine the optimum concentrations to 

give an increase in DNA concentration. 

4.2.4 Agarose gel electrophoresis of DNA 

All PCR products were visualised by running samples on a 0.7% (w/v) 

Agarose gel for 30 min at 94 V in 1X TBE buffer. The 1X TBE buffer was 

made up using 100 ml of 10XTBE buffer (108 g TrisBase, 55 g Boric Acid, 20 

mL 0.5 M EDTA, make up to 1 L with water) and 900ml water, containing 5 μl 

of 10 mg ml-1 ethidium bromide. 

 

4.2.5 DNA purification from agarose gels. 

Gel electrophoresis bands were visualised under a short wavelength UV 

transilluminator. Bands of the correct size i.e. those containing the DNA 
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fragment of interest were excised from the gel using a sterile scalpel, placed 

into Eppendorf tubes and flash frozen in liquid nitrogen. 

 

The DNA extracted using a MinElute Qiagen Gel Extraction kit (Qiagen Ltd, 

Crawley, West Sussex) using a microcentrifuge. The fragment in the agarose 

was weighed and to it a volume of Buffer QG; three times the weight of the 

fragment was added. This was incubated in a water bath at 50 ºC for 10 

minutes or until the gel had dissolved, during incubation the tube was inverted 

every 2-3 minutes to aid dissolving. Once the dissolving was complete, the 

colour of the tube contents were checked to confirm they remained yellow, an 

indication that the contents is at optimum pH. One times the gel volume of 

isopropanol was added to the tube and mixed by inversion several times. A 

MinElute column supplied in the kit was placed in a 2 ml collection tube (also 

supplied). The DNA extracted from the gel was transferred to the MinElute 

column and centrifuged at 10,000 x g for 1 minute to bind the DNA to the 

column. The flow through liquid was discarded and the MinElute column 

containing the bound DNA was retained in the collection tube. 500 µl of Buffer 

QG was added to the spin column and centrifuged at 10,000 x g for 1 minute. 

Again the flow through was discarded and the column and tube retained. A 

wash was carried out by adding 750 µl of Buffer PE to the column and 

spinning at 10,000 x g for 1 minute. The flow through was discarded and the 

tube spun for an additional 1 minute at 10,000 x g. The MinElute column was 

placed in a clean 1.5 ml collection tube and 10 µl of reverse osmosis purified 

water was added to the column to elute the DNA. This was left to stand for 

one min and then centrifuged at 10,000 x g for 1 minute. 
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4.2.6 Overview of the cloning strategy used to produce an RNA 

interference construct 

To produce a RNAi HMA4 construct for transformation of T. caerulescens and 

T. arvense, the GATEWAY® recombination cloning technology was to be 

used. The protocol involves inserting the fragment of interest into the entry 

vector, pENTR/D- TOPO® vector, this is made possible by the addition of a 

CACC sequence at the 5’ end of the target DNA and the attL sites that flank 

the cloning sites to allow recombination. Following successful recombination, 

confirmation by PCR and sequencing. the target gene is recombined into the 

chosen destination vector (PK 7GW1WG2 GATEWAY® vector for RNA 

interference) using the LR clonase reaction enzyme mix (Invitrogen, 

Gaitherburg, MD, USA).  

In this study the initial insertion of the HMA4 fragment into the entry vector, 

pENTR/D- TOPO, was unsuccessful. Therefore a more traditional approach 

using pGEM® T-EASY vector was used prior to the GATEWAY recombination 

cloning technology. The following is the procedure outlined in more detail.  

 

4.2.7 Ligation with pGEM®-T Easy Vector  

Before the transformation of the extracted 420 bp fragments into the pGEM T-

Easy vector (Fig.4.5) A overhangs were added through the addition of a single 

Adenine molecule using a thermocycler to carry out the elongation reaction; 

the reaction mix is displayed in Table 4.2. 
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Reagents T. caerulescens μl T. arvense μl 

H2O 0 5 

10 x biobuffer 1 1 

50 mM MgCl2 0.4 0.4 

dATPs 1 1 

DNA fragment 6.6 5 

BioTaq (Bioline) 1 1 

Table 4.2 The reaction mix used to add the series of Adenine molecules 

required to produce blunt ends. The reaction mix was placed in a 

thermoclycler and run at 70°C for 30 minutes. 

 

The 420 bp DNA fragment with blunt ends was ligated into the pGEM® T-

Easy Vector System 1 at two concentrations to determine an optimum to allow 

the ligation to take place. DNA ligase was added alongside the reaction buffer 

and water (Table 4.3). The samples were left in the cold room at 4°C for 2 

days to allow ligation. 
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Reagents T. caerulescens 
1:1 μl 

 

T. caerulescens 
3:1 μl 

T. arvense 
1: 1 μl 

T. arvense 
3: 1 μl 

dATP 

reaction 

0.7 2.1 0.7 2.1 

pGEM-Teasy 1 1 1 1 

H2O 2.3 0.4 2.3 0.4 

2x rapid 

buffer 

5 5 5 5 

T4 DNA 

ligase 

1 1 1 1 

 

Table 4.3 showing the reaction mixture used to carry out the ligation of the 

fragment with the pGEM T-Easy vector. 

 

Prior to the ligation procedure two LB/ampicillin/IPTG/X-Gal plates were 

produced for each ligation reaction, plus two plates for determining 

transformation efficiency. The plates were equilibrated to room temperature 

prior to plating. The tubes containing the ligation reactions were centrifuged to 

collect contents at the bottom of the tube. 2 µl of each ligation reaction was 

added to a sterile 1.5 ml microcentrifuge tube and set on ice. Another tube 

was placed on ice with 0.1ng of uncut plasmid for determination of the 

transformation efficiency of the competent cells. 
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Fig.4.5 Map of the pGEM® T-Easy Vector displaying restriction sites and 

selectable marker genes. 

 

4.2.8 Transformation into competent E. coli cells. 

Ligation mixes of plasmids and the HMA4 fragments were ligated into DH 52 

E. coli competent cells. The ligation products were added to competent E. coli 

cells, stored on ice for 10 minutes before being placed in a water bath at 42°C 

for 90 s. This provided a heat shock that creates pores in the bacterial 

membrane to allow fragments of DNA to pass through. The tubes were then 

again placed on ice for 1 minute before adding 600 μl of liquid LB medium (10 

g L-1 Bacto-tryptone, 10 g L-1 Yeast extract and 10 g L-1 NaCl with pH adjusted 

to 7.2 using 0.1 M HCl or 0.1 M NaOH), then the culture was shaken at 37°C 

for 1 hour. 



Chapter 4: HMA4 RNAi Construct Design 

 
153 

 

 

The cultures were plated at 200 μl and 150 μl on to solid LB medium 

supplemented with 50 μg ml-1 kanamycin at 37°C overnight, to obtain single 

colonies. 

 

4.2.9 Selection of positive E. coli clones  

Following transformation into competent E. coli cells positive colonies were 

identified in one of two ways depending on the vector the HMA4 fragment was 

inserted in.  

 

4.2.9.1 Selection of positive E. coli clones containing the pGEM® T-Easy 

Vector 

The plates produced blue and white bacterial colonies of which only the white 

are useful as these show they contain the HMA4 DNA insert which has 

disrupted the gene that would normally produce the blue pigment (Lac Z gene 

which under normal conditions produces ß-galactosidase, which is able to turn 

the substrate X-gal into a blue product). Approximately 6 white colonies were 

picked from each plate and grown separately overnight in 20 μl of liquid LB 

medium supplemented with 50 μg ml-1 kanamycin at 37°C. 

The positive clones were analysed by PCR reaction for the presence of the 

HMA4 fragment of the correct size. Prior to the PCR amplification the 

extracted plasmid was incubated with the enzyme Not1 to release the 

fragment from the plasmid (Table 4.4). The incubation period was 1 h at 37°C. 
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Reagents T. caerulescens μl T. arvense μl 

H2O 16.0 13.0 

10x reaction buffer 3 3 

DNA 10 13 

Not1 1.0 1.0 

 

Table 4.4 The PCR used to determine the presence of the HMA4 gene in the 

positive clones including the addition of the Not1 enzyme to release the 

fragments from E. coli. 

 

4.2.9.2 Selection of positive E. coli clones containing the pENTR/D-TOPO 

Vector 

Positive clones were chosen from the overnight culture (i.e. those that grew) 

named TOPO-G and TOPO-W. The plasmid contains a ccdB gene that is 

lethal to most E. coli cells. Upon recombination this gene is removed allowing 

only E. coli cells containing plasmids that have successfully undergone 

recombination to grow. Master plates of these colonies were made on solid LB 

supplemented with the same antibiotics as previously. To test for the positive 

presence of the HMA4 gene PCRs were set up containing very minute 

amounts of bacteria picked up with a pipette tip run with the HMA4 primers.  

 

4.2.10 Extraction of plasmid DNA 

To allow the fragment to be moved into subsequent plasmids the construct 

was first removed from the current host using the Qiagen Spin Miniprep kit 
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(Qiagen Ltd, Crawley, West Sussex). The liquid overnight cultures were spun 

down into individual pellets, firstly the pellet was re-suspended in 250 µl Buffer 

P1 and transferred to a microcentrifuge tube. To that, 250 µl Buffer P2 was 

added and inverted 4-6 times to mix. 350 µl Buffer N3 was added and 

immediately but gently inverted 4-6 times to produce a cloudy mix. This was 

centrifuged for 10 minutes at 17,900 x g to form a compact white pellet. The 

supernatants from the previous step were applied to a QIAprep spin column 

by decanting or pipetting and centrifuged for 30-60 s, the flow through was 

discarded. The QIAprep spin column was washed by adding 0.5 ml of Buffer 

PB and spun for 30-60 s; again the flow through was discarded. The step 

removes the trace nuclease activity. Another wash step was carried out by 

adding 0.75 ml Buffer PE and centrifuging for 30–60 s at 10,000 x g. After 

discarding the flow through an additional spin for 1min removed the residual 

wash buffer. The QIAprep column was transferred to a clean 1.5 ml 

microcentrifuge tube to carry out DNA elution. 50 µl reverse osmosis purified 

water was added to the center of each QIAprep column. This was left to stand 

for one min and then centrifuged at 10,000 x g for 1 minute. 

  

4.2.11 Ligation with pENTR/D-TOPO vector  

Following the positive identification of HMA4 fragments within the pGEM® T-

Easy Vector by PCR and sequencing the HMA4 TV-G (T. caerulescens) and 

TV-W (T. avense) sequences were cut from the pGEM® T-Easy vector with 

Not1 before ligation. TOPO A6 vector was also cut with Not1 and 

dephosphylated with CIAP (Calf Intestinal Alkaline Phosphatase) enzyme 

(Table 4.5) The incubation period was carried out at 37°C for 1 h. 
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 T.caerulescens μl T.arvense μl 

H2O 15.5 12.5 

10x buffer 3 3 3 

DNA 10 13 

Not1 1.5 1.5 

Table 4.5 The reaction mix used to transform the fragment into the PENTR/D-

TOPO Vector 

 

The fragments were inserted into the Invitrogen Gateway entry vector 

pENTR/D-TOPO through ligation over a two day period in a cold room 

according to the manufacturer’s protocol using the reaction mix (Table 4.6) 

(Invitrogen, Gaitherburg, MD, USA). Following this the ligation product was 

transformed into competent E. coli cells as described in section 4.2.8. Clones 

which survived were grown overnight on solid LB medium, supplemented with 

50 µg ml-1 kanamycin at 37°C, followed by PCR with HMA4 primers and 

sequencing to confirm the presence of HMA4. The plasmid constructs were 

identified according to the origin of the DNA i.e. TOPO-G and TOPO-W from 

T. caerulescens (Ganges) and T. arvense (Wellesbourne) DNA respectively. 
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Reagents T. caerulescens 

Ganges μl 

T. arvense 

Welesborne μl 

Control μl 

H2O 1 0 2 

2x buffer 5 5 5 

TOPO 2 2 2 

DNA Fragment 1 2 0 

Ligase 1 1 1 

Table 4.6 The reaction mix used for the ligation of the fragment into the 

PENTR/D-TOPO Vector. 

 

4.2.12 Ligation into the PK 7 GATEWAY vector for RNA interference 

Overnight cultures of the pENTR/D-TOPO G1 (T. caerulescens) and 

pENTR/D-TOPO-W1 (T. arvense) were produced as described previously and 

the plasmid DNA extracted using the Qiagen Spin Miniprep kit (Qiagen Ltd) as 

described in section 4.2.10.The samples were again cut with Not1 enzyme as 

before and the ligation between the fragment and the PK7GW1WG2 

GATEWAY RNAi destination vector (Fig. 4.6) was carried out as with the 

ligation between the fragment and the pENTR/D-TOPO vector but this time 

using the LR Clonase Enzyme Mix (Invitrogen, Gaitherburg, MD, USA). 

