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Abstract 

Natural products have been used as a valuable source of new lead drugs. The 

Plectranthus L’Her (Lamiaceae) genus possess a wide diversity of ethnomedicinal uses 

which indicate the presence of bioactive molecules. Also, innovative methods for natural 

drug delivery, as phytosome, have showed to be a promising strategy for the 

improvement of delivery and stability. 

In this work, three plants from the Plectranthus genus were studied: P. 

madagascariensis, P. neochilus and P. porcatus. Several extracts were prepared by the 

combination of extraction methods (infusion, decoction, microwave, ultrasound, 

maceration and supercritical fluid extraction) with different polarity solvents (water, 

acetone, methanol and scCO2). Those extracts were profiled by HPLC-DAD and the main 

components were identified, including polyphenols (caffeic acid, chlorogenic acid and 

rosmarinic acid), diterpenes (7α-acetoxy,6β-hydroxyroyleanone and coleon U) and 

flavones (rutina y naringenina). 

The prepared extracts were screened for their antimicrobial (Gram positive and 

negative bacteria and yeasts), antioxidant (DPPH radical scavenging activity) and 

cytotoxic activities (MDA-MB-231 cell line). Extracts from P. madagascariensis (acetone 

maceration and acetone ultrasound) and P. neochilus (acetone ultrasound) showed 

antibacterial effects against Gram positive bacteria strains, namely, Bacillus subtilis, 

Staphylococcus aureus and S. epidermidis and a Gram negative bacteria strain, Klebsiella 

pneumonia (MIC values 1.95-250 μg/mL). The ultrasound extract of P. madagascariensis 

prepared with acetone showed potent antibacterial effect against Staphylococcus spp., 

including a methicillin-resistant strain (MRSA), with MIC values ranging from 1.95 to 7.81 

µg/mL. These results validate the traditional uses of such plants as anti-infectious 

agents. All methanolic extracts showed potent antioxidant effects at 100 ng/mL (60.8-

89.0%). The maceration acetone extract from P. madagascariensis showed moderate 

cytotoxic effects in the MDA-MB-231 breast cancer cell line with IC50 of 64.52 µg/mL.  

The organic solvent extracts from P. madagascariensis were the most bioactive and 

thus characterized (identification and quantification) using HPLC-DAD. Furthermore, the 

compounds were identified by authentic standard overlay: rosmarinic acid, 7α,6β-

dihydroxyroyleanone, 7α-acetoxy-6β-hydroxyroyleanone and coleon U. A diterpenic 

compound was isolated from the ultrasound acetonic extract of P. madagascariensis 

and spectroscopically characterized (1H- and 13C-NMR) as 7α-formyloxy-6β-

hydroxyroyleanone. This was the first time this compound was isolated from this plant. 

The cytotoxic effect of the identified compounds was evaluated in a battery of cancer 

cell lines (MDA-MB-231, MCF-7, HCT116, NCI-H460 and MCR-5). The diterpenic 

compounds showed moderate to potent cytotoxicity in the majority of tested cell lines. 

A high selectivity for cancer cell lines was observed for 7α,6β-dihydroxyroyleanone and 

7α-acetoxy-6β-hydroxyroyleanone with selectivity index of 4.3 and 3.2, respectively. 

The combination of the observed results and literature data afforded the 

establishment of new structure-activity relationships of roylenanone abietanic 
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compounds. The relevance of lipophilicity and of the presence of an electron donating 

group at 6 and/or 7 positions was observed.  

The antibacterial acetonic ultrasound extract from P. madagascariensis identified in 

the initial screening was selected for incorporation into a phytosomal formulation and 

subsequently coated by chitosan. Phytosomes were amorphous, uniform in shape as 

shown by AFM and SEM, and with an average size of 1082 ± 363 nm and zeta potential 

of +20.59 ± 12.02 mV. The encapsulation of the antibacterial extract was determined by 

HPLC (57.7±0.06%) and the chemical interactions between the formulation components 

was cofirmed by DSC and DRIFTS. Such phytosomes showed a sustained release of the 

extract 4 and lower skin-like permeation fluxes. An improvement up to a 4-fold factor in 

the anti-Staphylococci activity (MIC values 0.98-31.25 µg/mL) was observed. The safety 

of such formulation was verified by in vitro human keratinocytes cytotoxicity assays and 

by in vivo acute and sub-chronic dermal irritation tests in mice. 

This study showed the potential of the Plectranthus genus as source of lead 

antibacterial and antiproliferative agents and validate the ethnomedicinal uses of the 

studied plants. The isolated abietane diterpenes obtained from P. madagascariensis 

possess promising selective cytotoxic effects, namely, aginst the lung cancer lines 

tested. Also, the developed formulation of extract of P. madagascariensis corresponds 

to a potent topical antibacterial candidate with a broad spectrum of activity.  

Keywords: Plectranthus; Diterpenes; Cytotoxicity; Antibacterial; Phytosome.   
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Resumen 

Los productos naturales han sido una valiosa fuente de potenciales fármacos. Las 

plantas del género Plectranthus L'Her (Lamiaceae) poseen una amplia diversidad de usos 

etnomedicinales, que son una indicación de la presencia de potenciales fármacos en su 

composición. Los innovadores nanocarregadores de productos naturales, como el 

fitosoma, han demostrado ser una estrategia prometedora para la mejora de su 

veiculación y estabilidad. 

En este trabajo, tres plantas del género Plectranthus fueron estudiadas: P. 

madagascariensis, P. neochilus y P. porcatus. Varios extractos fueron preparados por la 

combinación de métodos de extracción (infusión, decocción, maceración, microondas, 

ultrasonido o extracción con fluido supercrítico) utilizando disolventes de diferente 

polaridad (agua, acetona, metanol o dióxido de carbono supercrítico). Los extractos 

preparados fueron perfilados por HPLC-DAD y se identificaron los majores componentes 

principales, incluyendo polifenoles (ácido cafeico, ácido clorogénico y ácido 

rosmarínico), diterpenos (7α-acetoxi-6β-hidroxiroileanona y coleona U) y flavonas. 

Los extractos preparados han sido evaluados por su actividad antimicrobiana 

(bacterias Gram positivas, Gram negativas, levaduras), antioxidante (captación de 

radicales por DPPH) y citotóxica (células MDA-MB-231). Los extractos de P. 

madagascariensis (maceracion y ultrasonido con acetona) y P. neochilus (ultrasonido 

com acetona) mostraron efectos antibacterianos contra Bacillus subtilis, Staphylococcus 

aureus, S. epidermidis (bacterias Gram positivas) y Klebsiella pneumoniae (bacterias 

Gram negativas). Lo extracto de ultrasonido de P. madagascariensis obtenido con 

acetona reveló efectos antibacterianos potentes en Staphylococcus spp., incluyendo una 

cepa resistente a la meticilina, con valores de concentración mínima inhibitoria en el 

rango de 1,95 a 7,81 µg/mL. Esto está de acuerdo con los usos tradicionales de tales 

plantas como agentes anti-infecciosos. Cada extracto metanólico mostró potentes 

efectos antioxidantes en una concentración de extracto de 100 ng/mL (60,8-89,0%). El 

extracto de maceración de P. madagascariensis mostró algunos efectos citotóxicos en 

la línea celular de cáncer de mama MDA-MB-231 con IC50 de 64,52 mg/mL.  

Dado que los extractos más bioactivos se obtuvieron de P. madagascariensis, 

aquellos se caracterizaron con más detalle con la identificación y cuantificación de los 

principales compuestos en los extractos. Cuatro compuestos fueron identificados por 

comparación con estándares: ácido rosmarínico, 7α,6β-dihidroxiroyleanona, 7α-

acetoxi-6β-hidroxiroileanona y coleona U. Se aisló un compuesto diterpénico del 

extracto ultrasonido de acetona de P. madagascariensis que se caracterizó por RMN 1H 

y 13C como 7α-formiloxi-6β-hidroxiroileanona. Esto supone el aislamiento por primera 

vez, de este compuesto en esta planta. Los efectos citotóxicos de los compuestos 

determinados en una batería de líneas celulares de cáncer y en conjugación con los 

datos disponibles de la literatura proporcionaron el establecimiento de algunas 

relaciones estructura-actividad de la estructura abietanica de la roilenanona. Se observó 
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cierta selectividad para líneas celulares de cáncer de 7α,6β-dihidroxiroileanona y 7α-

acetoxi-6β-hidroxiroileanona con el índice de selectividad de 4,3 y 3,2 respectivamente. 

El extracto más antibacteriano resultante del cribado inicial fue seleccionado para su 

incorporación en una formulación fitosomal y posteriormente recubierto por el 

quitosano. Los fitosomas obtenidos eran amorfos, uniformes en forma (SEM y AFM), con 

un tamaño medio de 1082 ± 363 nm y lo potencial zeta de 20,59 ± 12,02 mV. La eficiencia 

de encapsulación se determinó por HPLC (57,7 ± 0,06%). La interacción entre los 

componentes de la formulación se demostró mediante DSC y DRIFTS. Los fitosomas 

mostraron una liberación sostenida y el flujo de membrana de baja con una cierta 

mejora de la actividad anti-estafilococos (concentración mínima inhibitoria de 0,49 a 

31,25 mg/ml). La seguridad de dicha formulación se demuestra in vitro por la baja 

citotoxicidad en queratinocitos humanos y in vivo con ensayos de irritación cutánea 

aguda y sub-crónica en ratones. 

Este estudio demostró el potencial del género Plectranthus como fuente de nuevos 

agentes antibacterianos y de tratamiento del cáncer, justificándose algunos de los usos 

etnomedicinales de esas plantas. Los diterpenos del tipo abietano aislados a partir de P. 

madagascariensis poseen prometedores efectos citotóxicos selectivos contra algunas 

líneas de cáncer. Además, la formulación desarrollada de extracto de P. 

madagascariensis corresponde a un candidato antibacteriano tópico potente con un 

amplio espectro de actividad. 

Palabras-chave: Plectranthus; diterpenos; citotoxicidad; antibacterianos; fitosoma.  
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Resumo 

Os produtos naturais têm sido uma valiosa fonte de novos produtos farmacêuticos. 

As plantas de género Plectranthus L'Her (Lamiaceae) possuem uma ampla diversidade 

de usos etnomedicinais, que correspondem a uma indicação da presença de potenciais 

fármacos na sua composição. Métodos inovadores para a veiculação dos produtos 

naturais, como os fitossomas, demostraram ser uma estratégia promissora para a 

melhora da veiculação e estabilidade destes produtos. 

Três plantas do género Plectranthus foram estudadas: P. madagascariensis, P. 

neochilus e P. porcatus. Extratos foram preparados pela conjugação de técnicas de 

extração como infusão, decocção, maceração, micro-ondas, ultrassons ou de extração 

por fluidos supercríticos, utilizando como solventes água, acetona, metanol ou dióxido 

de carbono supercrítico. Os extratos preparados foram perfilados por HPLC-DAD e 

identificados alguns dos principais componentes, por comparação com padrões, 

verificando-se na sua constituição polifenois, diterpenos e flavonoides. 

Os mesmos extratos foram avaliados em termos das suas atividades antimicrobiana 

(bactérias de Gram positivo, Gram negativo e leveduras), antioxidante (captura de 

radicais) e citotóxica (células MDA-MB-231). Extratos de P. madagascariensis 

(maceração e ultrassons em acetona) e P. neochilus (ultrassons em acetona) 

apresentaram efeitos antibacterianos contra Bacillus subtilis, Staphylococcus aureus, S. 

epidermidis e Klebsiella pneumoniae. O extrato de ultrassons de P. madagascariensis 

obtido com acetona apresentou potentes efeitos antibacterianos em espécies de 

Staphylococcus, incluindo uma estirpe resistente à meticilina, verificando-se uma 

concentração mínima inibitória no intervalo de 1,95 a 7,81 µg/mL. Esta atividade 

encontra-se de acordo com os usos tradicionais destas plantas como agente anti-

infecioso. Os extratos metanolicos apresentaram potentes efeitos antioxidantes a uma 

concentração de extrato de 100 ng/mL (60,8-89,0%). O extrato de maceração em 

acetona de P. madagascariensis apresentou alguns efeitos citotóxicos na linha celular 

de cancro de mama MDA-MB-231 com um IC50 de 64,52 mg/mL. Uma vez que os 

extratos mais bioativos foram obtidos a partir de P. madagascariensis, estes foram 

caracterizados em maior detalhe com identificação e quantificação dos principais 

compostos nesses extratos. Quatro compostos foram identificados por comparação 

com padrões: ácido rosmarinico, 7α,6β-dihidroxiroyleanona, 7α-acetoxi-6β-

hidroxiroileanona e coleona U. Um composto diterpenico foi isolado a partir do extrato 

de ultrassons com acetona de P. madagascariensis e caracterizado por RMN de 1H e 13C 

como 7α-formiloxi-6β-hidroxiroileanona. Este composto foi isolado pela primeira vez a 

partir desta planta. Os efeitos citotóxicos dos compostos purificados foram 

determinados numa bateria de linhas celulares de cancro e em conjugação com dados 

da literatura, foram estabelecidas algumas relações de estrutura-atividade na estrutura 

abietanica do tipo roileanona. Foi observada alguma seletividade para linhas celulares 

de cancro por parte da 7α,6β-dihidroxiroileanona e 7α-acetoxi-6β-hidroxiroileanona 

com com índice de seletividade de 4,3 e 3,2 respetivamente. 
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O extrato com maior potência antibacteriana identificado na triagem inicial foi 

selecionado para sua incorporação numa formulação fitossomal com posterior 

encapsulação por quitosano. Os fitossomas obtidos apresentavam-se amorfos, 

uniformes na forma (SEM e AFM), com um tamanho médio de 1082 ± 363 nm e potencial 

zeta de 20,59 ± 12,02 mV. A eficiência de encapsulação determinada por HPLC (57,7 ± 

0,06%). A existência de interações entre os componentes da formulação foi analisada 

por A ocorrência de encapsulação foi demonstrada por DSC e DRIFTS. Os fitossomas 

demonstraram uma libertação sustentada com redução da permeação trans-cutanea. 

Uma melhoria em até 4 vezes na atividade anti-estafilococo (concentração mínima 

inibitória de 0,49 a 31,25 mg/ml). A segurança desta formulação foi demonstrada por 

baixa citotoxicidade em queratinocitos humanos in vitro e por irritação negligenciável in 

vivo nos ensaios de irritação cutânea aguda e sub-crónica em ratinhos. 

Este estudo demonstrou o potencial do género Plectranthus como fonte de novos 

agentes antibacterianos justificando-se alguns dos usos etnomedicinais destas plantas. 

Os diterpenos do tipo abietano isolados a partir de P. madagascariensis possuem efeitos 

citotóxicos com alguma seletividade face a algumas linhas celulares de cancro. A 

formulação desenvolvida a partir do extrato de P. madagascariensis corresponde a um 

promissor candidato a antibacteriano tópico com amplo espectro de atividade e elevada 

potência. 

Palavras-chave: Plectranthus; diterpenos; citotoxicidade; antibacterianos; fitossoma. 
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1. State of the art, hypothesis and objectives 

1.1. Natural products as new drugs source 

1.1.1. Historic perspective 

The medicinal use of plants has been directly related to human evolution. Primitive 

hominids, as the Neanderthals, should have been aware of the therapeutic utility of 

various plants. Pollen vestiges of medicinal plants have been found in their graves, dated 

more than 60,000 years old1. The first archeologic evidences of plant extract production 

consisted in several extraction pots, similar to modern Soxlet extractors, dated about 

3,500 BC, back to ancient Mesopotamian. Ancient Sumerian texts, from about 2,100 BC, 

described elaborated methods of bulk extract production using water and oils as 

solvents. The Egyptian Ebers Papyrys, from around 1,550 BC, contains the description of 

more than 700 sources of natural medicinal products and their indications2. Later, the 

roman physician Pedanius Dioscorides compiled De Materia Medica which included the 

description of about 600 plant based medicines1. At the end of Roman empire, Galen, a 

Greek physician and pharmacist left a registry of 540 medicines based in plants and 

introduced the notion that herbal components could be not only beneficial but also 

harmful depending on dose and extracted components2. Even though the ancient 

knowledge of the therapeutic properties of plants, only in XVIII and XIX centuries the 

first purified compounds were isolated from plants. Morphine was isolated by Sertürner 

in 1804 from the opium powder extracted from Papaver somniferum and it became the 

first purified natural product commercialized (by Merck, 1826)2,3. In subsequent years 

diverse natural products were isolated from plants and some of them are still currently 

used as the cases of atropine from Atropa belladonna, caffeine from Coffea arabica, 

colchicine from Colchicum autumale or salicin from Salix alba2. The increasing 

knowledge about drug chemical structures and the evolution of chemical synthesis led 

to a growing interest of the pharmaceutic industries in the drug total chemical synthesis, 

over the isolation from natural sources. The 1990s advent of combinatory chemistry and 

the implementation of high throughput screening (HTS) programs led to an abrupt 

reduction of the pharmaceutic industry in phytochemistry research programs3,4. Those 

new techniques were expected to create a surge of new active substances discovered, 

which did not occur. Also, the total number of approved new chemical entities had some 

of the lowest values in the past two decades5, besides of an increasing spending in 

research and development. In this period, only one de novo new chemical entity was 

reported to the public domain resulting from the use of combinatory chemistry and HTS 

(the antitumor sorafenib)5. Those disappointing results from HTS have been related to 

the chemical characteristic of the compounds constituting the databases subject of HTS. 

Feher and Schmidt6 have disclosed the main differences between drug molecules, 

natural products and combinatorial chemistry compounds. They noted that molecules 

obtained from combinatory synthesis had a lower number of chiral centres, a less 
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prevalent presence of complex ring systems and a substantial difference in the degree 

of saturation and number and distribution of the heteroatoms in comparison to natural 

products and drug molecules6. Those authors suggest that if the constitution of HTS 

databases would be based on nature-like molecules, the new chemical entity discovery 

process would have an improved hit-ratio6. Such approach have been recently adopted 

in some groups5,7 and even some natural product databases have been disclosed to the 

public8. Newman and Cragg have comprehensively reviewed the natural products, semi-

synthetic and natural inspired molecules that have been approved by the Food and Drug 

Administration (FDA)4,5,9,10. On their most recent review, they verified that from all 1,135 

new drugs approved in the 1981 to 2010 period, about 50% have natural origin (fully 

natural, derivatives or mimics)5.  Those reviews along with other compilations of the 

natural product impact on clinical used drugs, firm the statement that the natural 

products are the most reliable source of new drug molecules3,11,12. The value of natural 

products in drug discovery has been highlighted in the recent Nobel prize attribution to 

Dr. William C. Campbell and Professor Satoshi Ōmura13,14 for their discovery of 

avermectins, fermentation products of Streptomyces avermitilis, as active drugs against 

a number of parasitic diseases including river blindness and lymphatic filariasis, and to 

Professor Youyou Tu for his discovery of artemisinin as the active component of the 

Artemesia annua, and that resulted in a key reduction of malaria morality15,16.  

Considering that up to 95% of the Earth’s biodiversity was still not studied for any 

biologic activity, a virtually infinite natural chemical diversity is yet available for use in 

further drug discovery17. 

1.1.2. The pharmacologic relevance of natural products 

The metabolism of plants resulted in the production of numerous compounds that 

can be classified according its functions as primary or secondary metabolites18. Primary 

metabolites are directly involved in normal growth, development and reproduction 

processes while secondary metabolites are not absolutely necessary for the survival of 

the plant but play an important role in interspecies defences, intra/interspecies 

interaction and environmental adaptation18,19 . Some of the most relevant plant 

secondary metabolites are terpenoids, alkaloids and phenolic compounds18. The plant 

secondary metabolites have contributed to the development of new drugs in three 

ways: being new drug entities with good pharmacologic activity and adequate 

pharmacokinetics and toxicological characteristics in the unmodified state; as source of 

lead compounds which present some biologic activity but could be modified by hemi-

synthesis to obtain more potent drug candidates; and by revealing new targets and 

action mechanisms which could further be used to the development of synthetic 

analogues20.  

Modern pharmaceutical research comprehends a multi-disciplinary approach 

involving chemists’, biologists’ and pharmacists’ contribution to obtain leading drug 

candidates. To find such bioactive compounds in higher plants, a targeted approach, 

with a careful plant to study selection, based in ethnobotanical references or 
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chemotaxonomic studies would assure the highest hit rate21. The existence of 

bibliographic and/or local references to the traditional medicinal use of some plants are 

powerful indicators to the presence of bioactive compounds in those plants (i.e. the 

discovery of artemisinin from the traditionally used Chinese plant Artemesia annua for 

Malaria treatment15). The alternative approach could be focused on a specific class of 

molecules, with a known biologic activity and that could be taxonomically characteristic 

of some plant genus (e.g. some taxanes produced by Taxus brevifolia are also produced 

in other Taxus species22). 

A large number of methods could be used for the extraction of natural products from 

vegetal matrixes and were discussed in detail in some reference books and articles21,23–

25. In this work, solid-liquid extractions using organic and/or aqueous solvents were the 

most frequently employed methods but also non-conventional techniques employing 

supercritical fluids were also applied. The choice of a method of extraction is dependent 

on the plant material characteristics and on the quality and quantity of compounds to 

be extracted23,24. The extraction process could be exhaustive/total, extracting as much 

compounds as possible, or selective, extracting preferentially one type of desired 

metabolites. In total extractions is recommended the use of a polar solvent, namely, an 

alcoholic solvent which increase the permeability of the cellular wall facilitating the 

extraction of secondary metabolites. In selective extractions, the selection of solvent 

should follow the “like-dissolves-like” principle: polar solvents extract preferentially 

polar compounds (flavonoids, polyphenols, tannins and some alkaloids) while nonpolar 

solvents solubilize lipophilic compounds (fatty acids, waxes, sterols, along with some 

alkaloids, some terpenoids and some coumarins)23,24.  

A solid-liquid extraction is a dynamic process involving a series of simple steps (Figure 

1). Initially, the contact of the plant material with the solvent conduct to its penetration 

into the solid matrix. This step was generally very fast due to capillary forces acting on a 

porous solid. When the solvent reaches the cellular structures some of the plant  

 

 

Figure 1. Representation of the extraction process and its basic terminology. 
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components were dissolved and migrate by diffusion to the solid-liquid interface at an 

approximately constant velocity. At this step, interactions with the solid matrix limit the 

mass transfer but the solute was gradually incorporated into the bulk solution by 

convection (natural or forced). The extraction rate is low at this period and the limiting 

step of the process. 

1.2. Plectranthus genus (Lamiaceae): chemistry and bioactivities 

Lamiaceae family comprises 236 genera and about 7000 species of flowering plants, 

most of them with aromatic characteristics26. Many are known for their ethnobotanical 

uses and essential oil production as the cases of sage (Salvia genus), basil (Ocimum 

genus) and mint (Mentha genus). Other important genus in this family is Plectranthus 

L’Her (tribe Ocimeae, subfamily Nepetoideae). This genus comprises more than 300 

species and is mainly distributed through tropical and sub-tropical regions of Africa, Asia 

and Australia27. The morphologic identification of Plectranthus plants could be puzzling 

due to the lack of clear-cut morphological criteria to distinguish among species within 

the genus28. Also species classified originally in the closely related genus Isodon, 

Solenostemon, Englerastrum and the former genus Coleus are now part of the 

Plectranthus genus due to phylogeny studies with resource to genetic tolls29. This genus 

is actually considerer paraphyletic, as currently circumscribed, and three clades have 

been phylogenetically established: a sigmoid ‘Coleus’ clade, including the species of the 

former Coleus genus; a sigmoid ‘Plectranthus’ clade; and a straight ‘Plectranthus’ 

clade30. Plectranthus is an economically important genus due to their horticultural, 

floricultural and ethnomedicinal uses27,28. Most Plectranthus species are robust, prolific 

and many possesses attractive leaves or flowers which justifies their gardening uses for 

over more than 100 years31,32. However more than 85% of the Plectranthus citations in 

literature are due to their uses in traditional medicine (as reviewed by Lukhoba et al. 

200627) and for the biologic activities of their extracts or isolated compounds that 

includes anti-infectious33–35, antioxidant36,37, anti-inflammatory38 and cytotoxic39–41 

effects. 

1.2.1. Ethnopharmacological uses 

Plectranthus species have been used for their medicinal properties namely in 

digestive42,43, skin44, infective45,46 and respiratory47 conditions, among others. The 

species more frequently cited for their ethcnomedicinal uses were P. barbatus Andr. 

(formerly known as Coleus forskohlii) used in gastric problems, wounds, skin allergy, 

colds, cough, abdominal pain, rheumatic, bacterial, fungal and viral infections27,45,46,48,49 

and P. amboinicus (Lour.) Spreng (syn of C. aromaticus), used in dyspepsia, indigestion, 

diarrhoea, skin ulcerations, burn, skin allergies, chronic cough, asthma, bronchitis, 

fevers, headaches, muscular-skeletal pain, and infections27,42,43. The biologic activities 

and phytochemistry of P. barbatus have been extensively studied and reviewed48,49, and 

many pharmacologic activities could be justified by the presence of the bioactive 

labdane diterpene forskolin (1). This compound is a specific activator of the adenylyl 
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cyclase which result in cardiotonic, bronchodilator, antihypertensive, anti-inflammatory 

and platelet aggregation inhibitory effects50. In P. amboinicus, several studies support 

the medicinal uses with the activity of their extracts but the link between its 

pharmacologic properties with the traditional uses have not yet been clearly 

established51–53. This example emphasises the importance of the phytochemical study 

of medicinal plants for the validation of their traditional uses by the identification of the 

bioactive secondary metabolites. 

1.2.2. Phytochemical insights of the Plectranthus genus 

The Plectranthus genus, as a member of the Nepetoideae subfamily, is 

chemotaxonomically characterized by the presence of the caffeic acid esters, rosmarinic 

acid (2) and the nepetoidins A (3) and B (4) (Figure 2) with absence or scarce presence 

of iridoids and caffeoyl phenylethanoid glycosides54. This genus is rich in essential oils 

(more than 0.5% of the dry weight as volatile oil) with a major yield of 

monoterpenoids54,55. But the more frequently studied compounds from the genus 

Plectranthus are diterpenoids, mainly found in the coloured leaf-glands56. This chemical 

profile is similar to some genus of the Nepetoideae subfamily, as Salvia spp.54. The 

abundance of essential oils57 along with other antibacterial58, antifungal54 and 

antioxidant54,58 secondary metabolites was suggested to offer an improved 

environmental protection54.  

 

1 
 

2 

 
 

3 R1 = H, R2 = OH 

4 R1 = OH, R2 = H 

Figure 2. Structures of the bioactive diterpene forskolin (1) from P. barbatus and of the chemotaxonomic relevant 

caffeic acid esters rosmarinic acid (2) and the nepetoidins A (3) and B (4). 

 

The phytochemical study of the Plectranthus genus have been focused in two main 

objectives: a chemotaxonomic approach as represented by the studies of the Eugster 

group in the 1970s and 1980s56,59–63; and a bioactivity guided approach as verified in the 

studies from the Simões group in the 2000s and 2010s39,40,64–66. 

Presently, the only review of the Plectranthus genus phytochemistry, compiled by 

Abdel-Mogib and its collaborators55, have focused on the identified compounds up to 

1999. The major constituents obtained in this genus were essential oils, phenolics and a 

high variety of diterpenes. The more frequently found diterpenic structures were 

abietenoids as royleanones, spirocoleons, vinylogous quinones, quinone methides, 

acylhydroquinones, 1,4-phenanthraquinones (Figure 3) along with some miscellaneous 

phenolic abietanoids, dimeric abietanoids and secoabietanoids55. 
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Royleanone Spirocoleon Vinylogus quinones Quinone methides 

    

    

   

Acylhydroquinones 1,4-Phenanthraquinones 

 

Figure 3. Representative structures and more frequent patterns of substitution of the major abietenoid classes 

obtained from the Plectranthus genus as described by Abdel-Mogib, Albar and Batterjee in 200255. 

. 

Over the 2000-2015 period, phytochemical studies in the Plectranthus genus have led 

to the identification of 166 secondary metabolites. Those discoveries highlighted some 

chemotaxonomic trends, namely, the presence of the hydroxycinnamic acids, rosmarinic 

acid and the nepetoidins A and B (table 1) as chemical markers of the Plectranthus genus 

plants29,54.  

The presence of flavonoids was thought to be rare in the genus, however in the last 

15 years, 17 flavonoids were found in the genus, especially in P. amboinicus (11 

flavonoids from whole plant extracts) (Table 2).   

The abundance of diterpenic structures was confirmed in the genus, especially from 

abietane and labdane type, but also some kaurane, pimarane, halimane an beyranes 

were found (Tables 3 to 14). Abdel-Mogib suggested that the absence of clerodane 

diterpenoids could be a distinguish character between Plectranthus and Salvia genus67, 

however, four clerodanes were recently found for the first time in Plectranthus plants 

(Table  11).  

Triterpenic fractions in the Plectranthus genus remain poor studied, however, 9 

triterpenes were found in recent years (Table 15). Also, some acetophenones, 

sesquiterpenes and other miscellaneous compounds were found in the genus (Table 16). 
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Hydroxycinnamic acids 

 
  

H1 H4 
H5 R = H 

H6 R = CH3 

 

  

H2 R = H 

H3 R = OH  
H7 H8  

 
 

H9 R1 = H, R2 = OH 

H10 R1 = OH, R2 = H 

H11 n = 26 

H12 n = 28 

 

Table 1. Hydroxycinnamic acids found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

H1 Gallic acid P. amboinicus (St, MeOH) 53,68 

H2 Caffeic acid 
P. amboinicus (WP, MeOH); P. forsteri 

’marginatus’ (Lf, MeOH) 
53,68–70 

H3 p-Coumaric acid P. amboinicus (WP, MeOH, H2O/EtAc) 53,68 

H4 Chlorogenic acid P. amboinicus (Lf, H2O/EtAc) 70 

H5 Rosmarinic acid 
P. amboinicus (WP, MeOH, EtAc); P. barbatus 
(AP, H2O); P. forsteri ’marginatus’ (Lf, MeOH); 
P. madagascariensis (AP, MeOH) 

36,53,68–

72 

H6 Methyl rosmarinate P. barbatus (in vitro culture, MeOH) 73 

H7 Salvianolic acid A P. amboinicus (AP, H2O) 53,71 
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Table 1 (cont.). Hydroxycinnamic acids found in the Plectranthus plants over the period 2000-2015.   

H8 Shimobashiric acid P. amboinicus (AP, H2O) 53,71 

H9 Nepetoidin A  

P. ambiguous; P. argentatus; P. argentifolius; 

P. asirensis; P. barbatus; P. buchananii; P. 

ciliates; P. coeruleus; P. comosus; P. crassus; P. 

aff. cyaneus; P. cylindraceus; P. ecklonii; P. 

elegans; P. ernstii; P. forsteri ’marginatus’; P. 

frederici; P. gracilis; P. grandis; P. hadiensis; P. 

hilliardiae; P. hyemalis; P. igniarius; P. 

kivuensis; P. lanuginosus; P. madagascariensis; 

P. mutabilis; P. neochilus; P. njassae; P. 

oertendahlii; P. ovatus; P. parviflorus; P. 

petiolaris; P. pseudomarrubioides; P. 

purpuratus; P. saccatus; P. sanguineus; P. aff. 

spicatus; P. strigosus; P. tenuiflorus; P. 

xerophilus; P. zuluensis (not specified) 

54,69 

H10 Nepetoidin B 

P. ambiguous; P. argentatus; P. argentifolius; 

P. asirensis; P. barbatus; P. buchananii; P. 

ciliates; P. coeruleus; P. comosus; P. crassus; P. 

aff. cyaneus; P. cylindraceus; P. ecklonii; P. 

elegans; P. ernstii; P. forsteri ’marginatus’; P. 

frederici; P. gracilis; P. grandis; P. hadiensis; P. 

hilliardiae; P. hyemalis; P. igniarius; P. 

kivuensis; P. lanuginosus; P. madagascariensis; 

P. mutabilis; P. neochilus; P. njassae; P. 

oertendahlii; P. ovatus; P. parviflorus; P. 

petiolaris; P. pseudomarrubioides; P. 

purpuratus; P. saccatus; P. sanguineus; P. aff. 

spicatus; P. strigosus; P. tenuiflorus; P. 

xerophilus; P. zuluensis (not specified) 

54,69 

H11 
hexacosan-1,26-diol 
diester 

P. strigosus (WP, Acet) 64 

H12 
octacosan-1,28-diol 
ferulate diester 

P. strigosus (WP, Acet) 64 

Lf – leaf; AP – aerial parts; St – steam; WP – whole plant. Acet – acetone; EtAc – ethyl acetate; MeOH – 
methanol H2O – water.  
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Flavonoids 

  
 

F1, R = H 

F2, R = OH 
F3 F4 

   

   

F5 

F6, R = H 

F7, R = OH 

F8, R = OCH3 

F9 

   

 
  

F10 F11 F12 

   

 

 

F13 F14 

 

 
  

F15 F16 F17 



 

 

 

11 

 

 

 

 

Table 2. Flavonoids found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

F1 Apigenin P. amboinicus (WP, EtAc) 53 

F2 Luteolin P. amboinicus (WP, EtAc) 53 

F3 5-O-Methyl-luteolin P. amboinicus (WP, EtAc) 53 

F4 Chrysoeriol P. amboinicus (WP, TCM or H2O/EtAc) 53 

F5 Quercetin P. amboinicus (WP, H2O/EtAc) 53,68 

F6 Salvigenin 
P. amboinicus (Lf, TCM); P. cyaneus (Lf, 
EtOH); P. strigosus (WP, Acet) 

53,64,74 

F7 Eupatorin P. mollis (Lf, Acet) 75 

F8 3’-O-Methyleupatorin P. mollis (Lf, Acet) 75 

F9 Cirsimaritin P. amboinicus (Lf, TCM) 53 

F10 
3,5,7,3’,4’-Pentahydroxy 
flavanone 

P. amboinicus (WP, EtAc) 53 

F11 
5,4’-Dihydroxy-3,7-dimethoxy 
flavone 

P. amboinicus (WP, EtAc) 53 

F12 Eriodictyol P. amboinicus (WP, EtAc) 53 

F13 
Scutellarein 4’-O-methyl ether 7-
O-glucuronide 

P. barbatus (AP, H2O) 36 

F14 Rutin P. amboinicus (St, MeOH) 53,68 

F15 Pachypodol   P. cylindraceus (AP, EtOH) 76 

F16 Casticin  P. cylindraceus (AP, EtOH) 76 

F17 Chrysosplenol D  P. cylindraceus (AP, EtOH) 76 

Lf – leaf; AP – aerial parts; St – steam; WP – whole plant. Acet – acetone; EtAc – ethyl acetate; EtOH – 
ethanol; MeOH – methanol; TCM – chloroform. 
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Diterpenoids: Abietane Royleanones 

 

   

D1 

D2 D6,7 

D3 R1 = H, R2 = OH 

D4 R1 = OH, R2 = OH 

D5 R1 = OH, R2 = OCH3 

D6 R1 = OH, R2 = OCHO 

D7 R1 = OH, R2 = OAc 

D8 R1 = OH, R2 = fatty acid 
carboxylate 

D9 R1 = H, R2 = OH 

D10 R1 = OH, R2 = OH 

D11 R1 = OH, R2 = OAc 

 

   

  

D12 R = CH2COCH3 

D13 8α, 9α-epoxide 

D14 R1 = OH, R2 = H 

D15 R1 = OAc, R2 = OAc 

 

Table 3. Abietane Royleanones found in the Plectranthus plants over the period 2000-2015.    

 Compound Plectranthus species (section, solvent) Ref 

D1 Royleanone P. grandidentatus (AP, Acet) 77,78 

D2 6,7-dehydroroyleanone  
P. bishopianus (Lf, MeOH);  
P. grandidentatus (AP, Acet) 

77–79 

D3 Horminone P. grandidentatus (AP, Acet) 77,78 

D4 6β,7α-dihydroxyroyleanone  P. bishopianus (Lf, MeOH) 79 

D5 
7α-methoxy-6β-
hydroxyroyleanone 

P. bishopianus (Lf, MeOH) 79 
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Table 3 (cont.). Abietane Royleanones found in the Plectranthus plants over the period 2000-2015.    

D6 
7α-formyloxy-6β-
hydroxyroyleanone  

P. hadiensis (Lf, DCM) 80 

D7 
7α-acetoxy-6β-
hydroxyroyleanone 

P. hadiensis (Lf, DCM); P. 

grandidentatus (AP, Acet) 
77,78,80 

D8 
7-Fatty acid esters of 6,7-
dihydroxyroyleanone 

P. grandidentatus (AP, Acet) 77,78 

D9 6β-hydroxyroyleanone P. grandidentatus (AP, Acet) 77,78 

D10 7β,6β-dihydroxyroyleanone 
P. forsteri ’marginatus’ (Lf, MeOH); P. 

madagascariensis (AP, MeOH) 
69,72 

D11 
7β-acetoxy-6β-
hydroxyroyleanone 

P. forsteri ’marginatus’ (Lf, MeOH); P. 

madagascariensis (AP, MeOH) 
69,72 

D12 
9α-(2-oxopropyl)abietane 
derivative 

P. grandidentatus (AP, Acet) 81 

D13 
8α,9α-epoxycoleon U-
quinone 

P. xanthanthus (AP, Acet 70%) 82 

D14 Coleon U-quinone 
P. forsteri (Lf, Acet); P. 

madagascariensis (AP, MeOH); P. 

xanthanthus (AP, Acet 70%) 

72,82,83 

D15 Xanthanthusin G P. xanthanthus (AP, Acet 70%) 82 

Lf – leaf; AP – aerial parts; Acet – acetone; DCM – dichloromethane; MeOH – methanol. 

 

Diterpenes: Abietane spirocoleons 

 

  

D16 R1 = CH2OH, R2 = OH 

D17 R1 = H, R2 = OAc 
D18 D19 
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Table 4. Spirocoleons found in the Plectranthus plants over the period 2000-2015.    

 Compound Plectranthus species (section, solvent) Ref 

D16 

(13S,15S)-6β,7α,12α,19-
tetrahydroxy-13β,16-cyclo-8-
abietene-11,14-dione 

P. porcatus (AP, Acet) 35 

D17 Coleone P P. zeylanicus (WP, Hex) 84 

D18 3β-hydroxy-3-deoxibarbatusin P. barbatus var. grandis (Lf, TCM) 85 

D19 Barbatusin P. barbatus var. grandis (Lf, Hex) 85 

 

Diterpenes: Abietane Acylhydroquinones 

   

D20 R1 = OH, R2 = OH 

D21 R1 = OCOCH3, R2 = OH 

D22 R1 = OH, R2 = OAc 

D23 R = OH 

D24 R = OAc 

D23 R = OH 

D24 R = OCH(CH3)2 

 

Table 5. Abietane Acylhydroquinones found in the Plectranthus plants over the period 2000-2015.    

 Compound Plectranthus species (section, solvent) Ref 

D20 Coleon U 
P. grandidentatus (AP, Acet); P. forsteri 

(Lf, Acet); P. xanthanthus (AP, Acet 70%) 
77,82,83 

D21 Coleon U 11-acetate P. xanthanthus (AP, Acet 70%) 82 

D22 14-O-Acetylcoleon U P. grandidentatus (AP, Acet) 86 

D23 16-O-Acetylcoleon C P. xanthanthus (AP, Acet 70%) 82 

D24 
16-Acetoxycoleon U 11-
acetate  

P. xanthanthus (AP, Acet 70%) 82 

D25 Xanthanthusin F P. xanthanthus (AP, Acet 70%) 82 

D26 Xanthanthusin G P. xanthanthus (AP, Acet 70%) 82 

Lf – leaf; AP – aerial parts. Acet – acetone. 
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Diterpenes: Abietane Quinone Methides 

  
 

D27 D28 D29 

   

 
 

D30 R = H 

D31 R = OH 

D32 R = H 

D33 R = OH 

  

Table 6. Abietane Quinone Methides found in the Plectranthus plants over the period 2000-2015.    

 Compound Plectranthus species (section, solvent) Ref 

D27 Taxodione P. barbatus (AP, EtOH 70%) 87 

D28 
5,6-didehydro-7-
hydroxytaxodone 

P. barbatus (AP, EtOH 70%) 87 

D29 

11-hydroxy-19-(methyl-
buten-2-oyloxy)-abieta-5,7,9 
(11),13-tetraene-12-one 

P. lucidus (Lf, DCM); P. purpuratus (Lf, 
DCM) 

80 

D30 Parviflorone D 
P. ecklonii (Lf, DCM), (WP, Acet); P. 

lucidus (Lf, DCM); P. strigosus (WP, 
Acet) 

41,64,80 

D31 Parviflorone F  
P. ecklonii (Lf, DCM); P. nummularius 

(Lf, Acet); P. strigosus (WP, Acet) 
64,80,88 

D32 Parviflorone C 
P. purpuratus subsp. tongaensis (Lf, 
DCM) 

80 

D33 Parviflorone E 
P. nummularius (Lf, Acet); P. purpuratus 

subsp. tongaensis (Lf, DCM)  
80,88 

Lf – leaf; AP – aerial parts; WP – whole plant. Acet – acetone; DCM – dichloromethane; EtOH – ethanol. 
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Diterpenes: Phenolic abietenoids 

   

D34 R = H 

D35 R = OH 

D36 
D37 R = H 

D38 R = OH 

   

 
 

 

D39 D40 D41 

 

Table 7. Phenolic abietenoids found in the Plectranthus plants over the period 2000-2015.    

 Compound Plectranthus species (section, solvent) Ref 

D34 11-Hydroxysugiol P. cyaneus (Lf, EtOH) 74 

D35 11,20-dihydroxysugiol P. cyaneus (Lf, EtOH) 74 

D36 Carnosolon P. cyaneus (Lf, EtOH) 74 

D37 20-deoxocarnosol P. barbatus (AP, EtOH 70%) 87 

D38 
6α,11,12,-trihydroxy-7b,20-
epoxy-8,11,13-abietatriene 

P. barbatus (AP, EtOH 70%) 87 

D39 Hinokiol P. strigosus (WP, Acet) 64 

D40 Plectranthol A P. nummularius (Lf, Acet) 88 

D41 Plectranthol B P. nummularius (Lf, Acet) 88 

Lf – leaf; AP – aerial parts; WP – whole plant. Acet – acetone; EtOH – ethanol. 
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Diterpenes: Kaurenes 

 
  

D42 R = CH2OH 

D43 R = COOH 
D44 D45 

   

 

  

D46 R1 = H, R2 = OH 

D47 R1 = OH, R2 = H 

D48 R1 = COOH, R2 = OAc 

D49 R1 = COOH, R2 = H 

D50 R1 = CH2OH, R2 = H 

D51 R1 = OH, R2 = H, R3 = CH3 

D52 R1 = OH, R2 = OAc, R3 = CH3 

D53 R1 = H, R2 = OAc, R3 = CHO 

D54 R1 = H, R2 = H, R3 = CHO 

 

Table 8. Kaurenes found in the Plectranthus plants over the period 2000-2015.    