The ligation was left in the cold room for 2 days, in the dark to ligate. On 

completion of the ligation process Proteinase K (Invitrogen, Gaitherburg, MD, 

USA) was added (1 µl) and incubated for 10 minutes at 37ºC. This step 

improves transformation efficiency. 
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The ligation reaction mix was transformed into competent E. coli cells as 

described in section 4.2.8. Positive colonies were indentified by PCR and 

sequencing and a master plate made up of successful colonies as previously 

discussed. 

 

Fig.4.6 Map of GATEWAY™ destination vector Pk7GW1WG2 showing the 

attR recombination sites, the ccdB gene that inhibits growth in E. coli that is 

removed and replaced by the chosen DNA fragment (Karimi et al., (2002). 

 

4.2.13 Transformation into Agrobacterium tumefaciens 

Two different strains of A. tumefaciens were chosen, LBA4404 for the tissue 

culture plant transformation and C58 for the floral dip method. Overnight 

cultures of the T. caerulescens (sample G4) and T. arvense (sample W8), 

which were successfully sequenced, were grown up from the master plates in 

LB medium supplemented with 50 µg ml-1 of spectinomycin. The plasmids 

were then extracted using the Qiagen extraction kit (4.2.9). Then 50 ng of the 

HMA4 in the pk7 GW1WG2 Gateway vector was mixed gently with 50 µl of 

competent Agrobacterium tumefaciens cells. The mixture was frozen in liquid 

nitrogen for 3 minutes and thawed by incubation in a water bath at 37 ºC for 5 

minutes to apply a heat shock to the cells. This heat shock induces pores in 
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the membranes to allow uptake of the vector into the cells. Before incubation, 

600 µl of APM medium (5 g L-1 yeast extract, 0.5 g L-1 casein hydroysate acid, 

8 g L-1 Mannitol , 2 g L-1 Ammonium sulphate, 5 g L-1 NaCl, 0.427 g L-1 MgCl2 

with pH adjusted to 6.6 using a pH meter) was added and incubated in the 

dark at 29ºC for 2-4 h whilst being shaken. 

 

The incubated suspension was spread on solid LB medium plates 

supplemented with 50 µg ml-1 spectinomycin, 50 µg ml-1, streptomycin and 35 

µg ml-1 rifampacin. The plates were incubated in the dark for 2-3 days at 29ºC. 

Positive clones could then be tested by PCR. Positive clones were confirmed 

by PCR and sequencing and glycerol stocks produced for the A. tumefaciens 

C58 (T. caerulescens and T. arvense) constructs and A. tumefaciens 

LBA4404 (T. caerulescens and T. arvense) constructs. 1.5 ml Eppendorf 

tubes containing 0.75 ml aliquots of bacterial culture were mixed with 0.75 ml 

of 40% (v/v) glycerol in Luria broth (containing 10 g tryptone, 5 g yeast extract, 

5 g NaCl, 1 litre distilled water Adjust to pH 7.5), stored at -70°C. 

 

4.2.14 Sequencing of plasmids 

To determine that the gene had entered the plasmids and that there were no 

errors in the sequences the plasmids were sequenced using a Beckman 

CEQ ceq8000 DNA sequencer (Beckman Coulter, Inc, Fullerton, California). 

For the final construct, sequencing was carried out using primers for the 35S 

promoter in the RNAi construct with the HMA4 left primer for the T. 

caerulescens construct and the primers for the 35S promoter in the RNAi 

construct with the HMA4 right primer for the T. arvense construct.  
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4.3 Results  

4.3.1 Plant genomic DNA isolation 

Using the primers designed for the HMA4 fragment (420 bp) PCR amplified 

the fragments from T. caerulescens (G1, G2 and G3 represent biological 

replicates of different T. caerulescens) and T. arvense (W1 and W2 represent 

biological replicates of different T. arvense plants) genomic DNA, despite the 

low levels of DNA extracted (at concentrations of 3.3 ng μL-1 and 1.5 ng μL-1 

respectively) (Fig.4.7). 

 

Fig. 4.7 PCR amplification of four T. caerulescens (Ganges) (G1-4) and two 

T. arvense (Wellesborne) samples (W1-2) DNA using the HMA4 primers. 

Positive bands for Ganges samples 1 to 4 and very faint bands at W1 and 

W2. This shows that the primers designed amplify the expected 420 bp from 

Ganges. The very faint band in the Welesborne samples may be due to the 

lower copy number of the HMA4, which may explain the lack of the 

hyperaccumulating trait. The replicates (G1, G2, W1 and W2) refer to DNA 

templates extracted from individual plants. 
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4.3.2 Ligation with the pGEM® T-EASY vector 

Initial attempts to insert the HMA4 fragments into the GATEWAY™ pENTR/D 

TOPO vector were not successful. Reasons for this are unknown however 

they may be due to one or more of several factors including efficiency of 

competent cells, the enzyme used, the enzyme may have denatured 

somehow possibly due to storage or maybe the problem lay with the DNA 

fragment itself.  

 

The steps taken to overcome this problem involved using a more traditional 

cloning approach using the pGEM® T-EASY vector. Following positive 

selection of E. coli colonies by blue and white selection, PCR amplification of 

the plasmids was carried out using the HMA4 forward and reverse primers, 

following an incubation period with the enzyme Not1. This PCR of positive E. 

coli clones containing the T. caerulescens (G1-G6) and T. arvense (W1-W6) 

fragments respectively and showed that all colonies possessed the 420 

bpHMA4 fragment (Fig.4.8) However some fragments appeared more 

prominent than others therefore one T caerulescens containing colony and 

one T. arvense containing colony was chosen to be sent for sequencing 

(Apendix 8.1.1, 8.1.2). 
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Fig.4.8 Gel electrophoresis of amplified PCR products of the positive E. coli 

colonies. The PCR results showed all colonies possess the HMA4 gene. 

However some are more prominent bands than others. As only one T. 

caerulescens and one T. arvense clone is required two strong bands were 

chosen and these were sent for sequencing: these were named TV-G and TV-

W. 

 

4.3.3 Ligation into the pENTR/D- TOPO vector 

Follow the ligation into the GATEWAY™ pENTR/D-TOPO vector positive 

colonies were analysed by PCR and sequencing to confirm correct insertion of 

the 420 bp HMA4 fragment. Fig.4.9 confirms that 2 positive bands at 420 bp 

can be seen for T. caerulescens (G) and T. arvense (W) which concludes that 

the HMA4 correctly inserted into the pENTR/D-TOPO vector. Colonies 

containing the HMA4 T. caerulescens fragment, G1 and HMA4 T. arvense 

fragment, W1 were chosen for sequencing and used in subsequent reactions 

(Appendix 8.2.5 and 8.2.6). 
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Fig.4.9 The electrophoresis of the PCR to amplify E. coli containing the 

PENTR/D TOPO vector carrying the HMA4 gene. G1 (T. caerulescens) and 

W1 (T. arvense) were chosen for sequencing. The results were positive for T. 

caerulescens (G1, G2) and T. arvense (W1, W3) (T. arvense W2 has an 

unusually large band). 

 

From the sequencing results it was noted that the T. arvense HMA4 sequence 

was inserted in the reverse orientation to the T. caerulescens HMA4 

sequence. This was interesting to know however it should not affect the final 

dsRNA product that this construct ought to produce. Fig.4.10 shows an 

overview of how the HMA4 (either G1 or W1) appeared in the pENTR/D-

TOPO vector showing additional features such as the att recognition sites. 
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a) 

 

b) 

Fig.4.10a Map of TOPO-G1 construct showing orientation of the HMA4 insert 

in comparison to the TOPO-W1 (Fig.4.10b) construct where the insert is in 

the reverse orientation 
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4.3.4 Ligation into the PKGW1WG2 GATEWAY vector for RNAi  

Successful recombination between the entry clone and the destination vector, 

in this case PKGW1WG2 RNAi vector, was confirmed again by PCR and 

sequencing of positive clones. The PCR was carried out with different 

combinations of primers in this case. Using the forward HMA4 primer and 

either the 35S promoter or terminator primer from the PKGW1WG2 RNAi 

vector gave the results shown in Fig.4.11. Three strong positive clones 

containing the HMA4 fragment were identified. Replicate G2 was chosen to be 

sequenced (Appendix 8.2.7, 8.2.8) The PCR had to be repeated as no 

positive results were identified for T. arvense (Fig.4.12). This time the HMA4 

reverse primer was used with the 35S promoter or terminator primer from the 

PKGW1WG2 RNAi vector. Five positive clones were identified with replicate 

W8 and sent for sequencing (Appendix 8.1.11) along with a second T. 

caerulescens replicate G4 (Appendix 8 .2.9, 8.2.10). 

 

From the sequencing and the PCR results it was determined that indeed the 

T. arvense HMA4 sequence had entered the destination vector in the opposite 

orientation to the T. caerulescens HMA4 sequence as outlined by Fig.4.13. 
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Fig.4.11 The electrophoresis results from a PCR run using two primer sets, 

HMA4 forward primer plus either the 35S promoter (P) or terminator (T) primer 

only G2 (T. caerulescens) promoter and G3 and G4 terminator worked well. T. 

arvense (W) appeared not to work at all. G2 was sent for sequencing.  
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Fig.4.12 Electrophoresis results from the PCR run to determine that the 

HMA4 gene has entered the Gateway vector. T. arvense samples; W4, W6, 

W8, W11 amplified with the promoter primer and left primer are positive as are 

W6 promoter with right primer. T. caerulescens (G4) T. arvense W8 were sent 

for sequencing. 
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Fig.4.13 Showing the orientation of the HMA4 gene around the intron region 

in the T. caerulescens HMA4 construct (a) T. caerulescens HMA4 construct is 

the opposite of T. arvense HMA4 construct (b). When compared to the entry 

vector it can be seen that the HMA4 fragment has replaced the ccdB fragment 

that inhibits the growth of the majority of E. coli cells. In the LR reaction the 

entry clone (pENTR/D-TOPO vector) with attL sites recombine with the 

destination vector (PK7GW1WG2 RNAi vector) with attR sites to form the 

expression clone with attB sites and a by product with attP sites.  

 
 

 

 

(a) 

(b) 
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4.3.5 Transformation into A. tumefaciens 

With the HMA4 fragments from both T. caerulescens and T. arvense 

successfully confirmed to be contained within the RNAi destination vector, the 

last step was to transform the plasmids into the two strains of A. tumefaciens, 

C58 and LBA4404. The following figures (Fig.4.14 and Fig.4.15) confirm that 

T. caerulescens Ganges (G) was successfully transformed into both strains of 

Agrobacterium tumefaciens (C58 and LBA4404) with all colonies tested being 

positive. T. arvense Wellesborne (W) was successfully transformed into 

Agrobacterium tumefaciens strain C58, however the bands for the LBA4404 

strain were a lot more faint, apart from sample number 6. However this was 

not an issue as only one replicate of T. caerulescens and T. arvense was 

required for the production of glycerol stocks and to be sequenced to confirm 

the correct sequence.  
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Fig.4.14 Electrophoresis results of the final PCR of the T. caerulescens 

samples to confirm the presence of the HMA4 gene in the Agrobacterium 

tumefaciens strains LBA4404 and C58. 7 positive clones were identified for 

the LBA4404 strain and 12 for the C58 strain. 

 

Fig.4.15 Electrophoresis results of the final PCR of the T. arvense samples to 

confirm the presence of the HMA4 gene in the Agrobacterium tumefaciens 

strains LBA4404 and C58. 6 positive clones were identified for the LBA4404 

strain and 6 for the C58 strain. 

 



Chapter 4: HMA4 RNAi Construct Design 

 
171 

 

4.3.6 Sequencing of the final constructs 

The end result of this work was the production of two constructs (HMA4 of T. 

caerulescens and T. arvense) in two different strains of A. tumefasciens, C58 

and LBA4404. The final confirmation of the production of these constructs was 

their sequencing (Fig.4.16, 4.17). It is possible to see that the T. caerulescens 

HMA4 sequence lies between bases 269-689 (CACCGCT….TGCGA). In 

contrast the T. arvense HMA4 sequence lies between bases 129-553 

(CTTCTCT….TAGCGGTG) as it was shown the gene has inserted in the 

reverse orientation. (Other electropherograms produced for the making of the 

construct can be found in the appendices). 
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4.4 Results summary 

The aim of this chapter was to produce an RNAi construct to the T. 

caerulescens HMA4 gene. This construct could then be used to transform T. 

caerulescens either by floral dip methods or by tissue culture.  

 

Two constructs were produced in two different A. tumefaciens strains, 

Agrobacterium tumefaciens C58 construct, one containing the HMA4 

sequence from T. caerulescens and one containing the sequence from T. 

arvense. These constructs will allow the transformation of Thlaspi sp. through 

floral dip methods. The final constructs were Agrobacterium tumefaciens 

LBA4404 containing the sequence from T. caerulescens and one containing 

the sequence from T. arvense. These can be used to transform Thlaspi sp. in 

vitro.  