 Compound Plectranthus species (section, solvent) Ref 

D42 ent-16-Kauren-19-ol P. strigosus (WP, Acet) 64 

D43 ent-16-Kauren-19-oic P. strigosus (WP, Acet) 64 

D44 Xylopic acid P. strigosus (WP, Acet) 64 

D45 Xylopinic acid  P. strigosus (WP, Acet) 64 

D46 ent-12-Acetoxy-15-
hydroxykaur-16-en-19-oic 
acid 

P. fruticosus (AP, Acet) 
89 

D47 ent-12-Acetoxy-7-
hydroxykaur-16-en-19-oic 
acid 

P. fruticosus (AP, Acet) 
89 
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Table 8 (cont.). Kaurenes found in the Plectranthus plants over the period 2000-2015.    

D48 ent-12-acetoxy-15,16-
epoxykauran-19-oate 

P. fruticosus (AP, Acet) 89 

D49 ent-15β,16β-epoxykauran-
19-oic acid 

P. fruticosus (AP, Acet) 90 

D50 ent-15β,16β-epoxykauran-
19-ol 

P. fruticosus (AP, Acet) 90 

D51 ent-7-Hydroxykaur-15,16-en-
19-oic acid 

P. coesta (Lf, MeOH); P. fruticosus (AP, 
Acet) 

89,91 

D52 ent-12-Acetoxy-17-oxokaur-
15-en-19-oic acid 

P. fruticosus (AP, Acet) 89 

D53 ent-17-oxokaur-15,16-en-19-
oic acid 

P. coesta (Lf, MeOH) 91 

D54 ent-7-Hydroxy-15,16-
epoxykauran-19-oic acid 

P. coesta (Lf, MeOH); P. fruticosus (AP, 
Acet) 

89,91 

Lf – leaf; AP – aerial parts; WP – whole plant. Acet – acetone; MeOH – methanol. 

 

Diterpenes: Labdanes 

 

  
 

D55 D56 D57 

   

  
 

D58 R1 = R2 = H 

D59 R1 = COCH3, R2 = OH 

D60 R1 = H, R2 = OAc 

D61 D62 
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D63 R1 = R2 = R3 = H 

D64 R1 = R2 = H, R3 = OH 

D65 R1 = R2 = H, R3 = OAc 

D66 R1 = H, R2 = R3 = OH 

D67 R1 = H, R2 = OH, R3 = OAc 

D68 R1 = R2 = R3 = OH 

D69 R1 = OH, R2 = H, R3 = OAc 

D70 R1 = R2 = OH, R3 = OAc 

D71 R1 = OAc, R2 = OH, R3 = OH 

D72 R1 = OAc, R2 = OH, R3 = H 

D73 R1 = OAc, R2 = OH, R3 = OAc 

D74 R1 = OAc, R2 = H, R3 = OAc 

D75 R1 = H, R2 = OH, R3 = OH 

D76 R1 = H, R2 = OH, R3 = OAc 

D77 R1 = R2 = H, R3 = OH 

D78 R1 = R2 = H, R3 = OAc 

D79 R1 = OH, R2 = R3 = H 

D80 R1 = R2 = R3 = OH 

D81 R1 = OH, R2 = H, R3 = OH 

D82 R1 = OH, R2 = H, R3 = OAc 

D83 R1 = R2 = OH, R3 = OAc 

D84 R1 = R2 = OH, R3 = αOAc 

D85 R1 = OAc, R2 = R3 = H 

D86 R1 = OAc, R2 = R3 = OH 

D87 R1 = OAc, R2 = OH, R3 = OAc 

D88 R1 = OAc, R2 = H, R3 = OAc 

D89 R1 = R2 = H 

D90 R1 = H, R2 = OH 

D91 R1 = H, R2 = OAc 

D92 R1 = R2 = OH 

D93 R1 = OH, R2 = OAc 

   

  

 

D94 D95 D96 

 

Table 9. Labdanes found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

D55 Rhinocerotinoic acid P. ornatus (AP, Acet) 86 

D56 
12-hydroxy-8,13E-labdadien-
15-oic acid 

P. barbatus (WP, EtOH) 92 
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Table 9 (cont.). Labdanes found in the Plectranthus plants over the period 2000-2015.   

D57 
3β-acetoxylabda-
8(17),12E,14-trien-2r-ol 

P. fruticosus (AP, Acet) 90 

D58 
ent-Labda-8(17),12Z,14-
trien-2r-ol 

P. fruticosus (AP, Acet) 90 

D59 
ent-2r-acetoxylabda-
8(17),12Z,14-trien-3β-ol  

P. fruticosus (AP, Acet) 90 

D60 
ent-3-Acetoxylabda-
8(17),12Z,14-trien-2r-ol (2)  

P. fruticosus (AP, Acet) 89 

D61 Forskoditerpene A P. barbatus (WP, EtOH) 93 

D62 
1R,11S-Dihydroxy-8R,13R-
epoxylabd-14-ene 

P. ernstii (WP, Hex) 94 

D63 
6b-hydroxy-8,13-epoxy-labd-
14-ene-11-one 

P. barbatus (in vitro culture, MeOH) 73 

D64 

1,9-dideoxy-
deacetylforskolin 
(deacetylforskolin) 

P. barbatus (in vitro culture, MeOH) 73 

D65 1,9-dideoxyforskolin P. barbatus (in vitro culture, MeOH) 73 

D66 1-deoxy-deacetylforskolin P. barbatus (in vitro culture, MeOH) 73 

D67 1-deoxyforskolin P. barbatus (in vitro culture, MeOH) 73 

D68 Forskolin D P. barbatus (WP, EtAc) 95 

D69 
Deoxycoleonol (9-deoxy-
deacetylforskolin) 

P. barbatus (WP, EtAc), (in vitro culture, 
MeOH) 

73,95 

D70 Forskolin 
P. barbatus (WP, EtAc), (in vitro culture, 
MeOH) 

73,95 

D71 1-Acetyl-7-deacetylforskolin P. barbatus (WP, EtAc) 95 

D72 1-Acetoxycoleosol P. barbatus (WP, EtAc) 95 

D73 Forskolin B P. barbatus (WP, EtAc) 95 

D74 Forskolin E P. barbatus (WP, EtAc) 95 

D75 1-Deoxycoleonol B P. barbatus (in vitro culture, MeOH) 73 

D76 6-Acetyl-1-deoxyforskolin P. barbatus (WP, EtOH/EtAc) 92,95 
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Table 9 (cont.). Labdanes found in the Plectranthus plants over the period 2000-2015.   

D77 1,9-Dideoxycoleonol B P. barbatus (in vitro culture, MeOH) 73 

D78 6-acetyl-1,9-dideoxyforskolin P. barbatus (WP, EtOH) 92 

D79 Plectrornatin B P. ornatus (AP, Acet) 96 

D80 Isoforskolin (Coleonol B) 
P. barbatus (WP, EtOH) (in vitro culture, 
MeOH) 

73,95,97 

D81 9-deoxyc-oleonol B P. barbatus (in vitro culture, MeOH) 73 

D82 Forskolin G P. barbatus (WP, EtOH/EtAc) 95,97 

D83 6-Acetylforskolin 
P. barbatus (Rt, EtOH), (WP, EtAc); P. 

ornatus (AP, Acet) 
95,98,99 

D84 Forskolin I P. barbatus (Rt/WP, EtOH) 97,98 

D84 Plectrornatin C (Coleolin) 
P. barbatus (in vitro culture, MeOH); P. 

ornatus (AP, Acet) 
73,86,96 

D85 
1,6-Diacetyl-7-
deacetylforskolin 

P. barbatus (WP, EtAc) 95 

D87 
Forskolin A (1,6-di-O-
acetylforskolin) 

P. barbatus (WP, EtAc), P. ornatus (AP, 
Acet), (AP, Hex) 

95,99,100 

D88 
1,6-di-O-acetyl-9-
deoxyforskolin 

P. neochilus (AP, toluene), P. ornatus 

(AP, Acet), (AP, Hex) 
99–101 

D89 Forskoditerpenoside E P. barbatus (WP, EtOH) 93 

D90 Forskoditerpenoside C P. barbatus (WP, EtOH) 93 

D91 Forskoditerpenoside D P. barbatus (WP, EtOH) 93 

D92 Forskoditerpenoside A P. barbatus (WP, EtOH) 102 

D93 Forskoditerpenoside B P. barbatus (WP, EtOH) 102 

D94 Spirocoleonol B P. barbatus (in vitro culture, MeOH) 73 

D95 Colroforskolin P. barbatus (in vitro culture, MeOH) 73 

D96 Coleorol P. barbatus (in vitro culture, MeOH) 73 

Lf – leaf; Rt – root; AP – aerial parts; WP – whole plant. Acet – acetone; DCM – dichloromethane; EtAc – 
ethyl acetate; EtOH – ethanol; Hex – n-hexane; MeOH – methanol. 
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Diterpenes: Halimane 

 

D97 

 

Table 10. Halimanes found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

D97 
11-acetoxyhalima-5,13E-dien-
15-oic acid 

P. ornatus (AP, Acet) 86 

AP – aerial parts; Acet – acetone. 

Diterpenes: Clerodanes 

   

D98 R = H       D99 R = CH3 D100 D101 

Table 11. Clerodanes found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

D98 
11-acetoxy-2-oxo-
neocleroda-3,13E-dien-15-oic 
acid 

P. ornatus (AP, Hex) 100 

D99 Plectrornatin A  P. ornatus (AP, Acet) 96 

D100 
11-acetoxyneocleroda-3,13E-
dien-15-oic acid 

P. ornatus (AP, Hex) 100 

D101 
11-acetoxy-3β-
hydroxyneocleroda-
4(18),13E-dien-15-oic acid 

P. ornatus (AP, Hex) 100 

Lf – leaf; AP – aerial parts; Acet – acetone; Hex – n-hexane. 
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Diterpenes: Pimaranes 

  

D102 D103 

 

Table 12. Pimaranes found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

D102 
rel-15(ζ),16-Epoxy-7α-
hydroxypimar-8,14-ene  

P. ernstii (WP, Hex) 94 

D103 
rel-15(ζ),16-Epoxy-7-
oxopimar-8,14-ene 

P. ernstii (WP, Hex) 94 

WP – whole plant. Hex – n-hexane. 

 

Diterpenes: Beyranes 

   

D104 D105 D106 

Table 13. Beyranes found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

D104 
ent-7α-acetoxy-15-beyeren-
18-oic acid  

P. saccatus (AP, Acet) 35 

D105 

ent-3β-(3-methyl-2-bute- 
noyl)oxy-15-beyeren-19-oic 
acid 

P. saccatus (Lf, Acet) 83 

D106 
ent-3β-(3-methylbutanoyl)  
oxy-15-beyeren-19-oic acid 

P. saccatus (Lf, Acet) 83 

Lf – leaf; AP – aerial parts; Acet – acetone. 
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 Miscellaneous diterpenoids 

 

 

 

 

D106 D107 R1 = OH, R2 = H 

D108 R1 = H, R2 = OH 

D109 R1 = R2 = O 

D110 

   

 
 

 

D111 D112 D113 

   

 

 

 

 D114  

 

Table 14. Miscellaneous diterpenoids found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

D107 Dehydroabietane  P. barbatus (AP, EtOH 70%) 87 

D108 (4R,19R) Coleon A P. aff. puberulentus (Lf, Acet) 83 

D109 (4R,19S) Coleon A P. aff. puberulentus (Lf, Acet) 83 

D110 Coleon A-lactone 
P. barbatus (Lf, TCM), P. puberulentus (Lf, 
Acet) 

83,103 
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Table 14 (cont.). Miscellaneous diterpenoids found in the Plectranthus plants over the period 2000-2015.   

D111 
1,11-epoxy-20-
norabietanoid 

P. cyaneus (Lf, EtOH) 74 

D112 xanthanthusin E P. xanthanthus (AP, Acet 70%) 82 

D113 13-epi-sclareol P. barbatus (Rt, EtOH) 104 

D114 (16S)-coleon E P. barbatus (AP, H2O) 36 

D115  Coelusin factor P. barbatus (Rt, Acet) 105,106 

Lf – leaf; Rt – root; AP – aerial parts; Acet – acetone; EtOH – ethanol; H2O – water; TCM – Chloroform. 

 

Triterpenoids 

   

T1 T2 T3 

   

  
 

T4 T5 T6 

   

   

   

T7 T8 T9 
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Table 15. Triterpenoids found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

T1 Ursolic acid 

 

P. mollis (Lf, Acet); P. ornatus (AP, Acet); P. 

rotundifolius (tubers peel and flesh, EtOH); 
P. strigosus (WP, Acet) 

64,75,99,107 

T2 Oleanolic acid P. bishopianus (Lf, MeOH); P. ornatus (AP, 
Acet); P. rotundifolius (tubers peel and 
flesh, EtOH) 

79,99,107 

T3 Maslinic acid P. rotundifolius (tubers  peel and flesh, 
EtOH) 

108 

T4 Corosolic acid  P. mollis (Lf, Acet) 75 

T5 Betulinic acid P. barbatus (in vitro culture, MeOH) 73 

T6 3-epi-Maslinic acid P. barbatus (in vitro culture, MeOH) 73 

T7 β-Sitosterol  P. bishopianus (Lf, MeOH) 79 

T8 Stigmasterol  P. bishopianus (Lf, MeOH); P. mollis (Lf, 
Acet); P. zeylanicus (WP, Hex) 

75,79,84 

T9 Stigmaste-5,22,25-
trien-3-β-ol 

P. zeylanicus (WP, Hex) 84 

Lf – leaf; Rt – root; AP – aerial parts; WP – whole plant. Acet – acetone; DCM – dichloromethane; EtOH 
– ethanol; Hex – n-hexane; MeOH – methanol.  

 

 

Miscellaneous compounds 

 

   

M1 M2 M3 
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M4 M5 R = OCH3 

M6 R = H 

M7 R1 = COCH3, R2 = COCH3 

M8 R1 = COCH3, R2 = H 

M9 R1 = H, R2 = COCH3 

   

   

   

   

M10 M11 M12 

   

   

   

 

M13 
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Table 16. Miscellaneous diterpenoids found in the Plectranthus plants over the period 2000-2015.   

 Compound Plectranthus species (section, solvent) Ref 

M1 Cinncassiol A  

 

P. zeylanicus (WP, Hex) 
84 

M2 Cinncassiol C P. zeylanicus (WP, Hex) 84 

M3 (+)-Sesamin P. mollis (Lf, Acet) 75 

M4 4α,7α,11-enantioeudesmantriol P. barbatus (WP, EtOH) 102 

M5 2-hydroxy-3,4,5,6-tetramethoxy-
acetophenone 

P. venteri (Lf, DCM) 109 

M6 2-hydroxy-4,5,6-trimethoxy-
acetophe-none 

P. venteri (Lf, DCM) 109 

M7 Plectranthone P. cylindraceus (AP, EtOH) 76 

M8 Desacetylplectranthone  P. cylindraceus (AP, EtOH) 76 

M9 Isodesacetylplectranthone  P. cylindraceus (AP, EtOH) 76 

M10 4,6-dihydroxy-1,5(H)-guai-9-ene  P. strigosus (WP, Acet) 64 

M11 4,6-dihydroxy-1,5(H)-guai-10(14)-
ene 

P. strigosus (WP, Acet) 64 

M12 10(14)-Aromadendrene-4β,15-diol  P. fruticosus (AP, Acet) 89 

M13 1,2,3,4,6-penta-O-galloyl-b-D-
glucose 

P. barbatus (Lf, MeOH) 110 

Lf – leaf; Rt – root; AP – aerial parts; WP – whole plant; Acet – acetone; DCM – dichloromethane; EtOH 
– ethanol; Hex – n-hexane. 

 

From the abundant diterpenic structures, royleanones are some of the most 

widespread, not only in the Plectranthus genus, but in all Lamiaceae family and 

associated to diverse pharmacologic activities including antimicrobial33,34, 

antimycobacterial65 and antitumoral39,40 activities. Chemically those diterpenes are 

hydroquinonic abietanes with a 12-hydroxy-11,14-di-oxo-quinone moiety in ring C. The 

presence of a conjugated quinone system in such compounds exists in redox equilibrium 

between a diphenol (hydroquinone) and diketone (quinone) forms (Figure 4). Those 

systems possess several physiologic examples as the case of coenzyme Q in electron 

transport systems, vitamin K in blood antihemorrhagic system along with several 

“quinoenzymes” whose action is dependent on hydroxylated amino acids111. Such 

compounds are also a source of stable free radicals and were able to bind irreversible to 
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some amino acids and proteins, acting as Michael acceptors, often leading damage 

and/or protein loss of function. Those properties could be in the source of antimicrobial 

or cytotoxic activities of such natural compounds112,113. 

 

 

 

Figure 4. Simplified representation of the reduction and oxidation reactions between diketone and diphenol forms 

(illustration adapted from de Melo, 2016 114). 

1.3. Microbial resistance and antimicrobials from Plectranthus genus 

Since the discovery of penicillin by Alexander Fleming in 1928 there was a revolution 

in antibiotherapy with the development of the main classes of clinical used antibiotics 

in the following 30 years115. Although from the 1970s there has been a dearth of new 

compounds. After the initial success of the golden age of antibiotics, drug resistance 

began to emerge, and some molecules initially active against many bacterial strains 

were no longer effective116. Bacterial resistance is often driven by decreased 

susceptibility to antibacterial agents originated by halted division, genetic alteration, 

and over-expression of efflux pumps117 (Figure 5). Such targets could be modulated by 

natural products with appropriate molecule shape, aromatic ring count and the 

presence of some polar atoms118.   

 

Figure 5. Antibiotic targets and identified mechanisms of antibiotic resistance117. 
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The World Health Organization (WHO) considered the spreading of multidrug 

resistant (MDR) organisms a public health problem and emphasised the surge for new 

antibacterial agents, with new modes of action119. While combinatory chemistry 

approaches have not been particularly effective in the development of new 

antimicrobial agents120, the neglected natural products have been once again in focus 

of antimicrobial screenings.  Natural antimicrobial products generally possess complex 

architectural scaffolds and densely deployed functional groups, affording the maximal 

number of interactions with molecular targets, often leading to exquisite selectivity for 

pathogens versus the host112,121.  

1.3.1. Antimicrobial compounds from Plectranthus spp. 

From the Plectranthus genus, relevant antimicrobial metabolites have been obtained 

(Figure 6). Rijo et al. reviewed in 2013 the antimicrobial properties of many diterpenic 

compounds obtained from Plectranthus plants33. Among the antimicrobial diterpenes 

widespread in Plectranthus genus, interesting antibacterial acitivites have been found in 

pimarane (15,16-epoxy-7α-hydroxypimar-8,14-ene and 15,16-epoxy-7-oxopimar-8,14-

ene94) (5, 6), neoclerodane (plectrornatin A96) (7), labdane (1,11-dihydroxy-8,13- 

 

    

5 6 7 8 

    

  

 

 

9 10 11 R = H            12 R = OH 

    

    

13 14 15 16 

 

Figure 6. Antimicrobial compounds obtained from Plectranthus species. 
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epoxylabd-14-ene94 and plectrornatin C96) (8, 9) and halimane (11-acetoxyhalima-5,13-

dien-15-oic acid66,86) (10) diterpenes. Abietane diterpenes as Parvifloron D (11) and F 

(12) were obtained from the ethyl acetate extract of P. ecklonii and were both active 

against Listeria monocytogenes122, but only 11 showed relevant antimicrobial activity 

against Staphylococcus, Enterococcus123 and Mycobacterium strains122. Royleanone type 

abietane diterpenes are antimicrobial secondary metabolites, frequently obtained from 

Lamiaceae plants, and widespread in the Plectranthus genus. Horminone34  (13) along 

with its 16-O-acetoxy derivative34  (14) and their related 7α,6β-dihydroxyroyleanone 

(15) and 7α-acetoxy-6β-hydroxyroyleanone (16) were some of the most frequently 

found royleanone-type antimicrobial diterpenes. 

The 7α-acetoxy-6β-hydroxyroyleanone (16) have been obtained in fair amounts from 

P. grandidentatus78, P. hereroensis34 and P. sanguineus124. Considering its broad range 

of activities (Gram positive, Gram negative and Mycobacterium strains) and low MIC 

values (3.12-15.6 μg/mL), this compound was selected as antimicrobial lead compound. 

From the royleanone 16, a library of 12-O-ester (17-19), 6β,12-O-diester (26-23) and 6β-

O-ester (24-27) derivatives was synthetized, delivering new insights on the structure 

activity relationships (SAR) of the antimicrobial diterpenoids65,125 (Figure 7). The 

lipophilic framework composed by the three 6-membered rings (A, B and C) was  
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Figure 7. 12-O-ester (17-19), 6β,12-O-diester (20-23) and 6β-O-ester (24-27) derivatives of the prototype antimicrobial 

7α-acetoxy-6β-hydroxyroyleanone (16). 
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required for the insertion into the bacterial cell membrane while the oxygenated 

substituents (hydroxyl, carbonyl and esters) act as hydrogen-bond-donor/acceptor 

group and interact with other hydrogen-bond-acceptor/donor groups in the prokaryotic 

membrane as peptidoglycans and lipoteichoic acid33,126.  The esterification of the 

compound 16 in the position 6 and 12 increased the lipophilicity which in most 

derivatives originated an increase of its antimicrobial activity. 