 

The following chapter discusses the approaches taken to transform T. 

caerulescens both by floral dip and tissue culture methods. The chapter also 

describes the successful transformation of Arabidopsis thaliana using the 

construct described in this chapter. This is consistent with the construct being 

successfully created despite the difficulties encountered when producing it. 
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5. Transformation of Thlaspi species through 

floral dip and tissue culture methods. 

The aim of this chapter was to produce an efficient protocol for the 

transformation of Thlaspi caerulescens and T. arvense. In previous chapters it 

has been described that potential candidate genes had been identified by 

microarray experiments by showing differential expression in Thlaspi 

caerulescens in comparison with T. arvense. These genes were then 

confirmed as being differentially expressed by qPCR. Taking the information 

gained from these experiments and from published literature a candidate gene 

was selected for further study, HMA4. The previous chapter described how 

the RNAi construct was designed with the aim to silence the HMA4 gene in 

planta. This chapter follows on and describes the work carried out to develop 

an efficient protocol for transformation by floral dip or tissue culture methods.  

 

5.1. Introduction 

To study the function of these genes in greater detail would be beneficial to be 

able to transform Thlaspi sp. in order to knockout and up-regulate genes to 

determine the effect this would have on plant phenotype. At the start of this 

project there was a reported efficient transformation of Thlaspi caerulescens 

with a GFP reporter gene by floral dip methods. It therefore seemed a 

sensible approach to test the candidate gene in planta as it was thought the 

transformation procedure would be fairly straightforward (Peer et al., 2003). 

Also with Thlaspi spp. being a close relative of the model plant species 
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Arabidopsis thaliana which is easily transformed it was thought that using 

methods similar to protocols used on Arabidopsis thaliana that transformation 

would be possible (Bechtold et al., 1993; Clough and Bent, 1998; Labra et al. 

2004). 

 

Prior to this project there had been no reported literature on studying heavy 

metal genes in Thlaspi spp. via transformation methods. All previous work on 

gene manipulation of putative heavy metal hyperaccumulation genes has 

been done in Arabidopsis spp. and yeast complementation with 

Saccharomyces cerevisiae (Bernard et al., 2004; Papoyan and Kochian, 

2004; Pence et al., 2000). 

 

5.1.1 Plant Transformation 

The genetic manipulation of plants has become an established tool to today’s 

scientists. Some of the first useful applications of genetic manipulation of 

microorganisms included the transformation of bacteria to produce hormones 

such as insulin to treat diabetics. More recently, transformed microorganisms 

have been used to produce plants that are able to cope with adverse 

conditions (e.g. saline tolerance) and to produce plants that are able to 

synthesize pharmaceuticals and novel products (Flowers, 2004; Hellwig et al., 

2004). Genetic manipulation has provided a tool to explore the function of 

genes within both eukaryotes and prokayotes. Currently plant transformation 

is achieved by one of four main techniques: Agrobacterium tumefaciens 

mediated transformation, biolistic DNA delivery, electroporation and 

polyethylene glycol mediated uptake of DNA by protoplasts (Barton et al., 
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1983; Fromm et al., 1986; Herrera-Estrella et al., 1983; Klien et al., 1987; 

reviewed in Christou 1995). 

 

The transformation of plants via A. tumefaciens originally involved lengthy 

tissue culture stages. This technique relies on the plant tissue’s totipotency 

and its ability to regenerate. More recently, the development of non-tissue 

culture based A. tumefaciens transformation has been favoured, in particular 

via floral dip resulting in approximately 1% transformation efficiency (Clough 

and Bent, 1998). 

5.1.1.1 Direct DNA Uptake 

The first transformants were produced using protoplasts and direct DNA 

uptake using either PEG (Polyethelene glycol) or electroporation. Problems 

with this method however include somaclonal variation (genotypic or 

phenotypic variation that arises in plants produced through tissue culture), 

albino plants (plants that lack chlorophyll), multicopy integrations along side 

the fact that this technique is extremely laborious, difficult to achieve fertile 

regenerants and genotype-dependent. This explains why this method became 

rarely used upon the advent of new gene delivery methods (Tyagi and 

Mohanty 2000). 

5.1.1.2 Biolistics 

Biolistics, also known as microprojectile bombardment or particle gun delivery, 

was used on rice embryos almost immediately after this method became 

available (Christou et al., 1991). This technique involves coating gold particles 
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in DNA and firing them at the target tissues. The DNA coated gold particles 

enter the plant where the DNA can be incorporated into the plant genome 

(Komari et al., 1998). Several tissue types have been successfully 

transformed including cell suspensions, immature embryos and leaf tissue 

(reviewed in Hiei et al., 1997) For some time biolistics was the most widely 

used technique for the production of transgenic monocotyledonous plants 

such as rice and other cereals as Agrobacterium favoured dicotyledonous 

plants such as the Solanaceae. However the problems with biolistics include 

multi copy number of inserts and gene rearrangements (Komari et al., 1998). 

 

5.1.1.3 Agrobacterium-Mediated Transformation 

Agrobacterium-mediated transformation is the most widely used technique for 

transforming dicotyledons due to the higher transformation efficiency, high 

occurrence of single gene insertions and limited gene rearrangements (Hiei et 

al., 1997; Tyagi and Mohanty, 2000). However due to the fact that 

monocotyledons were outside the natural host range of the Agrobacterium 

tumefaciens, transformation by this method was initially over looked and 

research was focused on the other systems already mentioned. More recently 

Agrobacterium-mediated methods of plant transformation have been favoured 

as the most efficient method, in particular via floral dip transformation. The 

floral dip transformation of Arabidopsis thaliana has been described as having 

approximately 1% transformation efficiency (Clough and Bent, 1998). 

Agrobacterium tumefaciens is a gram negative, soil borne pathogen, 

responsible for Crown Gall disease. Virulent strains of the bacterium contain 
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one or more large plasmids that carry the genes for tumour induction; this is 

known as the Ti plasmid (tumour inducing). The Ti plasmid contains genes 

that are responsible for the symptoms and control the host range. A small 

number of genes are transferred to the host plant; this is referred to as the T-

DNA (Transfer DNA) (Dumas et al., 2001). The T-DNA is flanked by a region 

of 25bp of repeat sequence (left border (LB) and right border (RB); any DNA 

contained within these will be transferred to the plant. In wild type strains the 

DNA in this region encodes enzymes for the synthesis of cytokinins and 

auxins, which, once produced in the plant, are responsible for the production 

of the gall tumors. Secondary the T-DNA contains the genes responsible for 

production of opines that Agrobacterium is able to utilise as a carbon and 

nitrogen source. The ability of the T-DNA to be transferred to the host DNA is 

due to the presence of vir (virulence) genes which are also located on the Ti 

plasmid (reviewed in Zupan and Zambryski, 1995; Zhu et al., 2000). The 

infection of Agrobacterium begins when a plant gets wounded and releases 

phenolic defense compounds that stimulate the expression of vir genes. 

These vir genes trigger the replication of the T-DNA to produce a T- strand, 

which along with Vir proteins get transferred to the host plant cell through a 

transport channel. Once inside the plant cell the Vir proteins carry out a 

second role, combining with the T-strand to form a T-complex where the 

complex targets the host nucleus. The transferred DNA is then integrated into 

the plant genome where, along with plant genes, the bacterial genes are 

expressed (Fig.5.1) (Gelvin, 2005).  
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Fig.5.1 Agrobacterium, nature’s genetic engineer. Agrobacterium contains a 

Ti-plasmid which contains vir genes which allow the T-DNA to be transferred 

to the host plant where it becomes integrated into the plant genome (Gelvin, 

2005). 

 

To utilize Agrobacterium as a tool for genetic engineering, the natural 

processes of T-DNA transfer is harnessed. Using the bacterium in its wild type 

state however had several issues. The large size of the Ti-plasmid and low 

copy number made it difficult and cumbersome to manipulate and insert the 

gene of interest, particularly as it would not replicate in E. coli. Also the 

presence of the tumour inducing oncogenes and opine producing genes were 

not required. To overcome this, DNA contained within the LB and RB is 

removed without compromising on the bacterium’s ability to transfer the DNA 
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to the plant but does remove its facility to produce tumours; they are therefore 

termed “disarmed” Agrobacterium strains. In the place of the deleted genes a 

gene of interest can be placed in the T-DNA region. A major development was 

made in 1983 by Hoekema et al., and de Framond et al. (reviewed in Lee and 

Gelvin, 2008) who identified that it was possible to locate the vir genes and 

the T-DNA on different replicons as long as they were located within the same 

Agrobacterium cell; this system later became known as a binary system. This 

new system allowed genes of interest to be inserted into vectors through 

manipulation within E. coli cells. The vector containing the T-DNA is known as 

the binary vector, containing also the origins of replication which are able to 

play a role in both Agrobacterium and E. coli and the antibiotic resistance 

genes that allow selection for the binary systems. The vir genes are contained 

on a replicon known as the vir helper (Fig.5.2) (Lee and Gelvin, 2008). Since 

this initial development the binary system has evolved to give a range of 

binary system to suit the particular project, containing different selectable 

markers that allow projects such as the one described in this chapter to be 

carried out.  
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Fig.5.2 The binary system showing the two replicons, the binary vector 

containing the gene of interest (goi), antibiotic resistance genes and origin of 

replication. The vir helper replicon allows the T-DNA to be transferred to the 

plant cell whilst keeping the size of the binary vector small which allows easier 

manipulation (Lee and Gelvin 2008).  

 

5.1.2 Reported transformation of Thlaspi caerulescens 

Peer et al., (2003) reported efficient transformation of Thlaspi caerulescens 

accession St. Félix de Pallières, France via floral dip using Agrobacterium 

tumefaciens. It was documented that T. caerulescens has been transformed 

using a construct containing both green fluorescent protein (GFP), a reporter 

gene and bar as a selectable marker. Finer details however of how the 

method was optimised were not included in the literature. This work however 
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gave the basis that the work aimed to be carried out to study the HMA4 gene 

was feasible despite the accession of T. caerulescens used having a higher 

seed production than T. caerulescens (Ganges). 

 

5.2. Materials and Methods  

5.2.1 Plant Materials, Culture media and Culture Conditions 

Seeds of T. caerulescens c.v. (Ganges) were surface sterilized with 70 % (v/v) 

ethanol for 10 min followed by a wash in reverse osmosis purified water. The 

seeds were then immersed in 50% (v/v) Domestos™ bleach solution 

(Diversey Levre, Northampton, UK) for 20 min with a final 6 washes in 

reverse-purified osmosis water.  

 

The culture medium used to germinate the seeds was composed of MS basal 

salts (Murashige and Skoog, 1962) 4.3 g L-1 inorganic salts (Appendix 8.1), 10 

g L-1 sucrose and 8 g L-1 agar adjusted to a pH of 5.6 with 0.1 M NaOH. The 

medium was autoclaved at 121ºC at 104 kPa for 20 minutes Plants were 

sown in polycarbonate boxes with approximately 30 seeds per box; the boxes 

were sealed with Nescofilm® (Bando Chemical Co., Kombe, Japan) to 

eliminate contamination. The plants were cultured in vitro at 24 + 1ºC on a 16 

h photoperiod at an intensity of 50-80 μmol m-2 s –1 under 58 W of white 

halophosphate fluorescent tube lighting (Crompton Lighting, Germany) and 8 

h darkness. 
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5.2.2 Plant material for floral dip transformation 

Seeds of T. caerulescens c.v. Ganges (France) and T. arvense c.v. 

Welesbourne (Wellesbourne, Warwick, UK) were sown in a 3:1 (v/v) ratio of 

Levington’s seed compost (Scotts UK Professional, Ipswich, UK) and 

vermiculite (Sinclair, Lincoln, UK). An insecticide named, “Intercept (70 % 

(w/w) Imidacloprid)” was used to control scarid fly at a concentration of 0.75 g 

kg-1. Twelve well seed trays were used to germinate the seeds, with 3-4 seeds 

planted per well to ensure at least one see germinated. Seeds were 

germinated in growth room conditions in the glasshouse, at 20+ 1ºC with a 16 

h photoperiod at 50-80 μmol m-2 s–1intensity under 58 W of white 

halophosphate fluorescent tube lighting (Crompton Lighting, Germany) and 8 

h darkness. After four weeks the young plants were transferred to a growth 

room at a lower temperature of 4+ 1ºC with a 16 h photoperiod at 50-80 μmol 

m-2 s–1 intensity under 58 W of white halophosphate fluorescent tube lighting 

(Crompton Lighting, Germany) and 8 h darkness. with a 16 h photoperiod at 

50-80 μmol m-2 s–1 intensity under 58 W of white halophosphate fluorescent 

tube lighting (Crompton Lighting, Germany) and 8h darkness, a vernalisation 

period to induce flowering. Following the four-week vernalisation period, 

plants were transferred back to the glasshouse with a 16 h photoperiod using 

600 W pressure sodium lamp (Phillips® Sun-t Pia green power, Phillips 

Electrics UK Ltd., Croydon, UK). 
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5.2.3 Agrobacterium Cultivation 

Two separate strains of Agrobacterium tumefaciens were maintained: one, 

LBA4404 for the tissue culture based transformation and C58 for the floral dip 

method. C58 was used containing the pAch5 Ti plasmid to provide in trans the 

vir functions for the transfer of the integrated T-DNA from a disarmed pBIN19 

based binary cloning vector with Thlaspi HMA4 gene under the control of 

CaMV 35S promoter and terminator and the nptII gene encoding neomycin 

phosphotransferase under control of the nos promoter and terminator (Bevan, 

1984; Hellens et al., 2000). LBA4404 was used containing the pAch5 Ti 

plasmid to provide in trans the vir functions for the transfer of the integrated T-

DNA from a disarmed pBIN19 based binary cloning vector with an Arabidopsis 

FtsZ gene (for chloroplast division) under the control of a CaMV 35S promoter 

and terminator. 