Enthusiastic results of this derivatization were verified for the 12-chlorobenzoyl (18), 

12-methoxybenzoyl (19) and 12-nitrobenzoyl (20) esters along with the 6,12-dibenzoyl 

ester (21) with activity improvement against a multidrug resistant (MDR) 

Mycobacterium tuberculosis (TB) strain. The obtained anti-MDR-TB activity was even 

superior to the first line antituberculostatic agents isoniazid and rifampicin65. The 

royleanone derivative 18 presented potent activity with acceptable cytotoxicity in a 

Vero cell model and could be considered an improved antimycobacterial prototype in 

comparison to the royleanone 1665.  

Royleanone derivatives 17, 18 and 27 showed improved antibacterial activity in Gram 

positive human pathogens over the prototype royleanone 16125. A trend for a 

diminished antimicrobial activity for the 6β,12-O-diester derivatives was also verified. 

Those correspond to the more lipophilic derivatives which could display an unfavourable 

shape and/or steric hindrance, and an incorrect spatial distribution of the hydrophobic 

moieties wall and the loss of some important hydrogen donor/receptor interactions that 

were maintained in the monoester derivatives. Those observations were in concordance 

with other works in which the excess increase in lipophilicity led to a decrease in the 

antimicrobial activity112,127,128.  

The antimicrobial mechanism of action of diterpenoid compounds remain unclear. 

The only diterpenic compound in which a tentative of antibacterial action mechanism 

establishment was performed is horminone (13). This compound possesses a negative 

site, between the C7 hydroxyl and the C14 carbonyl, which was showed to be favourable 

for the binding of a positive ion like Mg2+ (and eventually Ca2+). The horminone-Mg2+ 

complex was suggested to play an important role in the antimicrobial activity, being able 

to cross its membrane and at the cytosol level interacting with ribosomal ribonucleic 

acid and thus inhibiting the protein synthesis in bacteria129,130. This mechanism was 

proposed to be also responsible for the cytotoxicity verified for compound 13 in some 

mammalian cell lines129,130. Also the presence of carbonyl and hydroxyl groups at the 7 

position of B ring and at the 11, 12 and 14 positions of the ring C was discussed to play 

a significant role in the biologic activities of the abietane diterpenoids129,130. The 

proposed mechanism of cell toxicity for horminone could not be extrapolated to many 

abietane diterpenes as some potent antimicrobials (i.e. 16-27) present a decreased basic 

character of the oxygen atom of the acetyl group at position 7 when compared with the 

Lewis basic character of the hydroxyl at position 7 of compound 13. Such chemical 

features were not the optimal for the coordination of the Mg2+ cation and such 

mechanism should only take place if hydrolysis of the acetyl group occurs37,125. Although 

some indications of membrane interaction and disruption effects were in study by our 
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group131. Interestingly many diterpenes showed an effective antimicrobial effect against 

drug resistant pathogens34. Also, some diterpenes as abietic acid, isopimarinic acid and 

totarol were known to inhibit the action of efflux pumps and thus reverting the resistant 

of some drug resistant strains132,133. Considering those effects played by some 

diterpenes, it is possible that other abietane diterpenes, as the case of royleanones, 

possess such action mechanism, but further studies are needed to explore this 

hypothesis.  

The Plectranthus genus constitutes an important source of antimicrobial secondary 

metabolites that due to its interesting potency could correspond to infectious diseases 

drug candidates. The improvement of compound efficacy and the elucidation of the 

action mechanism of such compounds would correspond to future lines of the work with 

antimicrobial Plectranthus derived compounds. 

1.3. Cancer biology and antiproliferative potential of Plectranthus spp. 

Cancer is a group of diseases occurring in higher multicellular organisms. It is 

associated with alterations in gene expression leading to dysregulated balance of the 

cell proliferation and programmed death and originating a tumoural cell population 

ultimately able to invade tissues and metastasize in distant sites134. When a malignant 

cancer is present, the host suffer significant morbidity, and it could be lethal if the 

condition remains untreated. Cancer constitutes the fourth world cause of death and its 

prevalence is estimated to increase in following years135. However, the reason why 

cancer accounts for a major proportion of deaths nowadays is because of a much higher 

life expectancy which nearly duplicated in the last 100 years136. This assume special 

relevance due to the slow carcinogenesis process, in which 10 to 20 years may pass from 

the initial growth of a neoplasm to the formation of a clinical detectable tumor135. The 

causes of cancer are still unclearly defined, but both internal (genetic predisposition, 

gene expression alterations, immune system failure, etc.) and external (virus, chemicals, 

radiation, etc.) are involved. Those factors may also act together to initiate or promote 

cancer development134. 

The developments in genetics and molecular biology contributed substantially for the 

better understanding of the cancer cell biology and its interactions with the surrounding 

medium. Such techniques led to the reinterpretation of the tumour, from a group of 

rapidly dividing cancerous cells, to complex mixtures of several cell types that 

collaborate to create malignant growth: the tumour microenvironment134,137,138. By 

2000 it was proposed that virtually all cancers possess six hallmark capabilities that 

favour its growth and metastatic dissemination: sustaining proliferative signalling, 

insensitivity to growth suppressors, evasion of programmed cell death (apoptosis), 

limitless replicative potential, sustained angiogenesis and activating tissue invasion and 

metastasis137 (Figure 8). The 2010 update on the cancer hallmarks added additional 

capabilities: reprogramming of energy metabolism and evading immune destruction138 

(Figure 8). Those capabilities were potentiated in the presence of enabling 
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characteristics as genome instability, which contributes to tumour cell variability, and 

inflammation, which contribute to the establishment of multiple hallmark functions. The 

knowledge of such mechanisms of tumorigenesis was related to the uprising of many 

new cancer therapeutics.   

 

 

 

 

 

 

Figure 8. Cancer hallmarks evolution from 2000 to 2010137,138. 

 

The cancer treatment can be archived by three main strategies: chirurgic, 

radiotherapy or chemotherapy. In most cancers, it is not possible (or advisable) to use a 
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single treatment option for the total resolution of the disease134. Classic cancer 

chemotherapy uses small molecules or biologics to destroy rapidly dividing cells. This 

treatment modality can treat the entire body, including cells that may have escaped 

from the primary tumours. However, normal cells that divide quickly (i.e. bone marrow, 

reproductive system or hair follicles) are also affected by the chemotherapeutic agents. 

Also, the low specificity of many chemotherapeutic agents for cancer cells could result 

in low efficacy (the drug don’t reach the tumour site) and severe toxicity (systemic side 

effects). Thus, there is a current need for the development of alternative anticancer 

drugs with improved specificity and minimal side-effects134. Natural products have been 

a reliable source of new drug scaffolds, namely anti-cancer drugs5. Almost half of all the 

approved anti-cancer drugs in Europe, North America and Japan are natural products 

(14%), their semi-synthetic derivatives (28%) or inspired by natural products (5%)139.  

1.3.1. Cytotoxic and antiproliferative activities in the Plectranthus genus 

Plants from the Plectranthus genus have showed in many studies the potential for 

anticancer applications based on its ethnopharmacologic indications (as reviewed by 

Lukhoba et al., 200627) and cytotoxicity screenings of both extract and isolated 

compounds.  

Several studies have focused on cytotoxicity screenings of medicinal plants including 

members of the genus Plectranthus. The screening of 67 Lamiaceae species from 

Australian flora included 25 Plectranthus species140. In this study, the most potent 

cytotoxic effects were verified for P. fasciculatus (IC50 of 5.50 μg/mL in D.mel-II 

Drosophila cell model), although 6 other Plectranthus species showed relevant 

cytotoxicity140. Saeed et al.141 screened 26 South-African medicinal plants traditionally 

used in the treatment or prevention of cancer. From those, the extracts of P. barbatus 

and P. ciliates inhibited the growth of two leukaemia cell lines (the drug sensitive CCRF-

CEM and the drug resistant CEM/ADR5000)141. The screening of 7 Plectranthus species 

(P. ornatus, P. amboinicus, P. argentatus, P. cilatus, P. hadiensis, P. zuluenesis and P. 

fructicosus) indicated that the most potent cytotoxic effect was present in acetone 

extracts of P. cilatus142.  

Different studies revealed considerable cytotoxicity in P. amboinicus extracts143–145. 

The extract obtained with ethyl acetate inhibited considerably the growth of the breast 

cancer cell line MCF-7143. The ethanolic extract from the same plant presented relevant 

cytotoxicity towards a human lung cancer cell line (A549) with fifth percent growth 

inhibition of 31.2 μg/ml (MTT, 48h) while a lower growth inhibition effect was verified 

in Vero cells, which could represent some selectivity144. The hydroethanolic extract from 

P. amboinicus, showed interesting in vivo antitumor effects in mice inoculated with 

Sarcoma-180 and Ehrlich carcinoma with the higher doses reducing the tumour growth 

up to 66%145.  

The extracts from P. hadiensis were screened by two different groups, being verified 

moderate cytotoxicity in FL (IC50 of 150 μg/mL) and HeLa (IC50 = 141.3 μg/mL) cervical 

cancer lines.  



 

 

 

36 

 

The ethanolic extract from aerial parts of P. neochilus of was showed some 

cytotoxicity in Artemia salina model with LC50 of 210.31 μg/mL146, and more recently, an 

hexane extract showed growth inhibitory effects in head and neck squamous cell 

carcinoma cell lines147. 

The promising results of plant extract screening could be followed by the bioguided 

isolation of the active compounds. In the Plectranthus genus this strategy conducted to 

the elucidation of some promising anticancer lead compounds, mainly labdane and 

abietane diterpenes, as described therefore.  

The labdane diterpene forskolin (1) (Figure 3), isolated from the roots of P. barbatus, 

was one of the first Plectranthus isolated compounds with promising anticancer 

activities. In the late 1980s was considered a promising antimetastatic agent due to its 

ability to limit metastasis formation in mice model148. This compound is a adenylyl 

cyclase activator, leading to an increase of cAMP and protein kinase A (PKA) intracellular 

level50. Some oncogenic pathways are influenced by the modulation of cAMP and 

therefore it was expected a favourable outcome for the treatment of such cancer forms 

with forskolin149. In concordance, this compound showed to be a potent inhibitor of the 

growth of the “low cAMP addicted” KM12C colon cancer cell line with induction of cycle 

arrest at G1 phase and further apoptosis150. 

Coleusin factor (28) (Figure 9) is a forskolin related labdane also obtained from the P. 

barbatus root that showed antiproliferative effects in hepatoma151, gastric cancer106 and 

rat osteoscarcoma cell lines152. This compound induce G0/G1 cycle arrest and apoptosis, 

both in vivo and in vitro106 models. The occurrence of cycle arrest was related to the 

increase of p27Kip1 and decrease of cyclin D1 in a p53-dependent p21 pathway153 while 

the apoptosis was related to caspase activation and dissipation of mitochondria 

membrane potential with cytochrome C release into cytosol106. More recently coleusin 

factor was showed to restore differentiation in osteoscarcoma cells by BMP-2 induction 

and the expression of transcription factor RUNX2 in absence of apoptosis105. 

Other compounds, also obtained from P. barbatus, also have could have potential 

anticancer applications. Coleon A lactone (29), also obtained from P. puberulentus62,83, 

present potent anti-angiogenic effects in zebrafish embryo model along with inhibition 

of mouse and bovine aortic endothelial cell lines with potency similar to those of a 

known vascular endothelial growth factor (VEGF) receptor inhibitor and two 

phosphoinositide 3-kinase (PI3K) inhibitors103. 13-epi-sclareol (30) showed a cell 

proliferation inhibition similar to the verified for tamoxifen in MCF-7 breast cancer 

model but significantly superior to tamoxifen in Ishikawa uterine cancer model with low 

cytotoxicity in Vero model, which could represent some selectivity to cancer cells154. 

Coleon C (31) appears to exerts a direct inhibitory effect on tumour proliferation in vitro 

and also in vivo (Lewis lung carcinoma in mouse) with some selectivity to human 

melanoma (A375) and human acute myeloid leukaemia (HL60) cancer cells over non-

cancer cells. The mechanism of its effects seems to be related to the induction of 

apoptosis in the sub-G0/G1 cycle phase155. 
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Figure 9. Antiproliferative compounds obtained from Plectranthus species. 

 

 

Abietane diterpenes possessing conjugated quinone systems, such as parvifloron D 

(11) obtained from Plectranthus ecklonii41 or coleon U-quinone (32) and coleon U 11-

acetate (33), obtained from P. xanthanthus82, were described as potent cytotoxic against 

human leukaemia cancer cells. The related compounds coleon U (34) and 7α-acetoxy-

6β-hydroxyroyleanone (17), obtained from P. grandidentatus39, and their hemisynthetic 

derivatives also showed transversal cytotoxic activity to several cancer cell lines39,40. 

Moreover, coleon U (34) was described as a potent and selective activator of the pro-

apoptotic protein kinase C delta (PKCδ) which could explain its reported anti-tumour 

action156 (discussed in more detail in 1.3.2. sub-section).   

At last, some compounds rarely found in the Plectranthus genus were also found to 

have cytotoxic effects. Taxodione (35) was originally obtained from Taxodium distichum 

Rich (Cupressaceae)157 but also present in P. barbatus87. This compound was found to 

be one of the main cytotoxic compounds present in some Lamiaceae species including 

Rosmarinus officinalis158, Salvia chorassanica159 and Salvia staminea160 and tested into 

a comprehensive panel of mammal cancer cell lines (IC50 0.3-60.32 µg/mL). Other 

cytotoxic compound frequently found in other Lamiaceae was 20-deoxocarnosol (36), 

which was also found in P. barbatus, and possessing growth inhibition of several cancer 

cell lines (IC50 4.6 to 32 µM)87,161. Maslinic acid (36) is a pentacyclic triterpenic compound 
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found in olive skin (Olea europaea) but also obtained from tubercles of P. rotundifolius 

(formerly Coleus tuberosus) which showed potent antiproliferative activity against HT29 

and Caco2 colon cancer cell lines107,108,162. Cycle arrest at G0 phase and apoptosis 

thought caspase-3 activation in a p53 dependent pathway were observed for maslinic 

acid108,162,163.  

The overall studies on Plectranthus derived antiproliferative and cytotoxic extracts 

and compounds indicate that this genus is a source of potential anticancer lead 

compounds. Further studies, including bioassay guided isolation of pure compounds 

from active extracts, derivatization of known compounds with establishment of 

structure-activity relationships (SAR) and the detailed characterization of the underlying 

action mechanisms in both in vitro and in vitro models were needed for the 

establishment of potential new anticancer therapies.   

1.3.2. PKC as anticancer natural product target 

The protein kinase C (PKC) family consists of ten serine/threonine protein kinases 

classified based on their regulatory domain structure and cofactor requirements for 

activation. Three isoforms subfamilies could be considered: classical (or conventional) 

PKC including α, βI, βII, and γ; novel PKCs including δ, ε, η and θ; and atypical PKCs 

including ζ and λ\ι164. All PKC family members share a common structure composed by 

a cell membrane targeting NH2-terminal regulatory domain and a COOH-terminal 

catalytic domain, with four conserved (C1-C4) and five variable (V1-V5) regions (Figure 

11). These two major domains are linked by a flexible hinge region (V3), which is the site 

of caspase proteolytic cleavage, protein-protein interactions and tyrosine 

phosphorylations165.  

The classical and novel isoforms contain a C1 domain with two cysteine-rich motifs 

(C1a and C1b), which is the binding site of diacylglycerol (DAG) and also the competitive 

binding site to tumour-promoting phorbol esters (i.e. TPA, 41)166. The C2 domain differs 

from classic PKC to novel PKC. Whereas the classical C2 domain binds to PS of 

membranes in a Ca2+-dependent manner, novel PKC contain a variant (C2-like) that binds 

to phospholipids in a Ca2+-independent manner165. Atypical PKC isoforms contain a 

modified C1 domain, termed ‘atypical’ C1 domain that retains the ability to bind anionic 

phospholipids, although with lower affinity. Additionally, these isoforms present a 

Phox/Bem1 (PB1) domain responsible for their interaction with other PB1-containing 

proteins164,165. The regulatory domain of PKCs contains an auto-inhibitory 

pseudosubstrate sequence that retains the kinase in an inactive state by occupation of 

the substrate binding pocket in the catalytic domain (Figure 10). The catalytic domain of 

PKCs is a highly conserved region among the distinct PKC isoforms and contains the ATP 

binding site (C3) and the substrate binding site (C4)164,165.  
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Figure 10. PKC families regulatory and catalytic domains. 

 

This multifamily of structurally related kinases has a crucial role in cellular signalling 

transduction, being their members involved in the regulation of several biological 

processes, including proliferation, apoptosis, differentiation, survival, and migration. In 

fact, dysregulation of PKCs, in terms of both expression levels and activity, is frequently 

associated with distinct human diseases, including cancer164. Among the several PKC 

isoforms, PKCα, δ, ε and ζ have deserved particular attention in cancer research. PKCα 

has been predominantly linked to increased proliferation and/or survival, being 

commonly recognized as a tumour promoter. For instance, in U87 glioblastoma cell line, 

PKCα increased the resistance to apoptosis in response to radiation and 

chemotherapy167,168. Nevertheless, depending on the cellular background, PKCα can also 

behave as a tumour suppressor. For example, in LNCaP cells, the activation of PKCα by 

phorbol esters induced apoptosis, an effect abrogated by the expression of a PKCα 

kinase-dead mutant upon PMA treatment and radiation169. In contrast, PKCδ is 

frequently associated with pro-apoptotic functions. In fact, PKCδ has been broadly 

implicated as a death mediator of chemotherapeutic agents and radiotherapy. Ectopic 

overexpression of PKCδ induced growth inhibition in NIH 3T3 cells170, an effect also 

observed for other cell lines. However, pro-survival properties of PKCδ in a number of 

tumour models, including breast, lung, pancreatic and liver cancer were also 

described171. PKCε has been described as an oncogenic isoform. It is frequently 

overexpressed in a large number of cancers, namely in breast172, prostate173, and in 

primary NSCLC cancers174. PKCε has a prominent anti-apoptotic function, promoting 

survival in several tumour cells, what has been intimately related with the modulation 

of caspases and Bcl-2 family proteins. Actually, it was reported that PKCε has the 

potential to enhance the progression and to confer resistance to apoptosis of prostate 

cancer175,176. Regarding PKCζ, both up- and down-regulation of this isoform have been 

reported in human cancers. Also for this isoform much controversy exists around its role 

in cancer development177. Many studies have reported a tumour suppression function 

for PKCζ, which mainly occurs through down-regulation of Ras-induced interleukin-6 

production by PKCζ178. It was also revealed a link with c-Myc, which contributes to the 

more aggressive phenotype associated with PKCζ loss179. However, there are several 
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reports highlighting a pro-survival role for PKCζ180,181. The proliferation and anti-

apoptotic activities of PKCζ seem to involve ERK and NF-kB/IkB pathways182,183. 

Some compound classes obtained from Lamiaceae family plants were able to 

modulate the PKC activity. Carnosol (38) (Figure 11) is an abietane diterpene with an o-

diphenolic C-ring and a lactone moiety between C7 and C20 atoms and was first isolated 

from Salvia carnosa184. This compound is present in high yields in Rosmarinus officinalis 

leafs185 and showed promising antiproliferative activity in prostate, breast, skin, 

leukaemia, and colon cancer cell models186. The cytotoxicity of carnosol seems to be 

linked to the modulation of multiple deregulated pathways including nuclear factor 

kappa B (NF-kB), PI3K and PKC187. In addition, the concomitant administration of 

carnosol with other cytotoxic agents promoted a synergistic effect in reducing cancer 

cell viability188. Coleon U (34), has been isolated from several Plectranthus species such 

as P. forsteri83, P. grandidentatus39, P. madagascariensis189 and P. myrianthus56. This 

diterpene is a quinone methide abietane exhibiting  potent cytotoxic effects transversal 

to several cancer cell lines including breast39,40, leukemia40,190 and melanoma40,190. The 

mechanism by which coleon U induces its cytotoxic effect may be related with in vitro 

selective activation of novel PKCs namely PKCδ and ε. This effect, originates a nucleus 

translocation of activated PKC isoforms and the subsequent apoptosis mediated by 

metacaspases in the yeast model156. However, coleon U is easily degraded to its oxidized 

form coleon U-quinone that owns also cytotoxic effects82,83. Whether this derivative is 

also a PKC activator is still unknown. These abietane diterpenoids coleon U and carnosol 

may be lead compounds for anticancer treatment particularly as PKC modulators. 

However, the degradation profiles of carnosol191 and coleon U83 highlight the need of 

more stable derivatives for further potential clinical use. 
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Figure 11. Chemical structure of some natural products that act as PKC isoforms modulators. 
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Other natural products have also found to target PKC isoforms. The most clinically 

relevant were the marine origin polioxygenated macrocyclic lactones known as 

bryostatins192,193. This class of compounds showed antiproliferative activity against a 

wide range of cancer cell lines such as P388 leukemia194, ovarian sarcoma195, B16 

melanoma195,196 or M5076 reticulum cell sarcoma195. Subsequently, the bryostatin 1 (39) 

was submitted to more than thirty-five human clinical trials (phase I/II). Nevertheless, 

the efficacy of bryostatin 1 used as a single drug, for example against melanoma, 

colorectal cancer and gastric carcinoma, has been variable and with some disappointing 

results. However, when combined with conventional chemotherapeutic agents, such as 

paclitaxel197 and gemcitabine198, significant synergistic effects were observed. These 

results indicated that bryostatin 1 could be a useful enhancer of the cytotoxic activity of 

some therapeutic regimens, rather than an anticancer agent. Consequently, bryostatin 

1 has been under different clinical studies in combination with diverse therapeutics. 

Food and Drug Administration (FDA) has approved the bryostatin 1 as an Orphan Drug 

in combination with paclitaxel against the oesophageal carcinoma199. Synthetic 

analogues have been developed by different strategies mainly by Wender200,201 and 

Keck202 groups but more recently a function oriented strategy was able to produce 

simplified analogues with a nanomolar binding affinity to PKC203.  

Another group of clinical importance were the ingenanes obtained from the milky 

latex of Euphorbia species such as E. antiquorum, E. drummondii, E. helioscopia, E. hirta 

and E. paralias204,205. Extracts from Euphorbiaceae plants have been used in traditional 

medicine for centuries in the treatment of some skin conditions as warts, keratosis and 

cancers206. The E. peplus phytochemical study of these extracts yielded several 

macrocyclic diterpenes, being the ingenol mebutate (40) the most active 

component207,204,208,209, including antitumour activity in several cancer cell lines 

including  breast, colon, lung and melanoma210,211,212. The mechanism of action of 

ingenol mebutate is, at least, partially related to the activation of PKC to which has a 

potent binding affinity. In vitro, low isozyme selectivity was verified with a Ki ranging 

from 0.105 - 0.376 nM213. These results supported the preclinical and clinical trials for 

the topical treatment of actinic keratosis (AK) carried out by both FDA and EMA 

(European Medicines Agency)214. Recent studies indicated that both a dual proapoptotic 

and an immunostimulatory effects occurred  in the leukaemia disease215.  

The role of PKCs in carcinogenesis is known since the late 1980s. Nevertheless, the 

development of PKC targeting drugs has not been an easy task. The PKCs isoforms are 

the target of many natural products, although very few are selective to solely one 

isoform, which is not suitable to clinical use. The natural products arise as useful 

compounds for the study of bio-molecular complex interactions involved in the 

carcinogenesis process. Furthermore, some natural products or their closely related 

analogues are under clinical trials. Two approved compounds for specific cancer types 

are bryostatin 1 (39) in combination with paclitaxel and ingenol mebutate (40). The 
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search for more selective PKC modulators remains a promising strategy for future 

anticancer treatment. 

1.4. Natural product delivery systems 

Besides the importance of natural products in the development of new drugs, 

intrinsic physical and chemical characteristics of the natural drugs stand for a poor 

pharmacokinetic profile. For adequate bioavailability, drugs should present a good 

balance between hydrophilicity (ability to dissolve in water mediums as gastrointestinal 

fluids and blood) and lipophilicity (ability to cross lipidic mediums as the case of biologic 

membranes). However, many plant secondary metabolites, from the most prevalent 

classes, are either low fat soluble (i.e. flavonoids, polyphenols, etc.), low water soluble 

(i.e. terpenes) or present high molecular weight (i.e. saponins, tannins) which also limits 

their oral bioavailability. Also, the stability of natural products was frequently impaired 

in the gastro-intestinal environment or can be either metabolized by gut bacteria or 

suffer rapid liver metabolism. 

Many strategies have been applied to overcome those limitations. The most used 

were the chemical derivatization or the novel drug delivery systems (NDDS). The first 

implies a chemical modification of the compound structure with possible implications 

on its original activity. Also, this strategy could only be applied to a pure compound and 

not to a standardized extract. It is somewhat frequent that the isolation of the most 

active compound in an extract not always led to an improvement of the activity, which 

could be explained by the existence of a synergic potential between natural 

components. Those factors indicated that chemical derivatization was not always 

applicable. On the other hand, NDDS have been in focus in recent years with the 

development and improvement of many drug delivery systems including microparticles 

and nanoparticles, among others216,217. Those systems intend to improve the 

therapeutic outcome with minimized adverse or toxic effects and improved patient 

compliance due to an improved drug dosage, compatibility with physiologic mediums, 

targeted delivery and favourable release profile, without alterations on the molecule 

structure216.  

The discovery that some dietary components, containing phospholipids, improve the 

absorption of low bioavailable drugs led to the development of lipidic based-

systems216,218. Those can assume diverse forms as liposomes, nanosomes, niosomes, 

ethosomes and, the more interesting for natural product delivery: phytosomes. 

Phytosome is the name of a patented technology developed by the Italian 

pharmaceutical company Indena. The name derived from the conjugation of the Greek 

words “phyto” meaning “from plant” and “some” which means “cell-like”. Other 

designations have been used for phytosomes including phyto-phospholipidic 

nanoparticles, planterosomes and herbosomes216,219. 
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1.4.1. Phospholipids: structure, properties and complexation 

The main constituents of every life form membrane are phospholipids. Those polar 

lipids were constituted by both a hydrophilic (“head”) and two hydrophobic (“tail”) 

portions which in conjugation confer substantial solubility in both aqueous and oily 

mediums. Phospholipids can be classified as glycerophospholipids (with a diacylglycerol 

backbone) and sphingomyelins (with a ceramide backbone). In the eukaryotic cell 

membrane the glycerophospholipids including phosphatidylcholine (PdC), 

phosphatidylethanolamine (PdE), phosphatidylinositol (PdI), phosphatidylserine (PdS) 

and phosphatidic acid (PdA) were the most abundant constituents220. Those molecules 

were classified and named based on the constitution of the head group and the length 

and saturation of hydrophobic side chains (Figure 12).  

 

 

 

Figure 12.  Main structure of the PdC, representative PdC groups and main natural fatty acid residues. 

Animal tissues (egg yolk and bovine or swine brain) and vegetable oils (soybean, 

cotton seed, sunflower, etc.) are the most important natural sources of phospholipids. 

Naturally obtained phospholipids were composed by a saturated fatty acid (stearic or 

palmitic acid) in the glycerol carbon 1 and an unsaturated fatty acid (oleic, linoleic, α-

linoleic or arachidonic acid) in the glycerol carbon 2 (Figure 12). The more frequently 

used phospholipids in pharmaceutical applications were those obtained from soya bean 

(Glycine max) that contains about 70% of PdC with a high content of linoleic and oleic 

acids which offers excellent compatibility to the mammalian membrane221.  

In the human physiology, phospholipids were also present as emulsifiers at intestinal 

level, together with cholesterol and bile acids are able to form micelles that improve the 

absorption of both fat and water soluble substances222. Phospholipids can also be found 

as wetting agents in the pleura and alveoli of lungs, pericardium and joints220. As 

expected from physiologic relevant molecules they are biocompatible with no signs of 

carcinogenic, immunogenic or teratogenic effects even when administered at high 

dosages in clinical trials222. 

 The conjugation phenomena of phytomedicines with phospholipids have been 

briefly studied. Research on the interaction between some flavonoids and cellular PdC 

demonstrated that most molecules possessing π electron systems are able to form 

different complexes with membrane phospholipids223. Those interactions were 
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confirmed in several papers by the use of spectroscopic, thermographic and molecular 

imaging techniques that demonstrated the formation of the phytophospholipidic 

complexes (PPC).  

Thermal analysis, by differential scanning calorimetry (DSC), is a fast and reliable 

method to revealing the distribution patter and further interactions between 

phytocomponents and phospholipids in the phytosome matrix. The comparison of 

phase diagrams of natural compound, phospholipids, their physical mixture and the 

phytosome allow the estimation of the presence of an interaction by the elimination of 

endothermic peaks, appearance of new peaks, change in peak shape, area and/or 

melting points. This fact occurs presumably due to the formation of an interaction 

between the two molecules. Such interaction could be originated from the hydrogen 

bonding established between hydroxyl groups in the natural product (i.e. phenol 

moieties) and those in the polar head of the phospholipid (phosphate and/or 

ammonium groups)224. Van der Walls forces were also suggested occur between the two 

moieties224,225. Those strong interactions between the polar components allow the free 

turning of the hydrocarbon chains in the phospholipid which enwrap the polar head of 

the phospholipid containing the natural product224–227. 

The infrared spectroscopy and namely Fourier transform infrared spectroscopy (FT-

IR) could confirm the complex formation by comparing the spectrum of the complex 

with individual components and their physical mixture. The FT-IR spectra of pure 

phospholipids is generally characterized for the presence of peaks at approximately 

3500 cm-1 (hydroxyl stretching), 2900 cm-1 (C-H stretching at fatty acid residues), 1700 

cm-1 (carbonyl stretching of the fatty acid ester), 1200 cm-1 (P=O stretching), 1100 cm-1 

(P-O-C stretching) and 970 cm-1 (N-(CH3)3 stretching)228,229. Many natural products like 

polyphenols or flavonoids have in their structures one or more hydroxyl groups whose 

O-H stretching appear in the FT-IR spectra as sharp peaks in the 3800-3200 cm-1 range. 

Also some signals measured in the about 3500-3300 cm-1 range correspond to N−H 

stretching vibrations of natural products containing amine groups229. While analysing 

the FT-IR spectra of the PPC it could generally be observed a shift and broadening of the 

signal corresponding to the natural products hydroxyl O-H or amine N-H stretching along 

with the signal corresponding to the aliphatic phosphate (P=O stretching) and choline 

quaternary ammonium (N-(CH3)3 stretching) groups of the phospholipids with no 

alterations found in the bands of the aliphatic carbon chains of the fatty acids. These 

observations suggest that some weak physical interactions between free hydroxyl or 

amine of the natural components and the polar groups of phospholipids took place 

during complex formation230.  

Additional confirmatory assays could be performed using x-ray powder diffraction 

(XRD)226,228,231 or 1H, 13C and 31P nuclear magnetic resonance (NMR)228. Slight or no 

changes are verified in the side chain signals which indicate that the long aliphatic chains 

wrap around the polar head, containing the bonded phytocomponents, generating a 

lipophilic envelope232. Also UV absorbance could be used for complex analysis formation 
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but with rendering less useful information when compared to previous techniques233–

235. 

The concomitant information retrieved from those thermographic and spectroscopic 

methods on the PPCs some key findings arise: the natural drugs and phospholipids 

establish weak (non-covalent) bindings as hydrogen or Van der Walls bonds. Those 

interactions occur mainly between the hydrogen atoms of hydroxyl or amine groups and 

the polar components of the phospholipid (phosphate and choline). The aliphatic chains 

of the phospholipid do not interact directly with the natural drug but form a lipophilic 

envelope around the natural drug-phospholipid complex (Figure 13). 

 

 

Figure 13. Illustration of the potential interactions during the formation of a phyto-phospholipidic complex. I. A 

phytochemical and PdC were combined and weak interactions occur between the polar moieties of the two molecules; 

II. A Van der Walls and hydrogen bonds were established between the phosphate group of the PdC and the phenolic 

hydroxyls of the phytochemical; III. The aliphatic side chains of the PdC involve the polar head where the phytochemical 

has been complexed. This corresponds to a lower energy form of the complex (ChemDraw 3D Pro 12.0). IV. Illustration 

of the structure of a phytophospholipid complex (adapted from Indena, SPA®). 

 

1.4.2. Phytophospholipid complex optimization and preparation 

Phytophospholipid complexes were obtained by reacting close to equimolar 

proportions of phytochemical and phospholipid for a certain amount of time in a 

suitable reacting medium being the recovery of phytosomes accomplished mostly by 

solvent evaporation or precipitation (Annex 1). Reaction variables as the proportions of 

components, reaction time, temperature or solvent as long as the use of different 

strategies for the complex retrieval can influence the particle size, its dispersity and the 

entrapment efficiency were discussed in this section. 

1.4.2.1. Optimization of drug to phospholipid proportions 

The phytosome differ from other lipidic-based nanoparticles as the proportion of 

drug to phospholipid is close to equimolar. In systems as the liposomes, in which this 

proportion is much lower and being each drug molecule surrounded by hundreds of 

phospholipid molecules, exists limited drug interaction with the surrounding medium. 

Also a lower drug loading capacity is expected from liposomes when compared to 

phytosomes. The original patents on the phytophospholipidic complexation state that 

the complex ratio could range from 0.5 to 3 molar ratio236. A substantial proportion of 
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the recent papers and patents on phytosome preparation used a 1:1 molar proportion 

between its elements, however some experimental designs were focused on exploring 

other molar proportions (reviewed in Annex 1). 

1.4.2.1.1. Solvent selection 

Original phytophospholipid complexation patents stated that the reaction should 

occur in an aprotic solvent such as acetone, dichloromethane, dioxane, ethyl acetate or 

tetrahydrofuran233,237 but the use of protic solvents as ethanol have also been developed 

and patented by other groups233,238. Recalling the phytophospholipid complexation 

theory, in phospholipids, the nitrogen atom has a strong tendency to lose electrons 

while the oxygen atom of the phenolic hydroxyl group polyphenols tends to gain 

electrons, in order to make the complexation possible. This way, aprotic solvents were 

preferred, as do not interfere with the electrons exchange of the complexation 

process239. Song et al. (2008) have studied the feasibility to prepare the silybin-

phospholipid complex using four solvents with low dielectric constant. The experience 

was failed when dichloromethane or ethyl acetate were used but it was successful using  

acetone and tetrahydrofuran (THF)239. The selected solvent should be able to dissolve 

both phospholipids and natural products for the complexation to take place. Although 

the markedly differences in the solubility of the complex components could not allow 

the use of a single solvent for their dissolution. The conjugation of two or more miscible 

solvents could then be applied. Also moderate heating or sonication could improve the 

components dissolution240. However, it is necessary that such conditions do not imply 

the stability of the phytosome components. Most of those solvents possess a high 

toxicity (ICH class 1 or 2) and so the substitution of those for more biocompatible 

solvents should be taken account in newer formulations as discussed in ICH Q3C 

technical document241. Examples of solvents used for phytosome preparation were 

present in Annex 1. 

1.4.2.1.2. Combination of factors 

The optimal conditions for the synthesis of phytosomes with desired characteristics 

were generally not found with the adjustment of a single reaction factor but as a 

combination of factors. The use of different statistic methodologies was seen for the 

optimization of the phytophospholipid complexation process.  

Several examples of quadratic or orthogonal designs were available in 

literature233,235,239,242.  The overall tendency was that a higher temperature favours the 

occurrence of complexation. The drug-to-phospholipid optimized proportion was 

dependent on the compound characteristics, but the 1:2 molar ratio or similar was the 

more frequent as result from the optimization.  

1.4.2.2. Phytophospholipid complexation methodologies  

For the preparation of PPCs the chosen proportions of phospholipids and 

phytocomponents must be dissolved in suitable medium and react at an optimized 
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temperature for the adequate time. Then, the complex must be recovered as dry 

powder or converted into a phytosomal suspension (sub-section 1.5.5). 

1.4.2.2.1. Solvent evaporation 

A chosen proportion of natural product and phospholipids were mixed in a reaction 

vessel containing a suitable solvent system and the reaction is allowed to be carried for 

2 to 6h at room temperature or with moderate heating. The solvent is then evaporated 

leading to the recovery of the dry complex. In this setting, the use of volatile solvents 

was the advantage of their ease of removal229. This is true in the case of solvents with 

boiling temperature lower than 60ºC, as higher temperatures could impair the stability 

of the complex and its components. In most frameworks, the solvent evaporation occurs 

at reduced pressure using temperatures lower than 60ºC, varying the duration of the 

process from a few hours up to 24h. If the choice of solvent recall in non-volatile 

solvents, lyophilisation or spray-drying could be valuable alternatives for the solvent 

removal. For such solvent removal methods, the addition of a carbohydrate (i.e. dextran 

or mannitol) could be necessary for their cryoprotectant effects on the complex during 

the lyophilisation process229,230. The lyophilisation has also the advantage of dispensing 

an additional drying step.  

1.4.2.2.2. Anti-solvent precipitation 

This process has similarities to the solvent evaporation method, being the phyto-

components and phospholipids combined in a reaction vessel containing a polar or 

median polar solvent, being the reaction carried for a predetermined period of time at 

the selected temperature. The reaction is generally stopped by the addition of an anti-

solvent in which the product is generally insoluble, as the aliphatic hydrocarbons (i.e. n-

hexane), being the PPC recovered after its precipitation (and eventual centrifugation) 

followed by removal of the solvent243. Examples of phytosomes prepared using this 

methodology were presented at Annex 1.  

In some protocols, the precipitation technique was not very effective for the 

producing of a complex because the complex is decomposed upon the addition of the 

anti-solvent230. Authors suggested that it could be related very weak interactions during 

the complex formation and/or to the ability of the anti-solvent to dissolve the 

phospholipids leaving the crystalline drug precipitated230. 

1.4.2.2.3. Other methods 

 The use of SCF by the supercritical anti-solvent technique was been used for the 

preparation of pharmaceutical fine powders. The same principles could be applied for 

the production of phytosomes, namely by the supercritical fluid solution enhanced 

dispersion (SEDS). This method has some advantages over traditional PPC preparation 

techniques, including the controlled particle size and site distribution but also not time 

consuming and simple244.  

Also, a “mechanical dispersion method” was published245. In such, the phospholipid 

components were dissolved into the minimum amount of an apolar compatible solvent 
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(i.e. diethyl ether) under sonication. The water dissolved phytocomponent was then 

added dropwise to the phospholipid solution under sonication for 15 minutes being the 

phytosome formed245. 

1.4.2.3. From the complex to the vesicle 

The PPC presents a disorganized, irregular and amorphous structure that present 

generally a heterogeneous dispersion. The micellar phytosome structure was only 

formed when the PPC is added to an aqueous medium leading to the reorganization of 

the phospholipidic double layer. Some methods for the pharmaceutical preparation of 

phytosomes from the phytophospholipid complex are here described.  

1.4.2.3.1. Film hydration method 

Following the formation of a thin film of PPC, using a solvent evaporation method, 

the process can be continued by the hydration of the PPC using a suitable aqueous 

medium (purified water, PBS, among others). During the contact between the aqueous 

and lipidic phases, a gradual swelling of the PPC into the aqueous phase occurs leading 

to vesiculation of PPC and formation of a phytosome suspension246,247. 

1.4.2.3.2. Nanoprecipitation 

This technique used the PPC dissolved in a compatible organic solvent which was 

extruded dropwise to distilled water with gentle stirring. The organic phase was 

gradually evaporated by the use of reduced pressure or at room conditions for up to 

24h248,249. The physical process of nanoprecipitation in the preparation of mitomycin 

phytosomes from mitomycin-PdC complexes was briefly described by Hou and its 

collaborators229. Initially both mitomycin and PdC were dissolved into an organic solvent 

and gradually dispersed into the continuous phase leading to interface turbulence and 

conversion of the system into an O/W suspension. In a second moment, a decrease in 

the interfacial tension resulted in droplet size reduction and, subsequent, spontaneous 

emulsification. Then, the organic phase gradually diffuses into the continuous phase 

with integration of excess water into the nanodroplets. The evaporation of the organic 

phase contributes to a gradual concentration of the nanodroplets and after the 

complete removal of the organic phase, phytosomes were precipitated into the aqueous 

environment (Figure 14)229. 

 

 
1) Phytophospholipid 

components dissolution 
in organic solvent 

2) Organic phase dispersion in 
the continuous phase with 

conversion into O/W suspension  

3) Decrease in 
interfacial tension with 
droplet size reduction  

4) Remaining 
evaporation of the 

organic phase 

5) Precipitation of 
the phytosome in 

the aqueous media 

Figure 14. Illustration of the mechanism of phytosome formation by nanoprecipitation technique. Adapted from Hou 

et al. 2013229. 
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1.4.3. Phytosome characterization 

Phytosomes are generally characterized according to its morphology, physical 

properties and chemical composition. 

1.4.3.1. Morphology 

The shape and morphology of phytosomes are analysed using direct visualization 

techniques as scanning electron microscopy (SEM)250 or transmission electron 

microscopy (TEM) or using topographical characterization, namely by atomic force 

spectroscopy (AFM)249. When directly visualized, PPC were amorphous, fluffy, porous 

with rough surface and an apparent interaction in the solid state228. On the other hand 

phytosomes presented a liposome-like vesicle, with fairly uniform size, dispersed in the 

aqueous environment 248.  

1.4.3.2. Size and distribution 

The particle physical size and its distribution have been analysed mainly by light 

scattering methodologies as photon correlation spectroscopy (PCS) or dynamic light 

scattering (DLS) and using computer algorithms to determine the average particle size 

and the polydispersity index (PI) being the mixture monodisperse when the PI = 0. An 

alternative methodology of size dispersion is the SPAN value. This measure reflects the 

width of the size distribution. Smaller values (< 1) are generally obtained when a narrow 

distribution exists251. 

1.4.3.3. Surface charge 

The general charge present at the surface of each phytosome has been evaluated by 

the measuring the zeta potential (ζP). The knowledge of the surface charge can help to 

predict the fate of the phytosome particles in vivo concerning the ease for aggregation 

or the attraction to charged tissues. Most phytosomes present a negative or neutral 

surface charge, depending on the degree of complexation and the availability of 

negatively charged free phosphate groups from phospholipids230.  