 

Strain LBA4404 was maintained on APM medium (Table 5.2) supplemented 

with 500 μg ml-1 Streptomycin (Sigma Chem. Co., Steinheim, Germany) and 

50 μg ml-1 Spectinomycin (Sigma Chem. Co., Steinheim, Germany). Strain 

C58 was maintained on LB medium (Table 5.1) supplemented with 50 μg ml-1 

Spectinomycin (Sigma Chem. Co., Steinheim, Germany), 35 μg ml-1 

Rifampicin (Sigma Chem. Co., Steinheim, Germany). Overnight liquid cultures 

were made prior to transformation in 1 ml amounts followed the next day by 

transformation into fresh media to a volume of 20 ml. Overnight cultures were 

shaken at a temperature of 28 +1ºC in the dark on an orbital shaker (180 

rpm). 
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Two different strains of Agrobacterium tumefaciens were chosen due to the 

differences in their nature and through past suitability of the strain to its 

method of transformation. 

 

A. tumefaciens C58 is a wild type nopaline strain that has been adapted in 

many ways for its use in transformation of plants (Goodner et al., 2000 

Woods, et al., 2000). It is considered a more robust strain than LBA4404 and 

therefore more suitable to in planta transformation procedures. It has 

successfully been used to transform Arabidopsis in this way (Clough and 

Bent, 1998) also Brassica napus (Wang et al., 2003) In comparison, A. 

tumefaciens LBA4404 is an octopine strain that has been successfully used to 

transform plants via tissue culture methods including sugar beet (Bekheet and 

Solliman, 2007), rice (Hiei et al., 1994) and maize (Ishida et al., 1996). 
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Medium Type Components 

APM 5 g L-1 yeast extract, 0.5 g L-1 Casein hydroysate acid, 

8 g L-1 Mannitol , 2 g L-1 Ammonium sulphate, 5 g L-1 

NaCl, 0.427 g L-1 Mg Cl2 with pH adjusted to 6.6 using 

a pH meter and 0.1 M HCl or 0.1 M NaOH. 

LB agar medium (Luria-Bertani medium) 10 g L-1 Bacto-tryptone, 10 g L-1 

Yeast extract, 10 g L-1 NaCl and 18 g L-1 agar with pH 

adjusted to 7.2 using a pH meter and 0.1 M HCl or 0.1 

M NaOH. 

LB liquid medium 10 g L-1 Bacto-tryptone, 10 g L-1 Yeast extract and 10 g 

L-1 NaCl with pH adjusted to 7.2 using 0.1 M HCl or 0.1 

M NaOH. 

MS0 solid medium MS0 liquid medium contained 8 g L-1 Agar, 4.3 g L-1 MS 

inorganic, 30 g L-1 sucrose, pH adjusted to 5.7 using 

0.1 M HCl or 0.1 M NaOH. and no added plant growth 

regulators. 

Table 5.1 Shows various media referenced in this chapter and the rest of the 

thesis.  

 

5.2.4 Determination of optimum level of selection of plants on 

kanamycin 

In order to pick out positively transformed plants from either floral dip or tissue 

culture based transformed plants a kanamycin resistance gene is included in 

the construct. This allows transformed plants to grow on agar supplemented 

on kanamycin when wild type plants would normally perish. To determine the 
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level of Kanamycin needed to kill off wild type plants a kill curve experiment 

must first be executed. A range of MS agar media were prepared 

supplemented with kamamycin at 30, 40, 50, 55, 60, 65 μg ml-1 using a 10 μg 

ml-1 stock solution of kanamycin. Seeds were sterilised as for previous 

experiments and plated on Petri dishes containing the kanamycin 

supplemented agar at a concentration of 10 seeds per plate. The plants were 

cultured in vitro at 24 + 1 ºC on a 16 h photoperiod at an intensity of 50-80 

μmol m-2 s–1 under 58 W of white halophosphate fluorescent tube lighting 

(Crompton Lighting, Germany) and 8 h darkness for 14 days. The results from 

this initial kill curve suggested that the highest level of kanamycin was not 

sufficient to kill wild type plants. A second kill curve experiment was carried 

out at elevated kanamycin levels of 65, 70, 80, 90, 100, 150, 200 μg ml-1 

using a 10 μg ml-1 stock solution of kanamycin. The seeds were cultured in 

the same way as the first kill curve experiment. Results were recorded as a 

percentage germination at each concentration and an average taken of the 

three replications carried out at each concentration.  

 

5.2.5 Floral dip transformation 

Agrobacterium tumefaciens cultures adjusted to an optical density (O.D.) of 1 

in MS medium supplemented with Silwet L-77 to a concentration of 0.05% 

(500 μl L-1) were used to carry out the floral dip of Thlaspi species. The 

Agrobacterium suspension was applied to young buds using a pipette (Gilson 

Inc., Wisconsin, USA) to apply small droplets. Plants were covered with a 

plastic sleeve to limit transfer of bacteria to neighbouring plants. Plants 
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were kept in darkness for 12-24 h at 23 + 1ºC to allow bacterial growth and 

increase the chances of gene insertion. Plants were then placed under 

glasshouse conditions as described in section 5.2.1 and allowed to set seed in 

approximately 1 month. Plants were dried before seeds were harvested.  

 

5.2.6 Plant Regeneration 

To develop a tissue culture based transformation procedure for Thlaspi 

caerulescens it was necessary to first develop a plant regeneration protocol 

from T. caerulescens explants; this is described here. Plants were grown as 

described in section 2.2.1 on agar without any addition of external zinc. 

Following a three-week growth period, T. caerulescens plantlets were 

removed from the polycarbonate boxes, in sterile conditions and cut into 

explants of cotyledons, stems and roots. These were cultured in 25-well plates 

(Bibby Sterilin Ltd., Staffs, UK), one explant per well. Each well-contained 2 ml 

of MS medium as described in section 2.1 supplemented with a combination 

of auxin and cytokinin. The auxins used were IAA (3- Indoleacetic acid) and 

NAA (α-naphthaleneacetic acid) and the cytokinins, BAP (6-

benzylaminopurine), TDZ (Thiadiazuron, N-phenyl, N-1, 2, 3-thiadiazol-5-yl 

urea) and Zeatin (Table 5.2). Grids were made with a range of auxin 0-4 μl ml-

1 in a well in one direction and cytokinins at a range of 0-4 μl ml-1 in a well in 

the other direction (Fig.5.3). Three replicates of each hormone combination 

(total combinations 6) and the three tissue types gave a total of 54 hormone 

grids. 

Hormone Components and Preparation 
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Stock 

IAA 100 mg IAA (3- Indoleacetic acid) dissolved in 70 ml ethanol and 30 

ml reverse osmosis water gives a final concentration of 1 mg ml-1.  

NAA 100 mg NAA (α-naphthaleneacetic acid) (dissolved in 70 ml ethanol 

and 30 ml reverse osmosis water to give a concentration of 1 mg ml-

1.  

BAP 100 mg BAP (6-benzyl amino purine), dissolved in a few drops of 

1.0 M HCl, left for 10 min, add 100 ml reverse osmosis water to give 

a concentration of 1 mg ml-1  

TDZ 100 mg TDZ (Thiadiazuron, N-phenyl, N-1, 2, 3-thiadiazol-5-ylurea) 

dissolved in 1 ml 1.0 M KOH, add 99 ml water to give a volume of 

100 ml and a concentration of 1 mg ml-1.  

Zeatin 100 mg Zeatin (Z), dissolved in 100 ml reverse osmosis water to 

gave a concentration of 1 mg ml-1. 

Table 5.2 Plant hormone stock solution (Sigma Chem. Co., Steinheim, 

Germany) methods. All stock solutions were filter sterilised and stored at 4°C. 

 

 

 

 

 

 

 

 

                                                   Cytokinin μg ml-1 
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Fig.5.3 Hormone grid plates showing the ratios tested for giving optimum 

plant regeneration. 

 

Explants were cultured in the grids sealed with Nescofilm® under the same 

growth conditions as the germinated seeds. Explants were left for a minimum 

of 14 days to allow regeneration. Regenerated explants were individually 

transferred to jars containing MS 0.8 medium with no extra hormones to allow 

root development. Plants were maintained in the jars for a further 14-30 days 

to develop into plantlets. They were then transferred to the glasshouse and 

planted in Levington’s seed compost (Scotts UK Professional, Ipswich, UK), 

covered by a propagator to allow acclimatization and hardening to the less 

humid conditions of the glasshouse (25± 1°C and 16 h photoperiod with 600 

W luminaries using 600 W high pressure sodium lamp (Philips® Sun-t Pia 

Green power, Philips Electronics UK Ltd., Croydon, UK). 

 

A
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5.2.7 Regeneration frequency testing of Thlaspi caerulescens 

The hormone combinations that gave regeneration were tested for frequency 

to determine which would ultimately be the best combination to use in 

subsequent experiments. This was determined by preparing Petri dishes 

(Bibby Sterilin Ltd., Staffs, UK) containing the selected hormone ratios and 

adding 10 explants to each Petri dish. Three replicates at each ratio were 

carried out. By determining how many out of the 10 explants germinated an 

average, percentage frequency of regeneration could be determined. 

 

5.2.8 Molecular analysis of putative transgenic plants 

Thlaspi species and Arabidopsis thaliana plants were transformed via floral 

dip using the HMA4 RNAi C58 Agrobacterium cultures. Described here is the 

molecular analysis of putative transformants via polymerase chain react ion 

(PCR). 

 

5.2.8.1 DNA isolation and Polymerase Chain Reaction (PCR) analysis of 

Thlaspi species 

Those plants that survived the kanamycin screen were replanted on soil and 

allowed to grown under greenhouse conditions (as described in section 5.2.2). 

Plants (of which there were few that survived to this stage) were analysed by 

PCR for the presence of the nptII gene (kanamycin resistance). DNA from 

plants transformed by floral dipping, was extracted using the Sigma-Aldrich 

Plant DNA extraction kit (Sigma-Aldrich, Steinheim, Germany) (as Chapter 
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4.2.3) DNA samples were quantified using NanoDrop® software (NanoDrop® 

ND-1000 UV-Vis Spectrophotometer, Wilmington, DE 19810, USA).  

The website Primer 3 was used to produce the primers, below, to amplify a 

690 bp sequence of the nptII gene, which are shown below. 

The sequences of the primers were: 

 

Left/Forward Primer: 5’- AATATCACGGGTAGCCAACG -3’ 

Right/Reverse Primer: 5’- TCGAGGCATGATTGAACAAG -3’ 

 

The plasmids (pK7- G or pK7-W) were used as positive controls for putatively 

transformed Thlaspi species depending on the species. Following PCR 

amplification using the conditions described below, a gel electrophoresis was 

run to highlight the PCR products containing the nptII fragment (690 bp). 

 

Master Mix for 1 PCR sample: 

H20: 6.2 µl 

Red Taq: 0.2 µl 

Forward primer: 0.8 µl 

Reverse primer: 0.8 µl 

DNA                            9.0 µl 

 

 

 

 

 

 

 

PCR conditions: 

Initialization: 94ºC  3 mins. 

Denaturation: 94ºC  48 s. 

Annealing: 56ºC  48 s. 

Extension: 72ºC  1 mins. 

Extension 72ºC 10 mins. 

Hold 4ºC hold 

35 cycles 
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5.2.8.2 DNA isolation and Polymerase Chain Reaction (PCR) analysis of 

A. thaliana 

Molecular analysis was performed to demonstrate the existence of nptII genes 

in putative transgenic A. thaliana which were transformed using both HMA4 

(pK7-G and pK7-W) designed for floral dip transformation of T. caerulescens 

and T. arvense respectively. DNA from plants transformed by floral dipping, 

was extracted using the Sigma-Aldrich Plant DNA extraction kit (Sigma-

Aldrich, Steinheim, Germany) (as Chapter 4.2.3). DNA samples were 

quantified using NanoDrop® software (NanoDrop® ND-1000 UV-Vis 

Spectrophotometer, Wilmington, DE 19810, USA). Primer 3 was used to 

produce the primers, below, to amplify a 260 bp sequence of the nptII gene. 

The sequences of the primers used to produce the nptII fragment were: 

 

Forward primer:  5’- AGA CAA TCG GCT GCT CTG AT -3’ 

Reverse primer:  5’- ATA CTT TCT CGG CAG GAG CA -3’ 

 

The plasmids (pK7- G or pK7-W) were used as positive controls for putatively 

transformed A. thaliana ‘Colombia’ depending on what construct had been 

used to carry out the transformation. Following PCR amplification using the 

conditions described below, a gel electrophoresis was run to highlight the 

PCR products containing the nptII fragment (260 bp). 
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Master Mix for 1 PCR sample: 

H20: 3.5 µl 

Red Taq: 7.5 µl 

Forward primer: 1.0 µl 

Reverse primer: 1.0 µl 

DNA: 2.0 µl 

 

 

PCR conditions: 

Initialization: 94ºC  5mins. 

Denaturation:94ºC  1 min. 

Annealing: 48ºC  1 min. 

Extension: 72ºC  1 min. 

Extension 72ºC 10 min. 

Hold 4ºC hold 

5.3 Results  

5.3.1 Plant regeneration of T. caerulescens  

T. caerulescens explants were grown on a range of hormone combinations to 

determine the optimum conditions for plant regeneration, to be used for the 

subsequent transformation of T. caerulescens. All plates were scored for calli 

induction after a 4 week growth period. The tissue type that produced the 

most calli independent of hormones added was stem followed by roots. Leaf 

tissue was relatively unsuccessful and most often died after one week 

incubation period, therefore would not be a considered tissue type for 

transformation (Fig.5.2). Many of the hormone combinations were successful 

in producing calli in both roots and shoots, with thickening of explants seen as 

soon as one week after incubation (Fig.5.3) The most successful 

combinations, i.e. those that produced three out of three calli were then 

repeated on petri dishes with ten explants per plate (Table 5.3).  

 

 

35 cycles 
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Hormone concemtrations (µg ml-1) 

NAA BAP NAA TDZ NAA Zeatin IAA BAP IAA TDZ NAA Zeatin 

0 4 1 3 1 4 2 1 3 2 1 0 

1 0 2 0 2 3 2 2 4 1 1 1 

1 2 2 1 4 2 2 3   1 3 

1 3 2 4   3 1   2 1 

2 0 3 1   3 2   3 0 

2 4 3 4   4 1   3 1 

3 0 4 0   4 2   4 0 

3 2 4 2       4 1 

3 3 4 3         

4 0 4 4         

Table 5.3 Table showing the hormone combinations that were successful in 

producing calli of T. caerulescens for all three replicates carried out. All 

combinations were in 2 ml of MSO full strength media. These successful 

combinations were then repeated on plates containing 10 explants per plate.  

From the successful combinations highlighted from the initial hormone grid 

experiment, the same combinations were set up in Petri dishes containing 20 

ml of MSO full strength medium and the relevant hormone combinations. 

From this experiment it was found that 2 μl ml-1 NAA without cytokinins gave 

98% production of callus (Fig.5.4). When the calli was transferred to larger 

jars containing MS0 medium roots were produced but although many media 

types have been tried no shoots have been successfully regenerated 

(Fig.5.5). It was due to the lack of shoot regeneration that the tissue culture 



Chapter 5: Transformation of Thlaspi species 

 
200 

 

based transformation was given way to the floral dip transformation as without 

the regeneration of whole plants the method of transformation is futile. 

 

                    

 

 

Fig.5.4 An example of T. caerulescens leaf explants in a hormone grid, after 4 

weeks incubation, showing that this explant type was unsuccessful in the 

regeneration of callus. All 25x well culture plates contained 25 combinations 

of auxin and cytokinin concentrations. Each well contained 2 ml MS0 basal 

medium (8 g L–1 agar with full strength MS macro and micro salts and 

vitamins, 30g L–1 sucrose, without growth regulators, pH 5.8). Scale bar 

represents 1 cm. 
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Fig.5.5 Example of the T. caerulescens tissue culture hormone grids with 

callus production. In this case it is for NAA/TDZ. Showing a) explants type- 

roots and b) explants type-shoots. 
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        a)                                     b)                                      c) 

Fig.5.6 Samples taken from the final callus frequency test using T. 

caerulescens ‘Ganges’ stem explants maintained on MS0 basal medium with, 

a)= 2 µg ml-1 NAA, b)= 2 µg ml-1 NAA + 4 µg ml-1 TDZ and c)= 2 µg ml-1 IAA + 

2 µg ml-1 Zeatin. Scale bar represents 4 cm. Combination a) gave an overall 

frequency of 97% which was the most successful combination. 

 

 

 

 

Fig.5.7 T. caerulescens calli regeneration on MS0 medium. From T. 

caerulescens shoot explants on 2 μl ml-1 NAA. The photo on the right 

shows roots just beginning to form. 

4cm

1 cm
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5.3.2 Growth response of plants to kanamycin  

In order to screen potential transformants from floral dip it is necessary to 

have a reliable kanamycin screen. These results show the development of a 

screen to select transformants. Wild type seeds were germinated on agar 

supplemented with increasing concentrations of kanamycin and scored for 

percentage seedling viability at 14 days post sowing. The results shown in 

Fig.5.6 shows that overall viability of seedlings dropped as kanamycin 

concentration increased. T. caerulescens showed a higher viability overall 

than T. arvense though this could be accounted for by a high seed viability 

under any conditions, or may be accounted for by the fact that this species is 

able to accumulate, translocate and detoxify toxic compounds with more 

efficiency. Between the range of 5 and 80 µg ml-1 T. caerulescens showed 

higher resistance to kanamycin than T. arvense. 
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Fig.5.8 Graph showing the percentage seedling viability of T. caerulescens 

and T. arvense on increasing kanamycin concentration. Overall for both T. 

caerulescens and T. arvense the viability of seedling decreased as kanamycin 

concentration increased.  

 

Fig.5.9 shows the decrease in seedling viability and also the decrease in seed 

germination as kanamycin concentration increases. From the graph and 

visual evaluation 70 μg ml-1 was chosen as a workable concentration as from 

this picture the majority of seedlings after this point looked unhealthy and 

unlikely to survive, therefore kanamycin resistant plants would stand out in a 

screen at this concentration. 
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Fig.5.9 a) Growth response of T. caerulescens (Ganges) on increasing 

kanamycin concentration within full strength MS0 basal medium (4.3 g L-1 MS 

basal salts with no plant growth regulators [PGRs]). The scale bar represents 

5 cm. 

 

 

 

 

 

a) 

b) 
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Fig.5.10 b) Kanamycin kill curve of T. arvense (Wellesbourne) on increasing 

kanamycin concentration within full strength MS0 basal medium (4.3g L-1 MS 

basal salts with no plant growth regulators [PGRs]). The scale bar represents 

5 cm. 
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5.3.3 Potential transformants 

With the tissue culture method of transformation unsuccessful, all focus and 

attention was put into floral dip method of transformation of T. caerulescens 

and T. arvense. Despite many rounds of floral dip no successful T. 

caerulescens and T. arvense transformants were produced. Limitations of this 

method were the slow seed to seed time of these plants. Initially there were 

potential transformants identified through a kanamycin screen and PCR 

however further analysis on these plants did not validate these results 

(Fig.5.8). 

 

 

 

 

 

 

 

 

 

Fig.5.11 Initial PCR results suggested that plants in lanes 2, 3, 5 and 9 were 

potential transformants using the HMA4 RNAi construct. However further PCR 

analysis did not back this up and it was therefore decided that these bands 

must be artefacts. 

 

 

     1   2   3   4    5   6   7   9   WT +  --         
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5.3.4 Transformation of Arabidopsis thaliana using the HMA4 RNAi 

construct and molecular analysis of putative transformants 

Transformation of Thlaspi caerulescens and T. arvense was not successful in 

this instance. However successful transformation of Arabidopsis thaliana by 

floral dip using the HMA4 RNAi construct described in Chapter 4 was 

achieved (pers. com. Claire Eustace). Arabidopsis thaliana “Columbia” was 

transformed using the HMA4 RNAi construct (pK7-G and pK7-W) to test the 

construct itself. Molecular analysis of A. thaliana ‘Colombia’ was performed 

through PCR to demonstrate putative transgenic T1 plantlets obtained from 

floral dip mediated transformation. Pooled samples of plantlets which were 

inoculated with A. tumefaciens containing the HMA4 RNAi (pK7-G), HMA4 

RNAi (pK7-W) constructs and which survived kanamycin selection (Fig.5.9) 

were analysed using PCR. All pooled samples showed the presence of nptII 

confirming the validity of the kanamycin selection results and their putative 

transgenic status and also confirming that the construct itself was functioning 

as expected (Fig.5.10).  
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Fig.5.12 Close up image of one putative transgenic Arabidopsis plantlet (B) 

with its position in the box (A) indicated by the white arrow. Plantlets grown on 

MS-0 supplemented with 50 µg ml-1 kanamycin sulphate. Scale bars for A and 

B are 5 cm and 10 mm respectively.  
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Fig.5.10 Agarose gel electrophoresis of PCR amplified products from pooled 

samples of putative transgenic A. thaliana ‘Colombia’. Numbers indicate 

lanes. Lanes 1-4 and 5-6 contained pooled A. thaliana ‘Colombia’ DNA 

transformed with HMA4 RNAi (pK7-G) and (pK7-W) respectively. Lanes 7-10 

contained A. thaliana ‘Colombia’ DNA transformed with the GUS:nptII 

construct (not relevant to this thesis). Lanes 12, 13 and 14 contained wild type 

(wt) Arabidopsis DNA, negative control (water) and positive control (construct) 

for nptII (white arrow) (construct plasmid DNA containing nptII) respectively. 

Ladder – 100 bp NPTII fragment = 260 base pairs (bp). Agarose 1.5% 

 

Gel electrophoresis of PCR products from individual members of pooled 

samples transformed with HMA4 RNAi (pK7-G), showed that three plants 

contained the nptII gene insert (Fig.5.11). A similar analysis was performed on 

individual samples transformed with HMA4 RNAi (pK7-W), revealing that two 

plants contained the nptII gene insert (Fig.5.12). 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

261 bp 
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Fig.5.11 Agarose gel electrophoresis of PCR amplified products from 

individual samples of putative HMA4 RNAi (Pk7-G) transgenic A. thaliana 

‘Colombia’. Numbers indicate lanes. Lanes 1-11 contained individual DNA 

PCR products from A. thaliana ‘Colombia’ that survived in vitro kanamycin 

screening. Lanes 12 and 13 contained wild type (wt) Arabidopsis DNA, 

negative control (water) and a positive control (construct) for nptII (white 

arrow) respectively. Ladder = 100 bp, nptII fragment = 261 bp. Agarose – 

1.5%. 

 

 

 

 

 

 

 

 

261 bp 
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Fig.5.12 Agarose gel electrophoresis of PCR amplified products from 

individual samples of putative HMA4 RNAi (pK7-W) transgenic A. thaliana 

‘Columbia.’ Numbers indicate lanes. Lanes 1-11 contained individual DNA 

PCR products from A. thaliana ‘Colombia’ that survived in vitro kanamycin 

screening. Lanes 12 and 13 contained wild type (wt) Arabidopsis DNA, 

negative control (water) and a positive control (construct) for nptII (white 

arrow) respectively. Ladder = 100 bp, nptII fragment = 260 bp. Agarose 1.5%. 
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Fig.5.13 PCR results of putative Arabidopsis thaliana plants transformed floral 

dip using the HMA4 RNAi construct. Lanes 1-11 contained pooled A. thaliana 

‘Colombia’ DNA transformed with HMA4 RNAi (pK7-G) and (pK7-W) 

respectively. Lanes 12, 13 and 14 contained wild type (wt) Arabidopsis DNA, 

negative control (water) and positive control for nptII (white arrow) (construct 

plasmid DNA containing nptII) respectively. NPTII fragment = 261 bp.  

 

5.4 Summary 

To summarise the results of Chapter 5 attempts were made to develop an 

efficient protocol for the transformation of Thlaspi caerulescens by tissue 

culture or floral dip methods. Progress was initially made with the tissue 

culture, managing to successfully regenerate T. caerulescens callus on a 

number of different hormone combinations. Particularly promising was the 

generation of 98% efficiency on medium supplemented with 2 mg µl -1 NAA. 

However when the callus was sub cultured it was possible to regenerate roots 

but no shoot production was observed despite numerous attempts and 

differing hormone combinations. Floral dip was also not successful in 

generating transformants despite numerous attempts; this was hindered by 

the slow time between seed to seed production.  