1.4.3.4. Encapsulation efficiency and drug loading 

The amount of phytocomponents complexed with phospholipids has been generally 

evaluated by direct analysis of the dried PPC dissolved into an aggressive media as an 

organic solvent or extreme pH. The HPLC methodologies were robust, sensible and 

reproducible state of the art technique for the quantification of drug products into an 

unknown matrix227. Also some authors used simply UV-spectroscopy for the 

quantification230.  The amount of natural drug incorporated into a PPC is highly 

dependent of the drug and matrix physic-chemical characteristics but also from some 

process variables as starting materials ratio, reaction temperature and reaction time, 

among others, influence the drug yield in PPC 233,235,239,242. 
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1.4.3.5. Phytosome stability 

Several studies established long-term stability problems when phytosomes were 

dispersed into an aqueous suspension. The main problems related to this instability 

were the particle aggregation/leakage, chemical instability (PdC hydrolysis from ester 

bonds, oxidation) and biological contamination (microorganism growth)248. Some 

strategies that could result in the improvement of the phytosome stability were 

therefore described.  

The addition of an optimized proportion of cholesterol to the vesicular phytosome 

system was also demonstrated to improve the short-term stability251. This effect could 

be explained by the interaction between cholesterol and PdC (hydrogen bond between 

the cholesterol hydroxyl and the polar head of PdC) which induces a tighter packing of 

PdC in the membrane and enhances electrostatic repulsion between phospholipid 

bilayer. It also enhances the membrane flexibility. Cholesterol also increases the 

thickness of the phospholipid bilayer251. However, the use of cholesterol is limited by its 

long-term oxidation, that may originate stability problems252. 

Lyophilization has been considered a favourable technique for industrial process in 

the pharmaceutical field to obtain fine powders. It is easy to manipulate and led to a 

more stable drug product. The lyophilized phytosome of diosmin maintain their initial 

physicochemical characteristics at different pH and with the presence of enzymes 

(simulated gastric fluid). A change in the surface charge was however verified in acidic 

medium (+24 mV) as compared to a buffered pH 7.4 (-6 mV) or to a higher pH (-27 mV). 

Such changes in the surface charge could be related to the intrinsic dual charge of PdC 

(pKa = 0.8). The phosphate negative group is neutralized in acidic pH leading to a positive 

charge predominance while the opposite occur at higher pH values as alkaline medium 

should neutralize the choline positive group, leading to the predominance of negative 

charge230. Such occurrence could impair the stability of the nanoparticles as a low ZP 

could led to particle aggregation and precipitation.   

1.4.4. Targeting of phytosomes: coating and functionalization  

There is not a standard phytosome for each application. As so, some groups have 

opted to combine the phytosome technology with other encapsulating agents as 

polymers, metallic NPs or to functionalizing the phytosome surface in order to obtain 

improved targeting of bioavailability.  

Mitomycin is a water soluble anticancer drug with clinical use limited by aqueous 

media instability, short elimination half-life and lack of selectivity253. The first 

approaches to overlay such limitations were the encapsulation into a polymeric carrier, 

dextran254 or polylactic acid (PLA)253, or the incorporation in phospholipidic medium: 

liposome255 or phytosome229. The mitomycin phytosomes were able to reduce the drug 

degradation and improve its release pattern but did not archive selectivity for the 

tumour site. The same group opted then to attach to the loaded phytosome a pH-

sensitive coating of polyethylene glycol-phosphoethanolamine-polylactic acid (PEG-PE-
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PLA) which is stable at physiological pH but originating burst release at endosomal or 

lysosomal pH. This system was also functionalized with folate (FA) which conferees 

active targeting to tumour overexpressing the folate receptor248. The originated FA-PEG-

PE-PLA-phytosome hybrid system exhibited selective tumour accumulation with 

sustained release and steady-state pharmacokinetics in BALB/c nude mice inoculated 

with H22 mouse ascitic hepatoma cell line248. Those in vivo results provide evidences for 

improved antitumor activity with reduced side effects.  

Another example is the hybrid formulation concerning the conjugation of Calendula 

officinalis phytosomes with gold nanoparticles (AuNPs). It was developed for 

incorporation into wound healing dermal formulations. Those Calendula AuNP-

phytosomes had an average particle size of 80±5 nm and showed an in vitro protective 

effect up to 81% in the cytotoxicity induced by H2O2 in Vero cells (fibroblasts from African 

green monkey kidney). Also, in the in vitro wound scratch assay256, those hybrid 

phytosomes showed an improvement in the gap closure of the cell monolayer of 58.7% 

(against 42.2% of the equivalent Calendula phytosomes)257. 

The addition of a coating is another option for improvement of the delivery of 

phytosomal formulations. Polymeric structures as chitosan was used for the 

improvement of curcumin oral absorption. The chitosan microparticles containing 

curcumin phytosomes were produced by ionotropic gelation being obtained spherical 

microspheres with an average particle size of 23.21±6.72 µm249. The pharmacokinetic 

study showed an improvement of the curcumin bioavailability in 1.67 and 1.07-fold 

when compared with the phytosomes of curcumin and chitosan microparticles of 

curcumin, respectively. Also the half-life of curcumin in the microencapsulated 

phytosomes was longer (3.16h) than those of phytosome (1.73 h) and chitosan 

microparticles (2.34 h) of curcumin upon oral administration in rat model249.  

1.4.5. Applications of the Phytosome strategy 

The PPC complexes and their phytosomal equivalents can be formulated in the form 

of suspension, emulsion, syrup, lotion, gel, cream, pill, capsule, powder, granules, etc. 

resulting in a product that is better absorbed and produces better result than the 

conventional herbal extracts.  

1.4.5.1. Clinical and nutritional uses 

The use as active ingredients in food supplements was the most frequently found 

application of this technology. Some relevant phytosomes examples of such applications 

were the silymarin flavonolignans, the curcuminoid polyphenols, the green tea flavan-

3-ol catechins and the ginkosenoids from ginko258 (Figure 15).  

Flavonolignans obtained from milk thistle (Silymarin marianum, Compositae) have 

been used for their ethnomedicinal applications in liver disease for more than 2000 

years258. The major flavonoligan present in the fruit of milk thistle was silybin (42) which 

was proven to be a liver protectant by its potent antioxidant effect and glutathione 

conservative effect. Also silybin and related compounds have showed promising results 
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as chemopreventive or anticancer agents259,260 due to its inhibition effects on the silent 

information regulator 1 (SIRT1)261 and signal transducer and activator of transcription 3 

(STAT3)262. The phytosome of silybin (SiliphosTM, Indena Spa) have showed a huge 

improvement in the pharmacokinetics of the pure compound. Silybin have a low 

solubility in water (>0.5 g/L). It suffers an extended phase II metabolism and it is rapidly 

eliminated by kidney and urine, which results in a low bioavailability and short half-

life263,264. SiliphosTM showed an significant increase in the oil and water solubility and 

bioavailability up to 10-fold in rat model265,266. This formulation was well tolerated even 

at high doses267 and found clinical applications as hepatoprotective268 and cancer 

adjuvant269. 

Curcumin polyphenols (43-45) were obtained from turmeric (Curcuma longa, 

Zingiberaceae) to which conferee the characteristic yellow coloration of the rhizome. 

Those compounds have potent free radical scavenger, anti-inflammatory and anti-

cancer properties that have failed to translate to clinical practice due to their poor 

bioavailability. Three main curcuminoids were present in standardized preparations  
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Figure 15. Chemical structure of some natural products included in phytosomal commercially available formulations. 

 

namely curcumin (diferuloylmethane; curcumin I) (52), demethoxycurcumin (curcumin 

II) (53) and bisdemethoxycurcumin (curcumin III) (54). The phospholipid complexed 

form of standardized curcumin (MerivaTM, Indena Spa) has demonstrated an 

outstanding improvement in bioavailability. The absorption of curcumin was 18-fold 

higher and the curcuminoid mixture up to 29-fold higher in comparison to unconjugated 

curcumin270. Two other different studies on curcumin-phospholipid complex 

demonstrated an improvement of the Cmax in the range of 1.6249 to 2.4-fold227. This 

formulation has been used for its protective effects against active radicals. Promising 

results were obtained in clinical trials in weight management in metabolic syndrome271, 
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muscle recovery272,273 and pain management274,275. In addition, its application in cancer 

chemoprevention, inflammation and neurodegenerative diseases is under study258. 

Green tea catechins and polyphenols obtained from the tea tree (Camellia sinensis, 

Theaceae) have long been used for their antioxidant and anti-inflammatory properties. 

The major constituents of that complex were epigallocatechin, catechin, 

epigallocatechin-3-O-gallate (EGCg) (46), gallocatechin-3-O-gallate, epigallo-3-O-

methylgallate, and epicatechin-3-O-gallate. The main applications of the green tea 

extracts were in weight lose supplements276 but can also be included in cancer277, liver278 

or cardioprotective formulations279. A single dose trial demonstrated that GreenselectTM 

phytosome was able to induce a decrease in the plasmatic oxidative status correlated 

with the plasmatic levels of ECGg280. This formulation conducted also to an improvement 

of bioavailability of ECGg (Cmax) in about 2-fold280. The weight lose effects were 

substantially improved by the use of Greenselect® in combination with hypocaloric diet 

in comparison with the diet only group (p>0.001) in a human clinical trial (n = 100)281. 

This lipidic-based formulation was also useful for control of borderline metabolic 

syndrome as in a 24-week treatment, 68% of the subjects showed a substantial 

improvement of in weight, lipidic profile and blood pressure while only 20% were able 

to manage those parameters based on lifestyle changes282.  

Ginkgo (Ginkgo biloba, Ginkgoaceae) is one of the anciently used medicinal plants 

from Chinese traditional medicine283. Terpene lactones and flavonoid glycosides were 

present in extracts of this plant from including ginkgolide A (47), B (48) and bilobalide 

(49). Although these plant extracts have been used with efficacy for the treatment of 

cardiovascular283 and neurologic conditions283,284, the phytosome form (Ginkgoselect®) 

originate an improvement of those active components bioavailability285,286. Also potent 

anti-inflammatory287 and hepatoprotective285,286 effects were also verified for this 

phytosome formulation.  

With some of the older patents reaching the end of the protection period, it would 

be expected the appearance of similar pharmaceutical products using the patented 

formulations. 

1.4.5.2. Dermatologic uses 

The lipophilic nature of the phytosome let us expect an improvement in the topical 

absorption of the complex, but as discussed earlier, the transdermal absorption should 

be negligible, being the local effects the most relevant and also the most appropriate 

for a cosmetic purpose. Their phospholipidic nature is also adequate for the 

enhancement of some skin functions as hydration, collagen structure, enzyme balance 

and restoring the barrier functions of the skin288. Standardized extracts from Gingko 

(Gingko biloba), grape seed (Vitis vinifera), hawthorn (Crataegus spp.), green tea 

(Camellia sinensis), milk thistle (Silybum marianum) and ginseng (Panax ginseng), among 

others, have been formulated as phytosomes intended to be used as innovative 

cosmetic carriers (Annex 2).   
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1.5. Hypothesis and Objectives 

Cancer and common infectious are two the top-five world death causes, according to 

World Health Organization. In the past century key advances in the treatment of such 

diseases were archived, although, few clinically relevant discoveries have been made in 

more recent years. The spreading of multidrug resistant bacteria and cancer types along 

with the lack of new antimicrobial and chemotherapeutic agents with a favorable risk-

efficacy relationship, highlight the need for the development of new and alternative 

antimicrobial and anticancer drug classes.   

Natural products have been one of the most reliable sources of drugs over the 

medicine history. Among those, the Plectranthus genus have been used for a wide range 

of ethnomedicinal purposes and is a good raw material since they easily grow in 

temperate zones. From these genus plants, several diterpenes have been obtained and 

characterized as antimicrobial or antitumoral agents.  

The bioactivity of some natural products was however limited by intrinsic physic-

chemical characteristics, namely unfavourable oil/water solubility relationship or 

susceptibility to rapid degradation in physiologic media, which limit their use as drug 

products. New drug delivery systems have been on focus in recent years and natural 

product focused delivery systems as phytosomes promise to overcome such limitations. 

The overall background drives the establishment of some research hypothesis: 

Ø Would the selected Plectranthus plants (P. madagascariensis, P. neochilus and P. 

porcatus) be a source of bioactive compounds?  

Ø Will the extracts and isolated compounds from those plants have potent activity 

against some microbial pathogens and/or cancer cell lines? 

Ø There will be an advantage of using phytophospholipid complexation (phytosome) 

to improve the revealed bioactivity? 

Following the established thesis hypothesis, within this work some objectives were 

established: 

Ø Objective I: The study of extracts from at least three Plectranthus species (P. 

madagascariensis, P. neochilus and P. porcatus) order to isolate or identify 

compounds that will be characterized by spectroscopic methods and 

physicochemical data. Such extracts and compounds would be screened for their 

antimicrobial and cytotoxic activities;  

Ø Objective II: The evaluation of the in vitro cytotoxic activities of extracts and their 

isolated compounds and the establishment of some structure-activity relationships; 

Ø Objective III: The more potent antimicrobial components obtained from 

Plectranthus plants will be incorporated into phytosomes in order to improve their 

bioactivity and/or delivery.  
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Chapter II 
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2. Screening of Plectranthus spp. for antimicrobial, 

antioxidant and cytotoxic activities 

2.1. Introduction 

The first objective of this project was the evaluation of the potential bioactivities, 

namely antimicrobial and antiproliferative (additionally the antioxidant activity was also 

measured), of plant extracts from the genus Plectranthus. The three species used in this 

study were selected based on their ethnomedicinal uses and the availability of plant 

material.  

2.3.1. Plectranthus madagascariensis 

P. madagascariensis (Pers.) Benth is a perennial aromatic herb with procumbent 

growth resulting in a dense, well-branched shrub up to 1 m high32 (Figure 2.1). This plant 

have been cultivated in Europe for its ornamental and aromatic applications and 

traditionally used for the treatment of respiratory conditions as cough and asthma, 

cutaneous wounds and scabies27. Previously, P. madagascariensis essential oil was 

characterized as containing high yields of an abietane diterpene, 6,7-

dehydroroyleanone (II.1)289. This diterpenoid was formally studied as a non-toxic weak 

antimicrobial and potent antioxidant290. Kubínová et al. identified rosmarinic acid (II.2), 

7β,6β-dihydroxyroyleanone (II.3), 7β-acetoxy-6β-hydroxyroyleanone (II.4) and coleon 

U-quinone (II.5) as the main components of this plant methanolic extract72. The acetone 

extract of P. madagascariensis was also studied as an antimicrobial and possesses insect 

antifeedant activity which was suspected to be related to the presence of coleon U in 

such extract83. 
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Figure 2.1. Illustration of the Plectranthus madagascariensis (adapted from van Jaarsveld and Thomas, 200632) and 

some of the known compounds. 
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2.3.2. Plectranthus neochilus 

P. neochilus Schltr. is an aromatic herb commonly called “boldo-rasteiro” in 

Brazil291,292 (Figure 2.2). The infusion of this plant has been used in traditional medicine 

for treating dyspepsia and hepatic insufficiency291 or for the treatment of chills, cough 

and a runny or blocked nose47. Several studies characterized their essential oil 

composition and respective biologic activities from different growth locations. Essential 

oils from plants grown in Portugal293 and Brazil294 were similar, however substantially 

different from plants grown in South Africa295. Monoterpenes hydrocarbons were the 

more prevalent volatile constituents, but sesquiterpenes as β-caryophyllene and its 

oxidized form, caryophyllene oxide, were also present in high yields295. 

Antimicrobial293,296, schistosomicidal294,297,anti-fungal and cytotoxic294 activities294,298 

were evaluated from P. neochilus essential oils. A low toxicity of P. neochilus ethanol 

extract of aerial parts was also described using the brine shrimp lethality assay146. The 

non-volatile composition of this specie remains mostly unclear but some triterpenes and 

a flavonoid were isolated from the hexane extract of the whole plant, namely a ramified 

alpha-amyrin (II.6), friedelin (II.7), a mixture of sitosterol and estigmasterol and the 

flavonoid cirsimaritin (II.8)299. Also the diterpene 1,6-di-O-acetyl-9-deoxyforskolin (II.9) 

was obtained from aerial parts of this plant101.  
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Figure 2.2. Illustration of the Plectranthus neochilus (adapted from Duarte and Lopes, 2007291) and main known 

compounds.  

2.3.3. Plectranthus porcatus  

P. porcatus Van Jaarsv. & P.J.D. Winter has been recently discovered in Leolo 

Moutains to Sekukuniland and Limpopo Province, South Africa300. Those areas present 

a subtropical climate, with hot summers and dry, sunny winters with light frost. P. 

porcatus is perennial soboliferous multi-stemmed shrub up to 1.5 m in diameter (Figure 

2.3). Its highly aromatic nature could have encourage its collection for medicinal uses300. 
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This plant was briefly studied by our group in two occasions. From the acetone extract 

was obtained a new diterpene with cycloabietane substructure designed [13S,15S]-

6β,7α,12α,19-tetrahydroxy-13β,16-cyclo-8-abietene-11,14-dione (II.10)35. The 

microwave aqueous extract was evaluated by HPLC and small yields of polyphenols 

caffeic (II.11) and rosmarinic acid (II.2) were detected, which contribute to the 

antioxidant activity of this extract25. 
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II.2 

Figure 2.3. Illustration of the Plectranthus porcatus (adapted from van Jaarsveld and Thomas, 200632) and main known 

compounds.  

 

The initial screening was performed with different polarity extracts evaluated of their 

antimicrobial (bacteria and yeasts), antioxidant (DPPH reduction) and cytotoxic (in vitro 

cancer cell model) activities. Those extracts are also profiled using HPLC-DAD and some 

of the main compounds were identified by standard co-elution (Figure 2.4). 

 

 

Figure 2.4. General scheme of the workflow described in chapter 2. 
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In this chapter, the biologic activities screening and initial phytochemical profiling 

were presented and discussed. 

2.2. Experimental 

2.2.1. Chemicals and equipment 

All the laboratorial work of this chapter has been accomplished at CBIOS facilities 

(Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal). 

2.2.1.1. Chemicals 

Extraction and chromatography solvents, namely n-hexane, ethyl acetate, methanol 

and acetone were from analytic grade and purchased from Sigma-Aldrich (Steinheim, 

Germany). Reverse osmosis water was obtained from a Millipore system (Millipore, MA, 

USA) system with a resistivity of 18.2 Ω cm at 25°C. Trichloroacetic acid was obtained 

from Panreac (Barcelona, Spain). HPLC reagents were from HPLC-grade (VWR Chemicals, 

Fontenay-sous-Bois, France) and were filtered through a 0.22 μm membrane (Vygon, 

Ecouen, France) before use. Dimethyl sulfoxide (DMSO) and absolute ethanol was 

supplied by Merck (Darmstadt, Germany), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 

tetrazolium chloride and ascorbic acid were supplied by Sigma-Aldrich (Steinheim, 

Germany). TLC plates (Kieselgel 60 GF254 2mm 1.05554.0001) were purchased from 

Merck (Darmstadt, Germany) and filter paper nº5 was obtained from Whatman 

(Maidstone, United Kingdom). Standards of caffeic acid, chlorogenic acid, rosmarinic 

acid, rutin and naringin were supplied by Sigma-Aldrich (Steinheim, Germany). Authentic 

standards of coleon U and 7α-acetoxy-6β-hydroxyroyleanone were obtained and fully 

characterized by Gaspar-Marques34. Mueller-Hinton broth was supplied by Sigma-

Aldrich (Steinheim, Germany) and and Sabouraud agar was supplied by Biokar 

Diagnostics (Allonne, France). Fetal bovine serum and penicillin/streptomycin for cell 

culture were supplied by Sigma-Aldrich (Steinheim, Germany) and Dulbecco’s Modified 

Eagle’s medium was supplied by Biowest (Nuaillé, France). Vancomycin, norfloxacin, 

amphotericin B and doxorubicin were supplied by Sigma-Aldrich (Steinheim, Germany). 

2.2.1.2. Equipments 

The HPLC-DAD system was composed by an Agilent Technologies 1200 Infinity Series 

with diode array module (Agilent Technologies, Santa Clara, CA, USA) using a reverse 

phase (RP-18) HPLC column LiChrospher® 100 (Merck, Darmstadt, Germany). Other 

equipments used were hotplate magnetic stirrer (MC-8, Bunsen, Madrid, Spain), 

lyophilizer (Freezone 2.5 L, Labconco, Kansas City, USA), rotary evaporator (IKA RV06-

ML 1-B, Staufen, Germany) ultrasonic bath (Bandelin SONOREX RK 510H, Berlin, 

Germany), ultraviolet 254/366 nm lamp (CAMAG, Muttenz, Swithzerland) and weighting 

scales (KERN 770, KERN & Sohn GmbH, Balingen, Germany). 
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2.2.1.3. Plant material 

Plectranthus madagascarensis Benth., P. neochilus Schltr. and P. porcatus Winter & 

Van Jaarsv were cultivated in Parque Botânico da Tapada da Ajuda (Instituto Superior 

Agrário, Lisbon, Portugal) from cuttings obtained from the Kirstenbosch National 

Botanical Garden (Cape Town, South Africa). Voucher specimens were deposited in 

Herbarium João de Carvalho e Vasconcellos (ISA) with numbers 841/2007 for P. 

madagascariensis, number 570/2008 for P. neochilus and 109/2008 for P. porcatus. The 

plant material used in this study was collected between 2007 and 2008, dried at room 

temperature and stored protected from light and humidity. 

2.2.1.4. Microbial strains 

The antimicrobial assays were performed in 7 Gram positive bacteria strains: Bacillus 

subtilis (ATCC 6633), Enterococcus faecalis (ATCC 29212), Mycobacterium smegmatis 

(ATCC 607), Staphylococcus aureus (ATCC 25923), methicillin-resistant S. aureus (MRSA) 

(CIP 106760) and Staphylococcus epidermidis (ATCC 12228); 3 Gram negative bacteria 

strains: Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 9997) and 

Pseudomonas aeruginosa (ATCC 27853); and 2 yeast strains: Candida albicans (ATCC 

10231) and Saccharomyces cerevisiae (ATCC 9763). Microbial strains were originally 

obtained from American Type Culture Collection (ATCC) or form “Collection de l'Institut 

Pasteur" (CIP).  