1     2      3      4        5      6       7      8      9      10     11   

261 bp 
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It was thought that the floral dip transformation of Thlaspi caerulescens could 

be feasible due to its similarity to A. thaliana, which is successfully 

transformed in this way to a 1% efficiency rate. Bent (2000) reviews the 

development of transformation without the use of tissue culture, beginning 

with the work of Feldmann and Marks (1987); Feldmann (1992) where they 

applied Agrobacterium to seeds, grew them without any selection methods, 

collected the progeny and grew them on media containing antibiotics. These 

procedures were repeated by others with varying results; however with 

persistent rounds over several years successfully produced thousands of 

transgenic lines (insertional mutagenesis lines) that contributed to the analysis 

of the Arabidopsis genome. Following this, Bent, (2000) reviews a method 

developed by Chang et al. (1994) and Katavic et al. (1994) called “clip ‘n 

squirt” where inflorescences are cut off and Agrobacterium applied to the 

centre of the rosette, new inflorescences grew and the process was repeated 

again. The plants were then allowed to go to seed and the transformants 

selected. This procedure was more productive than the initial seed method 

but still not as productive as tissue culture methods. The third major 

development reviewed here that resulted in the 1% transformation efficiency 

was termed “vacuum infiltration” (Bechtold et al., 1993 reviewed in Bent, 

2000). This method involved placing uprooted plants at the early stages of 

flowering in a bell jar with Agrobacterium and applying a vacuum to the jar. On 

release of the vacuum air any trapped air leaves allowing the Agrobacterium 

to take its place within the plant. Plants were then replanted in soil and 

allowed to mature and set seed, which was subsequently, screened using a 

method suitable to the selectable marker gene present. This method of in 
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planta (called in planta or in vivo transformation because genes are generally 

delivered into intact plants (Hansen and Wright, 1999), transformation is 

favourable over tissue culture methods despite the low efficiency because of 

the large number of seeds returned to screen compared with explants from 

tissue culture. Though this method is far less technically demanding than 

tissue culture methods it still involves the uprooting and replanting of plants 

following vacuum infiltration. A simplified method of transformation was 

reported by Clough and Bent (1998) in which they described the dipping of 

developing floral tissues into a solution of Agrobacterium, sucrose and a 

surfactant called Silwet L-77, to lower surface tension to allow the bacterium 

to enter plant tissues. They also commented on the importance of covering 

plants after dipping to increase humidity which in turn doubled transformation 

rates. This report investigated several parameters in the transformation 

procedure for example plant growth stage. It has been reported that the most 

effective growth stage was primary buds clipped with secondary buds 

between 2-10 cm, with some open flowers. The least susceptible growth 

stage was mature bolts with many siliques already produced. This data may 

explain why the transformation of Thlaspi spp. was not successful. Thlaspi 

spp. plants were transformed at the stage of primary bolts with a few open 

flowers. It was found that the presence of the surfactant Silwet L-77 (0.02%) 

was crucial to transformation efficiency. In comparison when transforming 

Thlaspi spp. Silwet L-77 was also added (0.05%), the levels of this and 

sucrose were not in anyway adjusted to attempt to determine an optimum 

level. In further experiments, Clough and Bent (1998) used Silwet L-77 at a 

level of 0.05% but noted that high levels can contribute to necrosis of plant 
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tissue, something that may have affected transformation rates in Thlaspi spp. 

Finally they reported on using the Agrobacterium strain LBA4404 (used for 

tissue culture transformation in this thesis) and GV3101 (pMP90), which is 

based on C58 and pTiC58, successfully to transform Arabidopsis via floral 

dip. The strain could be something that could be changed in the 

transformation of Thlaspi. In previous work, the ecotype of Arabidopsis was 

changed to analyse any differences in transformation efficiency between 

ecotypes. Successful transformation was reported in several ecotypes 

including Col-0, Ws-0, Nd-0, No-0 however Ler0 was more difficult and with 

varying results. The reasons for the difficulty may be relevant to Thlaspi, a 

potential incompatibility or low compatibility with Agrobacterium or a 

differential growth of the inflorescences.  

 

In conclusion the main variables that affect transformation efficiency are 

growth stage of the plant, presence of a surfactant and sucrose concentration. 

The application of some kind of covering to the plant for 12-24 hours assists 

transformation rates by maintaining humidity to provide conditions to allow the 

mobility of Agrobacterium to enable them to reach target cells. Although the 

full process of floral dip transformation is not understood indications suggest 

that the ovules or cells that later become ovules are targets of T-DNA in 

transformed Arabidopsis and therefore probably similar for other plant species 

(reviewed in Wang et al., 2003). Floral dip transformation has since been 

successfully reported in other species besides Arabidopsis for example Curtis 

and Nam, (2001) report of the successful transformation of radish (Raphanus 

sativus L. longipinnatus Bailey) by floral dip. Here, as before, the importance 
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of the surfactant, Silwet L-77 (0.05% v/v), was reported giving a 

transformation efficiency of 1.4%. In addition to this Pluronic F-68 and Tween 

20 were analysed as potential alternatives with little success compared with 

Silwet L-77. Again the development stage of the plant was important to 

efficiency rates, with the best being primary bolting stage over secondary and 

lastly tertiary.  

 

Prior to this and with less success was the reported transformation of 

Brassica napus and Beta vulgaris (Siemens and Scheiler, 1996 reviewed in 

Wang et al., 2003). The application of vacuum infiltration to Brassica rapa L. 

(Chinese cabbage 50-60 cm in size) returned only two transgenic plants from 

the screening of 20,000 seeds harvested from 30-50 plants (Liu et al., 1998, 

reviewed in Wang et al., 2003). Wang et al. (2003) reported on the in planta 

transformation of Brassica napus using the C58 CIRifR containing the Ti 

plasmid pGV3101 strain of Agrobacterium tumefaciens. Several variations of 

treatment were applied including application by floral dip or vacuum 

infiltration. Another parameter that was changed was the time the plants were 

dipped for in the inoculation medium. It was found that an inoculation time of 5 

min compared with 2 or 3 min gave higher transformation efficiency, a 

parameter that was not studied in Thlaspi spp.  

 

In planta transformation technologies have been applied to Kenaf Plants 

(Hibiscus cannabinus var. Aokawa) by applying A. tumefaciens to the 

meristems of young plants. Three strains of A. tumefaciens were used, an 

avirulent M-21 mutant strain, two LB14404 strains, one with a binary vector 
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modified to allow for the rescue of the T-DNA and flanking host chromosomal 

DNA, the second with no binary vector. Transformation was successfully 

achieved and supported by the recovery of the plasmid containing T-DNA 

from the host plant (Kojima et al., 2004). 

 

Therefore, in light of other successful and less successful in planta 

transformations of other plant species, potential problems with the 

transformation of Thlaspi spp. could be due to the flowering time at which the 

dipping took place, the amount of surfactant or sucrose, the time length of 

inoculation or the fact that the inoculation was not repeated at a later date. All 

of these parameters could be investigated at a later date. 

 

Several papers described that covering the plants post inoculation increased 

efficiency by maintaining humidity for plant cuticle repair and bacterial 

introgression. However in this case plastic ‘sleeves’ were used during floral 

dipping; these sleeves reduce airflow around the plant, resulting in a number 

of diseases such as downy mildew (Peronospora farinosa). In order to prevent 

this and reduce plant mortalities, sleeves should be removed 4-5 days 

following floral dipping. However it was possible to successfully transform 

Arabidopsis thaliana plants using the HMA4 construct which proves that the 

HMA4 RNAi construct was working and that this was not the limiting factor in 

the transformation of Thlaspi caerulescens. 

.
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6. General Discussion 

 

This thesis aimed to cover several aspects related to Zn accumulation in 

Thlaspi caerulescens. Firstly the aim was to confirm that the model plant, 

Thlaspi caerulescens could accumulate high levels of Zn and that elevated 

external Zn concentrations could be tolerated without impeding growth. The 

initial studies aimed to quantify the levels of Zn that could be accumulated and 

compare this to the published data and with a non-hyperaccumulating 

species. Secondly this thesis aimed to confirm the differential expression of 

genes using qPCR. These genes had previously been identified as 

differentially expressed by a microarray. Using the results from these 

experiments a potential candidate gene involved in the hyperaccumulating 

trait was to be selected for further investigation. The aim was then to study the 

candidate gene in planta using transformation techniques. Previously 

published evidence was given on the transformation of Thlaspi caerulescens 

using reporter genes which indicated that it should be feasible to attempt to 

transform this plant. There had been however no reports of any other 

manipulation of genes within Thlaspi spp. The published evidence of its 

transformation however made it seem a feasible and novel approach to take. 

The first step to this approach was to develop an efficient and successful 

transformation procedure for Thlaspi caerulescens. Secondly it was 

necessary to create a construct for the silencing of the candidate gene, 

HMA4. This chapter will now discuss the results reported in this thesis. 
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6.1 Comparing the accumulation and tolerance of zinc in T caerulescens 

and T. arvense 

6.1.1 Zn accumulation levels 

The aim of this chapter was to compare published data of the levels of 

accumulation and tolerance in Thlaspi caerulescens with actual data collected 

from the plants grown in vitro. Secondly data was collected of the 

accumulation and tolerance of T. caerulescens with its relative, non-

accumulating T. arvense. Maximum recorded levels of Zn hyperaccumulation 

in Thlaspi caerulescens have reached up to 3% d. wt. in the shoots (Reeves 

and Baker, 2002) or 25000 µl Zn g-1 shoot d. wt. when grown hydroponically 

(Brown et al., 1995). These levels greatly exceed the 300 µl g-1 which is 

considered to be toxic to plants. The results from these experiments gave a 

maximum 21,671 µg Zn g-1 shoot d. wt. in Thlaspi caerulescens which is 

similar to the levels observed by Brown et al., (1995). 

 

The increase in concentration of Zn in the shoots of T. caerulescens was 

accompanied over much of the range by an increase in the substrate Zn level. 

When concentration declined, so did content. From Fig 2.5a and 2.6b it 

appears that the maximum shoot Zn concentration was not yet obtained under 

the treatments investigated as concentration appears to still be rising. The 

pattern of accumulation shown in the graph is linear and under those 

concentrations tested does not fit the generalised model of hyperaccumulation 

proposed by Baker and Walker (1990). If hyperaccumulation were to follow 

the pattern suggested by Baker and Walker (1990), the curve on the graph 

should eventually flatten over a higher, albeit unknown, range of treatment 
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concentrations. (Fig.6.1). The conclusion was there exists three basic patterns 

of metal uptake: the “Excluder”; which keeps the level of metal within the plant 

at a low level. When levels in the soil reach critical levels toxicity occurs due 

to uncontrolled metal transport into the plant. The “Indicator” plants which 

uptake and transport metals into the shoots either passively or by regulated 

means. The internal concentrations directly reflect external concentrations. 

Finally the “Hyperaccumulator” that actively maintains a high level of internal 

Zn across the full range of external Zn concentrations. The pattern expressed 

by these plants suggests a complex mechanism inside the plant exists to 

execute this process. In comparison Figures 2.5 a and 2.6 a show that the Zn 

content of T. arvense shoots peaked at the 300 µM external Zn concentration 

and then declined markedly, whilst the external Zn concentration continued to 

rise. Therefore it can be suggested that the rise in Zn concentration of T. 

arvense did not result from hyperaccumulation but rather it was an artefact of 

the rate of growth declining faster than the rate of Zn uptake and transport to 

the shoots.  
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Fig.6.1 Idealised diagram of the physiology of hyperaccumulator plants 

compared to other uptake responses to heavy metals showing the three 

characteristics observed by plants on a range of Zn soils. (Reproduced from 

Baker 1981 reviewed in Baker and Walker, 1990).  

Zinc accumulation in the roots did not follow the linear pattern of the shoots 

instead the root data created a curve with results increasing to a certain 

degree then declining in internal concentrations at the higher external Zn 

concentrations. This may be the result of root sequestration organelles 

becoming saturated with Zn and hence the Zn concentration within the root 

tissue plateauing. The sequestration capacity of the shoot is far greater than 

that of the roots however and whilst the roots continue to transport excess Zn 

into the shoots the shoot Zn concentration continues to rise as its saturation 

point is yet to be reached. This data supported that found by Shen et al. 
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(1997) who also found Zn concentration was higher in the shoots than the 

root.  

This accumulation of Zn in the roots of T. caerulescens is a better fit to the 

Baker model which was characterised by an initially steep curve, flattening in 

accordance with the model (Figs. 2.5b and 2.6b). This indicates that the 

uppermost limits of hyperaccumulation had been reached. However, the large 

standard error of the final point compared to its neighbours suggests that it 

may be anomalous. The high error bar suggests there was a great deal of 

variability in the individual metal contents despite the plants being closely 

controlled and each treatment block having been planted on homogeneous 

agar.  

Lasat et al., (2001) showed that it was sequestration of the Zn in the root 

vacuole of T. arvense that retarded its translocation to the shoot. This resulted 

in approximately 2.5-fold more Zn accumulating in leaf sections obtained from 

T. caerulescens than from T. arvense. In this study T. caerulescens only 

accumulated 1.6-fold more Zn in its shoots than T. arvense. This difference in 

shoot Zn accumulation by T. caerulescens is likely to be attributable to the 

increased root accumulation seen at the higher Zn concentrations within this 

study. From the results of Lasat et al., (2001) it is possible to suggest that if 

this sequestration within T. arvense roots was to be in some way inhibited, or 

the capacity reduced, that the Zn would then be free for translocation to the 

shoot tissue; if for example the root vacuoles become saturated with Zn at 60 

µM it is possible that any further increase in Zn concentration within the root 
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would therefore be transported out to the shoots as was seen with T. arvense 

at 150 µM.  

6.1.2 Zn tolerance of Thlaspi species 

Alongside looking at the accumulation of the two Thlaspi sp. tolerance of the 

plants to increasing external Zn concentration was evaluated by measuring 

growth. The results confirmed that there was differential growth between 

Thlaspi caerulescens and T. arvense at increasing zinc concentrations. 

Thlaspi caerulescens grew well at all concentrations of zinc except the highest 

concentrations (1800 µM), which is 34 times higher than the basal salts 

provide for normal plant growth in vitro. In comparison to T. arvense  

managed growth at 3 and 30 µM Zn; however all levels above this growth 

decreased sharply. At levels above 600 µM no seeds were able to germinate. 

Previous literature has recorded T. caerulescens as possessing tolerance to 

elevated Zn concentrations (Brown et al., 1995; Shen et al., 1997; Whiting et 

al., 2000). In comparison several studies have included T. arvense as a non-

hyperaccumulating species. These reported projects have been comparable 

to the data collected here (Lasat et al., 1998). 

The findings from these experiments showed that T. arvense produced some 

root biomass at external Zn concentrations below 150 µM. Above this level 

root biomass was difficult to measure due to the restricted growth. Above 600 

µM the seeds failed to germinate. T. caerulescens in comparison showed less 

detrimental effect of increasing Zn concentration. Whiting et al., (2000) 

compared T. caerulescens with T. arvense and found that T. caerulescens 

had highly branched roots, high root: shoot biomass ratio, highly specific root 
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length and extremely long root hairs (>2.1 mm). These variables were not 

measured in this study however it is possible to conclude that T. caerulescens 

was more tolerant of elevated Zn levels than T. arvense. 

 

6.2 Transcriptomic analysis of Thlaspi spp. 

Prior to the commencement of this project a microarray experiment had been 

conducted, comparing the expression of T. caerulescens and T. arvense 

genes on different external Zn concentrations. Several thousand genes were 

identified as differentially expressed. A select few of these genes were chosen 

to confirm their differential expression through qPCR. These genes were 

chosen due to published data linking them to metal transport (Pence, 2000; 

Assunção et al., 2001; Zhao et al., 2003). The qPCR was successful in 

confirming differential expression of nine genes (ZNT1 (Zinc transporter 1) 

ZNT2/4, ZNT5, HMA4 (heavy-metal associated domain-containing protein 4), 

NR1 (Nitrase reductase 1), CA (Carbonic anhydrase), NAS1 (nicotianamine 

synthase 1), MTP1 (metal tolerance protein 1), CHS (chalcone synthase). 

 

6.2.1 Microarray analysis of T. caerulescens 

The use of an Arabidopsis thaliana gene chip to test the transcription of T 

caerulescens and T. arvense (non-model plant species) was developed as 

described in this chapter. The aim was to design probes to the target species 

without including polymorphisms that can occur between the target and model 

plant species. The experimental results were confirmed using qPCR. It was 

found that on average there was an 81.5% similarity between A. thaliana and 
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T. caerulescens or T. arvense coding regions. Previous studies have found a 

similar level of homology (87-88%) (Peer et al., 2003). 

 

Comparitively Becher et al. (2004), Weber, et al. (2004) and Filatov et al. 

(2007) used microarray anaylsis to compare expression of plant 

hyperaccumulators with closely related non-hyperaccumulating species. The 

study carried out by Filatov et al. (2007) was different in that they used a 

combination of genomics and classical genetics to indentify candidate genes. 

This study concluded that there appeared to be two QTLs for zinc 

accumulation located on chromosomes 3 and 7. Genes that were identified 

here included AtNRAMP3 which encodes a protein that is responsible for Fe, 

Mn, Cd and possibly Zn transport; similarly this gene was identified in the 

study carried out by Weber et al. (2004). The gene ZIP6 was indentified in 

both the Becher et al. (2004) and the the Filatov et al. (2004) study. A gene 

that was found to be differentially expressed in this microarray, by Filatov et 

al. (2006) and Becher et al. (2004) was the carbonic anhydrase gene (CA), 

which has a cofactor and which changes in activity relative to zinc supply. 

 

6.2.2 qPCR analysis of T. caerulescens 

Of the nine genes studied three genes were of particular interest, the ZNT 2/4, 

HMA4 and NR1 genes. These genes were expressed significantly greater in 

T. caerulescens than T. arvense. This data supports that reported by 

Assunção et al. (2001) who cloned two Zn transporter genes, ZNT2 and 

ZTP1, from T. caerulescens. These genes showed increased expression in T. 
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caerulescens compared to T. arvense. In T. caerulescens, the expression of 

ZNT2 was barely responsive to the Zn supply, whereas their expression in T. 

arvense occurred exclusively under the conditions of Zn deficiency. These 

results suggest that Zn transporter genes may play an important role in 

enhanced Zn uptake and Zn hyperaccumulation in T. caerulescens (Zhao et 

al., 2003). 

 

It has previously been noted that TcZNT1, TcZNT2 and TcZTP1 have roles in 

Zn hyperaccumulation and it has been shown that the expression is 

constitutively higher in both roots and shoots of T. caerulescens compared to 

T. arvense (Pence et al., 2000; Assunçáo et al., 2001). 

 

Sequence and structural homology has been noted between TcZNT1 and 

TcZNT2 with members of the ZIP family that have previously been associated 

with accumulation of essential metals and detoxification of harmful ones in 

many species including homologues of five genes found in A. thaliana. 

Alongside these genes other proteins that are able to control Zn ionic fluxes in 

hyperaccumulators include cation diffuser facilitator families (CDF) (Gaither 

and Eide, 2001; Hammond et al., 2006; Kim et al., 2004) and certain P1b-type 

ATPases (HMA- heavy metal associated domain containing proteins) 

(Hammond et al., 2006; Hussain et al., 2004; Papoyan and Kochian, 2004; 

Williams et al., 2000; Williams and Mills, 2005). 

 

Assunçáo et al. (2001) have previously shown that the expression of TcMTP1 

is higher in shoots and roots of three ecotypes of T. caerulescens compared 
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to T. arvense; however this study showed the opposite. Kim et al. (2004) have 

shown that TgMTP1 has a role in Zn efflux into cells in Thlaspi goesingense, a 

Zn and Ni hyperaccumulator. Papoyan and Kochian (2004) have functionally 

analyzed TcHMA4 and shown it plays a role in xylem loading of Zn. This 

remains consistent with the findings in the A. thaliana double mutant 

hma2hma4 that accumulates less Zn than the wild type whereas over 

expression of the AtHMA4 in A. thaliana showed increased Zn and Cd 

accumulation in the shoot (Hammond et al., 2006; Hussain et al., 2004; Verret 

et al., 2004). 

 

6.3 Design of the HMA4 RNAi construct for transformation of T. 

caerulescens 

The aim of this chapter was to design a suitable construct to allow the 

transformation of Thlaspi caerulescens to study the function of the HMA4 

gene through RNAi silencing. The HMA4 gene had been chosen as the 

candidate gene to study following a microarray experiment that identified its 

differential expression in T. caerulescens on elevated Zn concentrations. Its 

differential expression was then confirmed by qPCR. Previous studies of the 

HMA4 gene in yeast (Papayon and Kochian, 2004) and Arabidopsis (Hussain 

et al., 2004; Verret et al., 2004) have suggested it plays a role in the 

hyperaccumulation of Zn. However no studies had been carried out on the 

gene itself in Thlaspi caerulescens. This made it an ideal candidate for the 

study through RNAi gene silencing. Mills et al, (2005) further confirmed the 

role played by HMA4 using at knockout strategy. In this example T-DNA 

insertion mutants were used to study the effect of the downregulation of the 
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gene. Results from this study showed that increased sensitivity to Zn and Cd 

occurred as the gene was silenced. This suggested that HMA4 played a role 

in metal detoxification. 

 

A recent report, with a similar aim to the one attempted in this thesis has been 

published. It involved the silencing of HMA4 in Arabidopsis halleri (a 

hyperaccumulator) using an RNAi approach (Hanikenne et al., 2008). The aim 

was to determine whether AhHMA4 functions in the heavy metal accumulation 

or heavy metal tolerance of A.halleri. A. halleri L. (accession Langilsheim) and 

A. thaliana plants were grown hydroponically or on solid agar medium 

containing the same hydroponic solution. 

 

Proofreading polymerase was used to amplify by PCR the AhHMA4 sequence 

(2541-2997 bp) from cDNA. This was first cloned into the pENTR/D TOPO 

vector before being inserted into the Gateway binary vector, pJAWOHL8 by 

site directed recombination. The pJAWOHL8 binary vector generates a 

hairpin construct consisting of antisense-AhHMA4 fragment intron-sense 

AhHMA4 fragment which is downstream from a CaMV 35S promoter. 

 

Results of the transformation of A. halleri with the RNAi construct showed a 

decrease in the transcript levels of HMA4 by between 45% and 10% 

compared with wild types, determined by RT-PCR. These plants were 

deemed morphologically normal by comparing root elongation of lines grown 

hydroponically on solution supplemented with increasing Zn concentrations. 

Similarly, plants were shown to contain between 12-35% of the Zn normally 



Chapter 6: General Discussion 

 
230 

 

found in wild type A. halleri. These levels were similar to those observed in 

the non-hyperaccumulator A. thaliana. The levels of Zn found in A. halleri 

roots are normally lower than shoots which indicates root-shoot metal 

translocation. However in the RNAi transformed lines 49-137 fold higher 

levels of Zn are found in the roots, again levels similar to those found in A. 

Thaliana. This evidence suggests AhHMA4 is required for efficient root to 

shoot flux.  

 

In the same study fluorescent imaging using the Zn fluorescent indicator, 

Zinpyr-1 was used to determine the effect HMA4 has on the localisation of Zn 

within the roots of A. halleri. In the wild type Zn was localised mainly in the 

xylem vessels, inwards of the vascular pericyle. In the RNAi transgenic lines 

Zn localisation was most intense in the pericycle cell layer. Similarly this 

pattern of Zn localisation has been reported in the A. thaliana HMA4 mutant 

when compared to wild type plant. This suggests that the silencing of the 

AhHMA4 gene inhibits the movement of Zn from the root symplast to the 

apoplastic xylem vessels which is in fact the primary route of solutes from the 

roots to the shoots which explains the lack of Zn in the shoots of the RNAi 

transgenic plants. 

 

This study has similarities to this thesis in that it was choosing to down 

regulate the HMA4 gene in a known hyperaccumulator using a construct 

produced using the GATEWAY cloning system. The differences that led to 

this being successful and the study in this thesis not achieving transformed 

plants lies not with the construct necessarily, even though different binary 
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vectors were used. The construct in this thesis appeared to work in that it was 

delivered successfully into A. thaliana, confirmed via PCR however any action 

of the RNAi silencing was not investigated. The limiting factor may be the 

hyperaccumulator plant chosen to study the gene expression, T. 

caerulescens. The transformation of A. halleri by floral dip may have less 

technical difficulties associated with it due to it being more closely related to 

A. thaliana, which has an efficient transformation protocol. To further confirm 

the correct assembly of the RNAi HMA4 construct produced during this PhD it 

could be used to transform A. halleri following the method outlined by 

Hanikenne et al. (2008). Plants were cultured from seed on 0.5x MS medium 

supplemented with 1% (w/v) sucrose, 0.05% (w/v) MES (2-N-morpholino 

ethanesulphonic acid), pH 5.7 and 0.75% (w/v) agar (Sigma Agar M) for 6-7 

weeks. For the tissue culture based transformation root explants were grown 

on MS medium containing 2% (w/v) sucrose, 0.05% (w/v) MES, pH 5.7 and 

0.75% (w/v) agar containing hormones to induce callus production including 1 

mg L
-1 

2,4-dichlorophenoxyactic acid, 0.5 mg L
-1 

kinetin for 7 days prior to 

inoculation with A. tumefaciens for 3 days. Regeneration was achieved by 

culturing on the previously mentioned medium with the necessary hormones 

to stimulate regeneration (1 mg L
-1 

6-benzylaminopurine, 0.5 mg L
-1 
α-

naphthaleneacetic acid, 125 mg L
-1 

ticarcillin disodium/potassium 

clavulanate). Similarly, the regeneration of T. caerulescens accomplished by 

Guan et al., (2008) (refer to section 6.4) was achieved using the hormones 

NAA and BAP, a combination attempted in this PhD but succeed by NAA 

alone using shoot tissue. Selection of potential transformants was achieved 
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on the above mentioned medium with the addition of 50 mg L
-1 

kanamycin, 25 

mg L
-1 

phosphinotricin, or 10 mg L
-1 

hygromycin. Root induction was then 

achieved by excised shootlets by cultivation on medium containing 1 mg L
-1 

indole-3-acetic acid, 125 mg L
-1 

ticarcillin disodium/potassium clavulanate. 