2.2.1.5. Cell lines 

The human breast cancer MDA-MB-231 cell line (Cailleau et al., 1974301) was obtained 

from ATCC and maintained at CBIOS at Universidade Lusofóna de Humanidades e 

Tecnologias (Lisbon, Portugal) facilities.  

2.2.1.6. Software editing  

Chemical structures were drawn on ChemBioDraw Ultra 12.0.2.1076. ChemStation 

was used for HPLC-DAD controller and data exportation. Statistical analysis and graphic 

design were archived using GraphPad Prism 6.01 for Windows 10.  

2.2.2. Extract preparation 

Dried plant was grinded to small pieces and then pulverized. Plant material was 

extracted using different combinations of aqueous or organic solvents and extraction 

techniques. Each crude extract was separated from the remaining plant material by 

paper filtration (Whatman paper nº1, Sigma-Aldrich, Steinheim, Germany) and the 

organic solvents were evaporated in a rotary evaporator (IKA RV06-ML 1-B, Staufen, 

Germany) bellow 40 °C while aqueous extracts were freeze-dried as 1 mL aliquots 

(Freezone 2.5 L, Labconco, Kansas City, USA). The weight was determined for each 

extract and were stored at -20 °C until further usage. 

2.2.2.1. Decoction (DEC) 

Plant material (10 g) is boiled in 100 mL distilled water for 10 min. 
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2.2.2.2. Infusion (INF) 

Plant material (10 g) is added to 100 mL of boiling distilled water and kept in contact 

for 10 min.  

2.2.2.3. Microwave assisted extraction (MW) 

Plant material (10 g) is added to 100 mL of distilled water and subject to continuous 

irradiation (2.45 GHz) for 2 min into a conventional microwave.  

2.2.2.4. Maceration (ME) 

Plant material (10 g) is added to 200 mL of organic solvent (acetone or methanol) and 

kept stirring (MC-8, Bunsen, Madrid, Spain) for 24 h.  

2.2.2.5. Ultrasound assisted extraction (UAE) 

Plant material (10 g) is added to 200 mL of organic solvent (acetone or methanol) and 

sonicated into an ultrasonic bath (Bandelin SONOREX RK 510H, Berlin, Germany) at 35 

kHz for 2 h.  

2.2.2.6. Supercritical fluid extraction (SCFE) 

The supercritical fluid extraction was performed in an apparatus already described 
elsewhere302. The extraction was performed using 30g of ground plant for 3h at a 
temperature of 40ºC, pressure 23 MPa and scCO2 flow rate of 0.3 kg.h-1. 

2.2.2.7. Re-extraction of SCFE remaining plant material (R-SFE) 

Remaining plant material resulting from SCFE is recovered, air dried and added to 200 

mL of acetone which is kept stirring (MC-8, Bunsen, Madrid, Spain) for 24 h. 

2.2.3. Chemical characterization 

Extracts were briefly analysed for their phytochemical profile using high performance 

liquid chromatography (HPLC) and by comparison of the UV spectra and retention time 

with pure authentic standards36. 

2.2.3.1. HPLC-DAD fingerprinting 

Analysis were performed in an Agilent Technologies 1200 Infinity Series system 

equipped with a LiChrospher® 100, RP-18 (5 mm) column (Merck, Darmstadt, Germany) 

and ChemStation software. Extracts were analysed injecting 20 µL and using a gradient 

composed of solution A (methanol), solution B (acetonitrile) and solution D (0.3% w/v, 

trichloroacetic acid in water) as follows: 0 min, 15% A, 5% B and 80% D; 20 min, 80% A, 

10% B and 10% D; 25 min, 80% A, 10% B and 10% D; and 28 min, 15% A, 5% B and 80% 

D. The flow rate was set at 1 mL/min. Detection was carried out between 200 and 600 

nm with a diode array detector (DAD). Solvents were filtered and degassed using a 0.22 

μm membrane filter previously to the analysis. All analyses were performed in triplicate.  
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2.2.3.2. Pure standards overlay 

Standards in methanol at 1 mg/mL were run injecting 20 µL under the same analytic 

conditions used for extracts. The UV spectra of each pure compound was retrieved and 

compared to peaks in the extract with similar retention times. When overlay of UV 

spectra is verified, a co-elution of extract with pure compound is performed for 

confirmation.  

2.2.4. Microbiology 

The antimicrobial activity of each extract was determined in 7 Gram positive bacteria 

strains: Bacillus subtilis (ATCC 6633), Enterococcus faecalis (ATCC 29212), 

Mycobacterium smegmatis (ATCC 607), Staphylococcus aureus (ATCC 25923), 

methicillin-resistant S. aureus (MRSA) (CIP 106760) and Staphylococcus epidermidis 

(ATCC 12228); 3 Gram negative bacteria strains: Escherichia coli (ATCC 25922), Klebsiella 

pneumoniae (ATCC 9997) and Pseudomonas aeruginosa (ATCC 27853); and 2 yeast 

strains: Candida albicans (ATCC 10231) and Saccharomyces cerevisiae (ATCC 9763).  

2.2.4.1. Well diffusion assay 

For screening of antimicrobial activity, a well diffusion assay was used. Briefly 100 µL 

of microorganism suspension, concentrated at 0.5 in McFarland scale, were inoculated 

in a petri dish containing Mueller-Hinton (bacteria) or Sabouraud agar (yeasts). Wells 

were dug in the agar using a sterile Pasteur pipette. Then 50 µL of sample (at 10 mg/mL), 

negative control (DMSO) or positive control (vancomycin for Gram positive bacteria; 

norfloxacin for Gram negative bacteria; amphotericin B for yeast) were added to each 

well. After incubation at 37ºC for 24 h the growth inhibition zones around the well were 

measured and the results expressed in millimetres (mm). Assays were performed in 

triplicate. 

2.2.4.2. Minimum inhibitory concentrations 

Positive samples from the well diffusion assay screening were subjected to a 

microplate broth microdilution method303. Briefly 100 μL of liquid Mueller-Hinton 

medium was distributed in each well of a 96-well plate. To the first well of each row was 

added 100 μL of extract, positive control or negative control solutions at a 1 mg/mL 

concentration and 1:2 serial dilutions were prepared (1.95–500 μg/mL range). Lastly, 10 

μL of bacterial suspension were added to every well and plates were incubated at 37°C 

for 24h. Bacterial growth was measured with an absorbance microplate reader set to 

620 nm. Assays were performed in triplicate. 

2.2.4.3. Bioautography 

The evaluated extracts were applied on a TLC silica plate (10x4 cm) and developed 

using a mixture of n-hexane:ethyl acetate (8:2; v/v). After elution, the TLC 

chromatogram was allowed to dry completely and placed on a petri dish. Then, a 

solution of Mueller-Hilton containing tetrazolium chloride (10 % w/v) and inoculated 

with S. aureus (ATCC 25923) was used to cover the TLC chromatogram. The plate was 
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incubated overnight at 37°C and the inhibition zones compared to non-incubated TLC 

chromatogram of the same extract. The assay was performed in quadruplicate. 

2.2.5. Radical scavenging activity  

The antioxidant activity was screened by the evaluation of DPPH radical scavenging 

ability36. Ten microliters of each plant extract (10 mg/mL) were mixed with 990 μL of 

DPPH solution (0.002% in ethanol). The resultant solution was incubated for 30 min at 

room temperature and then, the absorbance was measured at 517 nm against a 

corresponding blank. The antioxidant activity was calculated as: 

  % =
  !!" # $%&'()*

$ !!"
 

Where AA% corresponds to the antioxidant activity in percentage, ADPPH is the 

absorption verified for the DPPH solution (blank) and Asample is the absorption verified 

for the sample (extract in DPPH solution). Each assay was carried in triplicate and 

ascorbic acid was used as positive control.  

2.2.6. Cytotoxicity evaluation 

The extracts cytotoxicity was assessed in the human breast cancer MDA-MB-231 cell 

line. Cells were cultured in DMEM supplemented with 10% fetal bovine serum, 100 

U/mL penicillin and 0.1 mg/mL streptomycin. The cultures were maintained at 37ºC, 

under a humidified atmosphere containing 5% CO2.  

Cell viability was evaluated using the crystal violet staining assay304. Briefly, a 96-well 

microplate was inoculated with approximate 6000 cells per well and incubated for 24 h. 

The samples were then added to obtain a final concentration of 15 µg/mL. After 48 h 

the medium was discarded and the cells washed with PBS, fixed with 96% ethanol and 

stained with crystal violet. The absorbance was measured at 595 nm and the sample 

cytotoxicity was expressed as the fraction of absorbance comparing with non-treated 

control cultures. At least two independent experiments were performed, and four 

replicate cultures were used in each independent experiment. Doxorubicin (5 µM) was 

used as positive control.  

2.3. Results and discussion 

2.3.1. Extract preparation 

Extracts from P. madagascariensis, P. neochilus and P. porcatus were prepared using 

combinations of different solvents and extraction methodologies to obtain the 

preferential extraction of polar (aqueous extracts), median polar (acetone and 

methanol) and less polar constituents (scCO2) in variable yields (Table 2.1). The 

methanol extracts present a higher extraction yields in all studied plants, being 

maceration extraction able to retrieve generally higher extraction yields (Table 2.1). This  
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Table 2.1. Extraction technique, solvents applied, weighted dry residue and calculated yield from studied 

Plectranthus species extracts. n/d – not determined. 

Number Plant Solvent  Technique  Dry residue (mg) Yield (mg/g) 

E1 

P. madagascariensis 

Water 

Infusion 0.23 ± 0.10 2.3 

E2 Microwave 0.11 ± 0.04 1.1 

E3 Decoction 0.22 ± 0.02 2.2 

E4 
Acetone 

Ultrasound 0.151 1.51 

E5 Maceration 0.377 3.77 

E6 
Methanol 

Ultrasound 0.656 6.56 

E7 Maceration 1.146 11.46 

E8 scCO2 SCFE 0.394 0.01 

E9 Acetone R-SCFE 0.885 0.03 

E10 

P. neochilus 

Water 

Infusion 0.26 ± 0.04 2.6 

E11 Microwave 0.15 ± 0.04 1.5 

E12 Decoction 0.22 ± 0.01 2.2 

E13 
Acetone 

Ultrasound 0.180 1.80 

E14 Maceration 0.125 1.25 

E15 
Methanol 

Ultrasound 0.702 7.02 

E16 Maceration 0.600 6.00 

E17 scCO2 SCFE 0.251 0.84 

E18 Acetone R-SCFE 0.417 1.39 

E19 

P. porcatus 

Water 
Infusion n/d n/d 

E20 Microwave n/d n/d 

E21 
Acetone 

Ultrasound 0.865 8.65 

E22 Maceration 0.872 8.72 

E23 
Methanol 

Ultrasound 1.566 15.66 

E24 Maceration 2.237 22.37 

E25 scCO2 SCFE 0.191 0.64 

E26 Acetone R-SCFE 0.868 2.89 

 

could be related to the ability of ethanoic solvents like methanol to disrupt the cellular  

wall with higher efficacy than other solvents. The higher extraction yield verified to 

maceration versus ultrasound extraction should be related to the longer extraction time 

employed. 

2.3.2. Chemical characterization 

The phytochemical composition of crude extracts was briefly analysed by HPLC-DAD, 

in order to identify some of the most prevalent chemicals present in their constitution 
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(Figure 2.5). Insights about P. madagascariensis constituents have been previously 

published about its aquaeous307, acetonic83 and methanolic72 extracts. 

This analysis confirmed the presence of some known compounds as the polyphenols 

caffeic acid (II.11), chlorogenic acid (II.12) and rosmarinic acid (II.2) and the abietane 

diterpenes 7α-acetoxy,6β-hydroxyroyleanone (II.13) and coleon U (II.14). The flavonoids 

rutin (II.15) and naringenin (II.16) were identified for the first time in these plant extracts 

and was found in both organic and aqueous extracts (Figure 2.6 and Table 2.2). The 

abietane diterpenes were more prevalent in organic extracts and should presumably be 

responsible for the higher antimicrobial and cytotoxic activities verified in those 

extracts. 

 

  

II.11 II.12 II.2 

   

II.13 II.14 

 

 

II.15 II.16 

Figure 2.5.  Chemical structure of identified phytochemicals from studied Plectranthus species extracts: Caffeic acid 

(II.11), chlorogenic acid (II.12), rosmarinic acid (II.2), 7α-acetoxy,6β-hydroxyroyleanone (II.13), coleon U (II.14) rutin 

(II.15) and naringenin (II.16). 
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Figure 2.6. HPLC-DAD fingerprinting of each of each extract at 10 mg/mL (5-20 min section; λ=270 nm). 

 

 Table 2.2. Detection of analysed compounds in each Plectranthus extract and characteristic retention times for the 

developed HPLC method (within parenthesis, expressed in minutes). 

Extract II.12 (6.54) II.11 (8.32) II.16 (10.14) II.15 (11.67) II.2 (12.43) II.13 (14.75) II.14 (15.44) 

1 + + - + + - - 
2 + + - + + - - 

3 + + - + + - - 

4 + + - + + + - 

5 + + - - + + + 

6 + + - - + - - 

7 + + - - + - - 

8 + + - - + + - 

9 + + - + + + - 

10 + + - + + - - 

11 + + - + + - - 

12 + + - + + - - 

13 + + - + + - - 

14 + + - - + - - 

15 + + - + + - - 

16 + + - - + - - 

17 + - - - - - - 

18 + + - - + - - 

19 - + + + + - - 

20 + + + + + - - 

21 - + + - - - - 

22 + + + - + - - 

23 - - - - - - - 

24 - + + - - - - 

25 + - - - - - - 

26 + + + - + - - 
 

Chlorogenic acid (II.12), Caffeic acid (II.11), Naringin (II.16), Rutin (II.15), Rosmarinic acid (II.2), 7α-acetoxy-6β-hydroxyroyleanone 

(II.13), coleon U (II.14); +: detected compound; -: not detected. 
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To our knowledge there were no data of HPLC-DAD analysis of P. neochilus. The 

extracts from P. neochilus were rich in polyphenol compounds, namely chlorogenic acid, 

caffeic acid and rosmarinic acid but the flavonoid rutin was also detected in each non-

acetonic extract. P. porcatus possess also the polyphenols chlorogenic acid, caffeic acid 

and rosmarinic acid in most of its extracts. The flavonoids naringin and rutin were 

present in aqueous extracts. Many of those compounds demonstrated both 

antimicrobial33 and antioxidant25 activities in previous studies and could be explain the 

activities verified for some of those plant extracts. 

2.3.3. Antimicrobial activity 

The initial screening of antimicrobial activity of Plectranthus species extracts was 

performed with the well diffusion assay. This simple procedure was used for the 

exclusion of inactive extracts from further antimicrobial studies. Extracts of P. 

madagascariensis and P. neochilus obtained using acetone and methanol were active in 

some Gram positive (Bacillus subtilis ATCC 6633, Mycobacterium smegmatis ATCC 607, 

Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228) and 

Gram negative (Klebsiella pneumonia ATCC 9997 and Pseudomonas aeruginosa ATCC 

27853) bacteria strains (Table 2.3 and Figure 2.7). No inhibitory activity was verified for 

Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922 and the two yeasts 

(Candida albicans ATCC 10231 and S. cerevisiae ATCC 9763) by any of the extracts tested. 

The extracts with relevant activity in well assay screening were subjected to the 

determination of the MIC by a microdilution procedure in the susceptible strains. 

Extracts from P. madagascariensis prepared using ultrasound (E4) and maceration (E5) 

in acetone and P. neochilus prepared using ultrasound (E13) in acetone showed potent 

activity against both Gram positive and Gram negative bacteria (MIC values ranging 

between 250-0.48 μg/mL) (Table 2.3). 

 

 

Figure 2.7. Well diffusion assay of extract E4 and E5 against K. pneumonia ATCC 9997 (left) and S. aureus ATCC 25923 

(right). Positive control (+): vancomycin; negative control (-): DMSO.  
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 Table 2.3. Well diffusion assay diameter (mm) of microbial growth inhibition in bioactive extracts. Extracts not 

presented were inactive against all tested strains. Positive controls: vancomycin (Gram positive bacteria); rifampicin 

(mycobacteria); norfloxacin (Gram negative bacteria); nystatin (yeasts).   

Microbial Strains 

Extract number 

Control 

E4 E5 E6 E7 E13 E14 E15 E16 

Gram positive strains 

B. subtilis ATCC 6633 24 20 12 11 15 14 11 10 31 

E. faecalis ATCC 29212 5 5 5 5 5 5 5 5 27 

M. smegmatis ATCC 607 26 26 23 17 20 15 15 20 33 

S. aureus ATCC 25923 24 20 7 8 8 8 8 8 24 

S. epidermidis ATCC 12228 10 25 - 13 15 11 - 5 20 

Gram negative strains 

E. coli ATCC 25922 5 5 5 5 5 5 5 5 33 

K. pneumonia ATCC 9997 25 22 5 5 5 5 5 5 25 

P. aeruginosa ATCC 27853 5 5 5 5 11 11 5 5 35 

Yeast strains 

C. albicans ATCC 10231 5 5 5 5 5 5 5 5 17 

S. cerevisiae ATCC 9763 5 5 5 5 5 5 5 5 22 

 

 

A qualitative evaluation of the antimicrobial activity within the extract components 

was also performed by bioautography. This technique is based on the separation of the 

extract components by TLC chromatography and evaluate their individual ability to 

inhibit the growth of a specific microorganism inoculated above the chromatogram. The 

extracts E4 and E13 were selected for this assay as the most active for P. 

madagascariensis and P. neochilus respectively. Due to its lack of antimicrobial activity, 

P. porcatus extracts were not included in this study. 
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The results showed clear inhibition zones as yellow areas against a red background 

(Figure 2.8). Those areas correspond in both extracts to areas with a lower retention 

factor (Rf) which considering the solvent system selected (fairly apolar), led as to 

conclude that the compounds responsible for the anti-staphylococcal activity were, in 

both extracts, those with more polarity features.  

 

  

Figure 2.8. Representative digital images of the TLC chromatogram and bioautography of the extracts E4 and E13 from 

P. madagascariensis and P. neochilus, respectively.  

2.3.4. Antioxidant activity  

The antioxidant activity was determined based on Plectranthus extracts ability to 

scavenge the free radical DDPH. Most methanol extracts showed moderate or high 

antioxidant activity, being the most active, the extracts of P. madagascariensis (E6 - 

89.0%; E7 - 64.8%), P. neochilus (E15 - 64.9%; E16 - 62.3%) and P. porcatus (E23 - 60.8%; 

 

Table 2.4. Minimum inhibitory concentrations (μg/mL) determined for the extracts with higher activity in the 

screening. Positive controls were: vancomycin (Gram positive bacteria); rifampicin (mycobacteria); norfloxacin 

(Gram negative bacteria). 

Microbial strains 
Extract number 

Control 
E4 E5 E13 

Gram positive 

B. subtilis ATCC 6633 3.91 62.5 125 <0.48 

M. smegmatis ATCC 607 31.25 62.5 15.62 <0.48 

S. aureus ATCC 25923 3.91 250 250 <7.81 

S. aureus CIP 106760 1.95 16.25 31.25 <0.98 

S. epidermidis ATCC 12228 7.81 62.5 62.5 <7.81 

Gram negative 

K. pneumonia ATCC 9997 <0.48 3.91 0.98 31.25 
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E24 - 65.9%) (Figure 2.9). The aqueous extracts of P. neochilus also showed relevant 

antioxidant values (62.5-68.9%) in contrast to aqueous extracts of P. madagascariensis 

(10.2-20.6%) and P. porcatus (3.2-17.3%). 

The higher antioxidant values verified for methanolic extracts along with the known 

presence of polyphenols in the plants of the Plectranthus genus led us to speculate that 

those extracts possess higher amounts of such compounds in the extracts obtained 

using methanol. This is in accordance with previous studies of Plectranthus plants that 

revealed the extraction of high amounts of polyphenols by the use of methanol as 

solvent69,72,83.  

The antioxidant activity is present in almost every higher plant, due to the plant ability 

to biosynthetize a wide range of secondary metabolites able to attenuate the oxidative 

stress damage. However, the extent in which a potent antioxidant activity in vitro 

translates into a useful modulator of the oxidative status in vivo is yet to be determined, 

being dependent on the compound absorption and its physiologic half-life305.    
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Figure 2.9. Antioxidant activity verified for each extract at 100 ng/mL using DPPH reduction method. Ascorbic acid in 

the same concentration was used as positive control. 
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2.3.5. Cytotoxicity screening 

The extracts cytotoxicity to cancer cells was evaluated in the MDA-MB-231 breast 

cancer cells. This cell line was selected due to its availability, ease of manipulation and 

lack of studies of Plectranthus plants extracts in this cell line. When used at 15 μg/mL, 

all extracts showed low cytotoxicity in this cancer cell line (Figure 2.10). The most 

cytotoxic extract was the one obtained by maceration in acetone of P. madagascariensis 

(E5), with a reduction in cell viability of 20.13%, followed by the extract obtained by re-

extraction in acetone of P. neochilus plant material previously extracted by SCFE (11.44% 

decrease in cell viability). The inhibitory concentration at 50% of the curve (IC50) was 

determined for the most active extract and a value of 64.52 μg/mL was found (Figure 

2.11). This extract can thus be considered moderately cytotoxic306 and was selected for 

further studies (described in Chapter 3). 