 

Hanikenne et al. (2008) state that the HMA4 gene is required for full tolerance 

of A. halleri to Zn and Cd. Also reported is the transfer of HMA4 gene into A. 

thaliana, a non-hyperaccumulator. This leads to Zn partitioning in the xylem 

vessels and transcriptional upregulation of Zn deficiency response genes. 

This study confirms the feasibility of choosing this gene for study.  

 

Secondly to the silencing of the AhHMA4 gene Hanikenne et al. (2008) also 

studied the effect of overexpression of the AhHMA4 gene in A. halleri. The 

effect of this overexpression was monitored by RT-PCR to determine how the 

expression of Zn deficiency genes changed in relation to the overexpression 

of HMA4. The roots of the RNAi lines were shown to have a positive 

correlation of the expression of IRT3 and ZIP4 genes in relation to the 

transcript abundance of HMA4. The Zn deficiency genes mentioned belong to 

the same family of proteins associated with the uptake of Zn. It has therefore 

been proposed that the expression of these genes in the roots of wild type A. 

halleri is an outcome of the of the increased HMA4 activity and as a result 

further increases metal accumulation.  
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To summarise, AhHMA4 is thought to be responsible for naturally selected Zn 

hyperaccumulation and Cd and Zn hypertolerance in A. halleri. Elevated 

levels of HMA4 within the plant is attributable to a high copy number of the 

gene and due to this the gene it is found that there is increased Zn flux from 

root symplasm to the xylem vessel.  

 

The results from the work carried out by Hanikenne et al. (2008) provide key 

leads to evaluate the work carried out in this thesis and give ideas for new 

research in future related to the HMA4 RNAi construct produced. The 

construct produced was successfully used to transform A. thaliana, to test that 

the construct was working. However due the difficulty encountered in the 

transformation of Thlaspi caerulescens (section 6.4) effect of the RNAi 

silencing was not observed. A. halleri could possibly be a potential candidate 

for transformation using the assembled construct to evaluate the effectiveness 

of the construct itself. 

 

6.4 Transformation of T. caerulescens 

The transformation of Thlaspi caerulescens was attempted as a means of 

studying the HMA4 gene in planta, a novel approach. Reports of Thlaspi 

caerulescens previously being transformed by floral dip methods with reporter 

genes meant that it was thought that this would be relatively straight forward. 

(Pence et al., 2000). However this was not to be the case. Unfortunately there 

were no successful transformants produced form this project despite 

numerous attempts using both my floral dip and tissue culture methods. The 

construct used was successfully transformed into Arabidopsis thaliana 
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suggesting that the construct was not the limiting factor. Factors that may 

have contributed to the inability to transform T. caerulescens include 

contamination of the plants by mildew, an effect of covering the plants with 

plastic bags following floral dipping. A low efficiency (less than 1% as 

observed in A. thaliana) would mean obtaining transformants would be very 

low frequency. The cycle of seed to seed in T. caerulescens is longer than in 

A. thaliana. This combined with a low frequency could make the chances of 

obtaining a transformant very low (Ebbs et al., 1997). 

 

At the time of completing the thesis a paper was published that confirmed 

transformation of Thlaspi caerulescens by Agrobacterium tumefaciens (Guan 

et al., 2008). They reported on the successful insertion of a GUS reporter 

gene, nptII selectable marker and a foreign catalase gene through a tissue 

culture based transformation system. Seeds of T. caerulescens were grown 

on sterile agar for seven to fourteen days. Cotyledons, hypocotyls and shoots 

(10-20 mm) with nodes were excised from these plantlets and transferred on 

to MS media containing 300 mg L-1 lactalbumin hydrolysate (LH), 200 mg L-1 

inositol, 30 g L-1 sucrose, and 6 g L-1 agar, supplemented with factorial 

combinations of 1 mg L-1 benzylaminopurine (BA) and 0.2 mg L-1 a-

naphthaleneacetic acid (it was subsequently determined that the cotyledons 

and hypocotyls were unsuccessful at regenerating). In comparison the 

regeneration conditions that favoured T. caerulescens in this PhD was 2 μl ml-

1 NAA without cytokinins which gave 98% production of callus from shoot 

explants. As discussed the successful regeneration of plants from callus was 

never achieved in this study however Guan et al. (2008) discussed how it was 
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achieved in their study. After allowing tissue to differentiate for 1 week the 

nodes from several shoots were transferred to MS medium containing 200 mg 

L-1 inositol, 30 g L-1 sucrose, and 7 g L-1 agar, supplemented with (1 or 2 mg 

L-1) kinetin (KT), (1 or 2 mg L-1) benzylaminopurine BA, and (0.5 or 1 mgl-1) 

NAA for regeneration of shoot cluster, at three week intervals this medium 

was replaced with recordings of regenerated roots recorded.  

 

Guan et al., (2008) used a construct containing a CaMV 35S 

promoter/catalase/GUS cds/30NOS expression cassette within a pBI121 

binary vector inserted into Agrobacterium tumefaciens strain EHA105. The 

transformation conditions were optimised by carrying out several experiments 

changing various variables including inoculation time and optical density of 

the A. tumefaciens inoculum. The final transformation procedure involved pre-

culturing shoot clusters for 4 days whilst a single bacterial colony was cultured 

in 5 ml f LB medium supplemented with 50 mg L-1 kanamycin and 50 mg L-1 

rifampicin and grown over night at 28ºC. The bacterial growth was monitored 

until it reached an optical density (OD600) of 0.5. The culture was 

subsequently centrifuged for 5 min at 4000 rpm and diluted with liquid MS to a 

1:3 ratio containing 100 µM acetosyringone. Plant explants were submerged 

in the culture for 10 mins with continuous shaking. Following inoculation 

explants were blotted onto sterile filter paper and culture on agar for 4 days at 

28ºC in the dark. 

 

Following culture with the A. tumefaciens inoculums, the explants were 

washed with sterile water three times and once with MS liquid medium 
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containing 500 mg L-1 carbenicillin to inhibit bacterial growth. The explants 

were then transferred to selection medium that contained 250 mg L-1 

carbenicillin (and the growth hormones; 2 mg L-1 NAA, 2 mg L-1 BA, 2 mg 

kinetin and 200 mg inositol ) for 5-7 days. A second selection medium was 

used following this containing 60 mg l-1 kanamycin in addition to the 

carbenicillin and growth hormones previously used). Regeneration was 

initiated by repeated culturing on medium as laid out above with the addition 

of a further 0.5 mg L-1 GAs for 6 weeks. Explants were excised from callus 

and transferred to MS medium containing 250 mg L-1 carbenicillin and 30 mg 

L-1 kanamycin. This medium was changed at 3 week intervals and surviving 

explants were recorded at 6 weeks. Elongated shoots were then transplanted 

to fresh medium to allow root regeneration. Boxes containing rooted plantlets 

had the lids removed for three day prior to transplantation into the green 

house. 

 

Transformation was confirmed in potential transformants through GUS 

analysis and PCR amplification of the nptII gene and Southern analysis which 

confirmed that the T-DNA had integrated singularly. RT-PCR confirmed the 

presence of the catalase gene (1479 bp). At the protein level, analysis of the 

catalase gene expression was observed by measuring catalse activity. The 

result showed that significantly higher catalse activity was found in the 

transgenic plant compared with the wild type. 

 

Guan et al., (2008) discuss the parameters that made this transformation 

successful which allows assumptions to be made on why the transformation 
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system used in this thesis was not successful. The development of plants 

used for explants is important due to the hormone levels that vary within the 

plant at different phases of development. This also links into the explant type 

used as different tissues exhibit different hormones at the same stage in 

development. The study of Guan et al. (2008) varied from the thesis study 

mostly in the hormones and media used. This is a vital factor in the successful 

regeneration of plants and the main inhibitor in the method used in this thesis. 

Similarly the bacterial density is important to successful transformation; too 

high a density inhibits transformation. As important is the optimisation of 

inoculation time; too long and the bacterial growth takes over the plant and 

that the carbinicillin is unable to completely eliminate, a problem which was 

observed during the floral dip method used in this thesis. If any higher levels 

of antibiotics are used damage can be caused to the plant tissue by the 

antibiotic itself. Guan et al. (2008) discussed OD for the transformation of 

other species for example basmati indica rice or Rhipsalidopsis gaertneri 

which is generally carried out between 0.3-0.6, which is consistent with the 

transformation of Thlaspi caerulescens here. Future work on the 

transformation of Thlaspi spp. would involve reproducing these methods 

reported by Guan et al., (2008) to confirm the method described, with 

particular focus on regeneration medium used and the inoculation OD and 

incubation time. 
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6.5 Future work 

This thesis was successful in confirming that Thlaspi caerulescens possesses 

the ability to accumulate and tolerate high levels of Zn and the results 

obtained were significantly different to those recorded for the non 

hyperaccumulator T. arvense. Secondly this study successfully confirmed the 

differential expression of several genes in Thlaspi caerulescens that had been 

highlighted in a microarray experiment. From this a candidate gene, HMA4, a 

member of the P-type ATPase family was chosen for further study. A 

construct designed to silence HMA4, in planta, was produced that although 

was not successfully transformed into Thlaspi caerulescens, was used to 

transform A. thaliana. This was done to confirm that the construct was not the 

inhibiting factor in the difficulty of transformation of Thlaspi caerulescens. It 

was not possible to transform Thlaspi spp. in this report and to date the lab 

has not successfully achieved this despite rigorous attempts being made. 

Limitations of the transformation procedure include the slow seed to seed 

cycle of the plant. Work since that has been considered after this thesis 

include rapid cycling of Thlaspi caerulescens. This includes experimenting 

with the vernalisation period to induce flowering earlier in the plants. 

Recorded efficiency of transformation of Arabidopsis thaliana is 1% (Clough 

and Bent, 1998) if efficiency is lower than this in T. caerulescens, combined 

with the slow cycle of T. caerulescens the occurrence of transformants will be 

less.  

 

Several recent papers have provided areas of future work namely the work 

carried out by Hanikenne et al. (2008) in which they transformed A. halleri 



Chapter 6: General Discussion 

 
239 

 

with a RNAi HMA4 construct to assess its activity within the plant. Using the 

methods described in this paper A. halleri could be transformed using a RNAi 

HMA4 construct produced in this thesis, or similar construct. This would 

assess the successful production of the construct within a hyperaccumulator 

and also to compare the results with those reported by Hanikenne et al., 

(2008). 

 

Recently methods described by Guan et al. (2008) to transform T. 

caerulescens by tissue culture methods could be attempted have been 

described. It would be interesting to attempt to repeat these methods with a 

reporter gene such as GUS, to asses the efficiency of transformation and also 

with the RNAi HMA4 construct produced to asses the HMA4 gene within T. 

caerulescens itself. 
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8. Appendices 

Appendix 8.1 Murashige and Skoog, 1962 
MS inorganic salts:  

 Components            Concentration 

(mg L-1) 

 Calcium chloride dihydrate     440.0 

Ammonium nitrate       1650 

 Potassium nitrate       1900 

 Potassium iodide       0.830 

 Cobalt (II) chloride hexahydrate     0.025 

 Potassium dihydrogen orthophosphate    170.0 

 Boric acid `       6.200 

 Sodium molybdate dihydrate     0.250 

 Magnesium sulphate tetrahydrate    370.0 

 Copper (II) sulphate pentahydrate    22.30 

 Zinc sulphate heptahydrate     0.025 

 Iron (II) sulphate heptahydrate     27.85 

 Ethylenediamine tetra acetic acid disodium salt  37.25 

 Glycine        2.000 

 Inositol        100.0 

 Nicotinic acid       0.500 

 Pyridoxine hydrochloride      0.500 

 Thiamine hydrochloride      0.100 

 Sucrose        30000 

 Agar         8000.0 

 pH        5.7-5.8 

 Source: Murashige and Skoog, (1962).  

 



Chapter 8: Appendix 

 
266 

 

8.2 DNA sequencing results produced to determine the correct 

sequence and orientation of the HMA4 gene at various points in 

assembly of the T. caerulescens and T. arvense HMA4 RNAi constructs 
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