 

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
9

E
1

0

E
1

1

E
1

2

E
1

3

E
1

4

E
1

5

E
1

6

E
1

7

E
1

8

E
1

9

E
2

0

E
2

1

E
2

2

E
2

3

E
2

4

E
2

5

E
2

6 C

0

5 0

1 0 0

1 5 0

C
e

ll
 v

ia
b

il
it

y
 (

%
)

 

Figure 2.10. Cell viability of MDA-MB-231 cell exposed to 15 μg/mL of each extract for 48 h, assessed by the crystal 

violet staining assay. Positive control (C) was doxorubicin (5 μM). Results are expressed as mean ± SD from at least two 

independent experiments. 
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Figure 2.11. Concentration-response profile of P. madagascariensis acetonic maceration extract (E5) in terms of MDA-

MB-231 cells viability (48 h incubation, crystal violet staining assay). Results are expressed as mean ± SD from at least 

two independent experiments. 

2.4. Chapter conclusions 

Ethnopharmacological studies on traditionally used medicinal plants led to 

indications of the presence of bioactive compounds on those plants extracts. In this 

study the preparation and screening of plant extracts from three Plectranthus species 

led to the identification of some extracts with potent antimicrobial, antioxidant and 

cytotoxic activities. The acetonic extract from P. madagascariensis produced by 

ultrasound assisted extraction (E4) showed an antimicrobial activity comparable to 

reference antibiotics against S. aureus strains (MIC < 3.91 μg/mL), including a MRSA 

strain (MIC < 0.98 μg/mL), but also against B. subtilis, K. pneumonia and S. epidermidis. 

This extract possess in its constitution the known abietane diterpenes 7α-acetoxy,6β-

hydroxyroyleanone and coleon U which have been isolated from other Plectranthus 

species as antimicrobial compounds34. The presence of those compounds could explain 

the traditional use of this plant for the treatment of respiratory conditions related to 

infectious agents. The same plant methanolic ultrasound extract presented an 

antioxidant activity similar to the positive control ascorbic acid. As high yields of 

polyphenols are also present in this extract, the concomitant radical scavenging 

activities of both abietane diterpenes and polyphenols could explain this relevant 

antioxidant activity. The acetonic extract of P. madagascariensis, obtained by 

maceration (E5) showed the most relevant cytotoxic effects. This extract was also rich 
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in abietane diterpenes, namely 7α-acetoxy,6β-hydroxyroyleanone and coleon U. Those 

compounds have been identified as antiproliferative agents against some cancer cell 

lines40,82. Also coleon U was been characterized as a PKCδ activator which could explain, 

at least partially, its cytotoxic activity156. 

Extracts from P. neochilus and P. porcatus were also rich in polyphenols and some 

flavonoids but did not show activities as potent as those from P. madagascariensis. 

However, the interesting antimicrobial activity verified for the acetonic extracts of P. 

neochilus obtained by ultrasound could explain the traditional use for the treatment of 

infection-related symptoms as cough or chills. 

In order to better establish the compounds responsible for individual activities in the 

plant a bioassay guided fractionation of those plant extracts could help retrieve the most 

bioactive compounds in order to confirm if the identified compounds were the main 

responsible for the verified bioactivities in the crude extracts.  

Overall, this study helped to characterize the bioactivities and phytochemical 

composition of three plants traditionally used for medicinal or aromatic purposes.  
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Chapter III   
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3. Cytotoxic components from P. madagascariensis 

3.1. Introduction 

The Plectranthus genus have been a source of cytotoxic compounds as some forskolin 

derivatives, coleon U and parvifloron D (detailed in the subsection 1.3.1.). The presence 

of such compounds in Plectranthus plants, intensified our interest on the screening of 

this genus in the surge for new compounds with potential anticancer application.  

The screening of 26 extracts from three Plectranthus plants, described in chapter 2, 

supported the identification of organic extracts of P. madagascariensis as those with 

more potent bioactivities. The extract obtained by maceration acetone extraction was 

the most cytotoxic with an IC50 of 64.5 μg/mL in the MDA-MB-231 breast cancer cell line.  

In this chapter, the chemical composition of the P. madagascariensis extracts was 

detailed using HPLC-DAD and complementary spectroscopic methodologies being the 

major compounds identified and quantified. The cytotoxic effects of the pure 

compounds were evaluated in breast, lung and colon cancer cell lines and some 

structure-activity relationships were disclosed. Those results were used to establish 

potential connections between the chemical composition of the plant extracts and their 

therapeutic uses in skin cancer27. 

3.2. Experimental 

3.2.1. Chemicals and equipment 

Most of the laboratorial work described in this chapter was been done at the CBIOS 

facilities (Universidade Lusófona de Humanidades e Tecnologias). Some procedures 

were performed in collaborating institutions, namely Faculdade de Farmácia da 

Universidade de Lisboa (RMN studies), Faculdade de Farmácia da Universidade do Porto 

(cytotoxicity assays) and Institute for Biological Research “Sinisa Stankovic” at University 

of Belgrade, Serbia (cytotoxicity assays).  

3.2.1.1. Chemicals 

Extraction and chromatography solvents, namely n-hexane, ethyl acetate, methanol 

and acetone were from analytic grade and purchased from Sigma-Aldrich (Steinheim, 

Germany). Reverse osmosis water was obtained from a Millipore system (Millipore, MA, 

USA) system with a resistivity of 18.2 Ω cm at 25°C. Trichloroacetic acid was obtained 

from Panreac (Barcelona, Spain). HPLC reagents were from HPLC-grade (VWR Chemicals, 

Fontenay-sous-Bois, France) and were filtered through a 0.22 μm membrane (Vygon, 

Ecouen, France) before use. Dimethyl sulfoxide (DMSO) and absolute ethanol was 

supplied by Merck (Darmstadt, Germany). TLC plates (Kieselgel 60 GF254 2mm 

1.05554.0001) were purchased from Merck (Darmstadt, Germany) and filter paper nº5 

was obtained from Whatman (Maidstone, United Kingdom). Standard of rosmarinic acid 

was supplied by Sigma-Aldrich (Steinheim, Germany). Authentic standards of coleon U, 
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7α,6β-dihydroxyroyleanone  and 7α-acetoxy-6β-hydroxyroyleanone were obtained and 

fully characterized by Gaspar-Marques34. Fetal bovine serum and 

penicillin/streptomycin for cell culture were supplied by Sigma-Aldrich (Steinheim, 

Germany) and Dulbecco’s Modified Eagle’s medium was supplied by Biowest (Nuaillé, 

France). Doxorubicin was supplied by Sigma-Aldrich (Steinheim, Germany). 

3.2.1.2. Equipments 

The HPLC-DAD system was composed by an Agilent Technologies 1200 Infinity Series 

with diode array module (Agilent Technologies, Santa Clara, CA, USA) using a reverse 

phase (RP-18) HPLC column LiChrospher® 100 (Merck, Darmstadt, Germany). Other 

equipments used were hotplate magnetic stirrer (MC-8, Bunsen, Madrid, Spain), 

lyophilizer (Freezone 2.5 L, Labconco, Kansas City, USA), rotary evaporator (IKA RV06-

ML 1-B, Staufen, Germany) ultrasonic bath (Bandelin SONOREX RK 510H, Berlin, 

Germany), ultraviolet 254/366 nm lamp (CAMAG, Muttenz, Swithzerland) and weighting 

scales (KERN 770, KERN & Sohn GmbH, Balingen, Germany). Magnetic resonance 

experiments were performed on a INOVA-400 (Varian, Palo Alto, CA, USA). 

3.2.1.3. Plant material 

Plectranthus madagascarensis Benth., P. neochilus Schltr. and P. porcatus Winter & 

Van Jaarsv were cultivated in Parque Botânico da Tapada da Ajuda (Instituto Superior 

Agrário, Lisbon, Portugal) from cuttings obtained from the Kirstenbosch National 

Botanical Garden (Cape Town, South Africa). Voucher specimens were deposited in 

Herbarium João de Carvalho e Vasconcellos (ISA) with numbers 841/2007 for P. 

madagascariensis, number 570/2008 for P. neochilus and 109/2008 for P. porcatus. The 

plant material used in this study was collected between 2007 and 2008, dried at room 

temperature and stored protected from light and humidity. 

3.2.1.4. Cell lines 

The human breast cancer MDA-MB-231 cell line (Cailleau et al., 1974301) was obtained 

from ATCC and maintained at CBIOS at Universidade Lusofóna de Humanidades e 

Tecnologias (Lisbon, Portugal) facilities. 

Human estrogen-dependent breast carcinoma (MCF-7), colorectal carcinoma 

(HCT116) and non-small cell lung carcinoma (NCI-H460) cells were obtained from ATCC 

and cultivated at Faculdade de Farmácia da Universidade do Porto. 

MRC-5 normal human embryonal bronchial epithelial cells and NCI-H460 non-small 

cell lung carcinoma cell line were maintained at Institute for Biological Research “Sinisa 

Stankovic” at University of Belgrade (Belgrade, Serbia) and obtained from American 

Type Culture Collection (ATCC), Rockville, MD. From the original NCI-H460 was obtained 

the multidrug resistant non-small cell lung carcinoma cell line with P-glycoprotein 

overexpression by continuous treatment with stepwise increasing concentrations of 

doxorubicin (5-100 nM) for a period of 3 months in a procedure optimized by Pesic et 

al. 2006308. 
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3.2.1.5. Software editing  

Chemical structures were drawn on ChemBioDraw Ultra 12.0.2.1076. ChemStation 

was used for HPLC-DAD controller and data exportation. MestreNova was used for the 

RMN analysis and editing.  Statistical analysis and graphic design were archived using 

GraphPad Prism 6.01 for Windows 10. 

3.2.2. P. madagascariensis extraction 

The P. madagascariensis extraction with acetone or methanol by UAE or ME, by SCFE 

with scCO2 and R-SCFE with acetone, was performed in accordance to previously 

described in sub-section 2.2.1.  

3.2.3. HPLC-DAD profiling and identification of their major compounds 

The extract profiling was performed using an Agilent Technologies 1200 Infinity Series 

LC System (Santa Clara, CA, USA) coupled to a diode array detector (DAD) and processed 

using the ChemStation Software. From each dried extract, a sample was prepared in 

methanol (methanolic extracts) or acetone (other extracts) at a concentration of 20 

mg/mL. A 20 μL sample was injected to a LiChrospher® 100 RP-18 5 mm (4.0 x 250 mm) 

column (Merck, Darmstadt, Germany) and eluted in a gradient of methanol (A), 

acetonitrile (B) and 0.3% (w/v) trichloroacetic acid in ultrapure water (C) as follows: 0 

min, 15% A, 5% B and 80% C; 20 min, 70% A, 30% B and 0% C; 25 min, 70% A, 30% B and 

0% C; and 28 min, 15% A, 5% B and 80% C. The flow rate was established at 1 mL/min at 

room temperature. Solvents were filtered and degassed using a 0.22 μm membrane 

filter previously to the analysis. All analyses were performed in triplicate.  

The major peaks from each extract sample were identified by comparing the 

retention time and UV-vis spectra overlay with commercial standards (rosmarinic acid, 

Sigma-Aldrich, Steinheim, Germany) or authentic standards previously obtained from 

Plectranthus spp., namely 7α,6β-dihydroxyroyleanone, 7α-acetoxy-6β-

hydroxyroyleanone and coleon U (Gaspar-Marques et al. 2006)34. 

The calibration curves were constructed as a linear regression of the analyte 

concentration (mM) versus the average peak area. The limit of detection (LOD) and limit 

of quantification (LOQ) were determined to evaluate the sensitivity of the analysis 

corresponding to the concentrations of analyte that resulted in signal-to-noise ratios of 

3 (LOD) and 10 (LOQ) following the guidelines from ICH Q2(R1) on validation of analytical 

procedures309. 

The LOD and LOQ were calculated as:  
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Where σ correspond to the standard deviation of the response and S correspond to 

the slope of the calibration curve. The slope S is estimated from the calibration curve of 

the analyte. 

3.2.4. Isolation of 7α-formyloxy-6β-hydroxyroyleanone (III.3) 

An ultrasound acetonic extract of P. madagascariensis was obtained by sonicating 

100 g of plant material into 2000 mL of acetone for 2 h. This extract was treated with 

activated charcoal and immediately applied to a silica gel (Merck 60 gel 463934, 

Germany) chromatography column (30 g). Using a gradient of hexane and ethyl acetate, 

10 fractions were obtained and grouped by their similarity in TLC (silica gel 60 F254 plate 

0.2 mm thicknesses, Merck, Germany; using as eluent system hexane:ethyl acetate, 7:3). 

Compound III.3 was purified from the fraction eluted with hexane:ethyl acetate (95:5) 

by repeated elution (eluent system: hexane/ethyl acetate, 75:25 v/v) using a preparative 

chromatography (Merck 60 F254 20x20 cm 1.05715) followed by crystallization 

(methanol). 

3.2.5. Spectroscopic structure elucidation (III.3) 

Nuclear magnetic resonance (NMR) spectra were recorded on a Varian INOVA-400 

spectrometer equipped with a 5 mm inverse detection z-gradient probe. The 1H and 13C 

NMR spectra (respectively at 400 and 100 MHz) were measured at room temperature 

(22-23 °C) using CDCl3 as solvent. The 1H and 13C NMR chemical shifts are reported with 

respect either to the residual CHCl3 signal (δ7.25 and δ77.00, respectively). One-

dimensional 1H and 13C NMR spectra were acquired under standard conditions. The 

pulse programs of the COSY, HSQC and HMBC experiments were taken from the Varian 

software library. Homonuclear two-dimensional spectra (COSY) and inverse proton-

detected heteronuclear two-dimensional spectra (HSQC) were acquired in the phase-

sensitive mode and HMBC spectra were acquired in the absolute value mode. 

3.2.6. Cytotoxicity assays  

The cytotoxicity of the extracts and pure compounds was assessed using human 

breast cancer MDA-MB-231 cell line. The cells were cultured in DMEM supplemented 

with 10% fetal bovine serum, 100 U/mL penicillin and 0.1 mg/mL streptomycin. The cell 

viability was evaluated using the crystal violet staining assay304,310. Briefly, cells were 

inoculated on a 96-well microplate and incubated for 24 h. Cells were exposed to the 

testing solutions for 48 h, and afterwards the medium was discarded and the cells were 

washed with phosphate saline buffer, fixed with 96% ethanol and stained with crystal 

violet. The absorbance was read at 595 nm and cell viability was calculated as a fraction 

of the absorbance presented by non-treated control cultures. At least two independent 

experiments were performed, and four replicate cultures were used in each 

independent experiment. 

The cytotoxicity of pure compounds (III.1-III.5) on HCT116, MCF-7 and H460 cells lines 

was assessed after 48 h treatment using the sulphorhodamine B assay by the procedure 
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supervised by Saraiva311. Briefly, cells were cultured in RPMI-1640 with ultraglutamine 

medium from Lonza, supplemented with 10% fetal bovine serum from Gibco and 

maintained in a humidified incubator at 37 C with 5% CO2 in air. For the evaluation of 

cytotoxic effects of tested compounds, cells were plated in 96-well plates at a final 

density of 5.0 x 103 cells/well and incubated for 24 h. Then, cells were exposed to serial 

dilutions of each compound (from 1.85 to 150 μM), being the effect of the compounds 

analysed after 48h of incubation, using the sulforhodamine B (SRB) assay. Briefly, 

following fixation with 10% trichloroacetic acid from Scharlau, plates were stained with 

0.4% SRB and washed with 1% acetic acid. The bound dye was then solubilized with 10 

mM Tris Base and the absorbance was measured at 510 nm in a microplate reader 

(Biotek Instruments Inc., Synergy MX, USA).  

The cytotoxicity on NCI-H460 cells and its multidrug resistant selected strain, NCI- 

H460/R308, along with the normal cell line MCR-5 was evaluated in the concentration 

range of 2.5-50 μM by (3-(4,5)-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium (MTT) 

reduction assay by the procedure described by Pesic et al., 2013308,312.  Briefly, the cells 

were incubated with compounds at 8000 cells/cm2 for NCI-H460, 16,000 cells/cm2 for 

NCI- H460/R in RPMI 1640 supplemented with 10% FBS, 2 mM L-glutamine, 4.5 g/L 

glucose, 10,000 U/mL penicillin, 10 mg/mL streptomycin, 25 mg/mL amphotericin B 

solution at 37ºC in a humidified 5% CO2 atmosphere for 72 h. Afterwards, 100 ml of MTT 

solution (1 mg/mL) was added to each well and plates were incubated at 37ºC for 4 h. 

Formazan product was dissolved in 200 ml of DMSO and the absorbance of obtained 

dye was measured at 540 nm using an automatic microplate reader (LKB 5060–006 

Micro Plate Reader, Vienna, Austria). 

3.3. Results and discussion  

3.3.1. P. madagascariensis extraction  

The extraction yield was evaluated for all prepared extracts (mg of extract/g of dried 

plant) considering the combination of several extraction processes and solvents (Table 

3.1). The extracts with higher extractive yield were those obtained using methanol as 

solvent (E6, E7). This can be explained by the ability of ethanolic solvents to disrupt 

biologic membranes, favouring the diffusion of secondary metabolites to the bulk 

extract. Moreover, considering the relative polarity of the extraction solvents (dielectric 

constant, ε), it could be verified a trend for the more polar solvents to archive higher 

extraction yields (εmethanol > εacetone >> εscCO2). The SCFE method using scCO2 (E8) was the 

least efficient extraction technique with the lower yield. Due to this low extraction 

efficiency, a re-extraction of the remaining plant material (R-SCFE) was performed in 

order to extract the remaining non-extracted secondary metabolites. The reminiscent 

plant material of the SCFE was macerated in acetone for 3 weeks, resulting in a higher 

extraction yield when compared to SFE (Table 3.1). 
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Table 3.1. Total extraction yields of selected extracts and substance quantification in those extracts. 

Extract Solvent Technique 
Extraction yield 

(mg/g) 

Substance yield in extract (mg/g) 

III.1 III.2 III.3 III.4 III.5 

E4 Acetone UAE 1.51 29.85 4.62 1.64 1.04 15.52 

E5 Acetone ME 1.45 17.49 3.19 6.74 1.21 5.77 

E6 Methanol UAE 6.56 4.60 4.20 0.81 0.77 t 
E7 Methanol ME 11.96 26.44 1.05 0.24 t t 
E8 scCO2 SCFE 1.31 17.79 4.98 0.20 0.84 n/d 
E9 Acetone R-SCFE 2.95 50.52 0.33 0.17 n/d n/d 
 
ME – Maceration extraction; UAE – Ultrasound assisted extraction; SCFE – Supercritical fluid extraction; R-SCFE – Re-extraction of SCFE remaining 
plant material. t – traces; n/d – not detected.  

  

3.3.2. HPLC-DAD extract profiling and identification of major compounds 

Previous phytochemistry studies on the Plectranthus genus revealed the presence of 

polyphenols and diterpenes as the most frequent secondary metabolites (as reviewed 

previously in section 1.2.2). These compounds have characteristic absortion parterns in 

the UV spectra zone due to the presence of conjugated carbonyl groups (270 nm), 

aromatic rings (280 nm) and phenolic groups (330 nm). For this reason measurements 

at 270, 280 and 330 but also the reference 254 nm were selected to monitoring the high 

peak resolution of extracts profile chromatograms (Figure 3.1).  

The peak eluted at 10.47 min was presented in all extracts and exhibited a UV 

spectrum with a characteristic maximum absorption (λmax) at 330 nm and at 265 nm. 

This could be associated with a phenolic compound with aromatic rings36,307. After co-

elution with rosmarinic acid (III.1) an overlay of both UV spectra and retention time was 

verified being this peak positively identified as rosmarinic acid (Figure 3.2). This 

polyphenol has been found in numerous Plectranthus species and was previously 

identified in P. madagascariensis72,307.  

The peaks obtained at the average retention times of 17.80, 19.40 and 19.80 min 

possess the typical royleanone-type abietane UV spectra with λmax at 272 nm and a 

secondary  broad λmax between 300 and 500 nm56. This is in accordance to other 

phytochemical studies of Plectranthus species55. The co-elution of extracts with 

authentic samples of 7α,6β-dihydroxyroyleanone (III.2) and 7α-acetoxy-6β-

hydroxyroyleanone (III.4) demonstrated the overlay of the UV spectra at 17.80 and 

19.80 min (Figure 3.2). This allowed the identification of the peak at 17.80 and 19.80 

min as corresponding to compound III.2 and III.4, respectively (Figure 3.3). 

A major peak eluted at 21.08 min presented a UV spectrum with λmax at 259, 283, 331 

and 383 nm, which supported the presence of a conjugated carbonyl with an aromatic 

ring (Figure 3.2). These spectral characteristics were comparable to those verified for 

coleon U83, a diterpene often found in Plectranthus species. The co-elution of the 

extracts with authentic sample of coleon U demonstrated an overlay of the UV spectra 

(Figure 3.2). This led to the attribution of the 21.13 peak to coleon U (III.5) (Figure 3.3). 
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Figure 3.1. HPLC representative chromatogram from P. madagascariensis extracts E4-E9 (270 nm). 
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Figure 3.2. Overlay of sample extracts and a standard solution of rosmarinic acid (III.1), 6α,7β-dihydroxyroyleanone 

(III.2), 7α-acetoxy-6β-hydroxyroyleanone (III.4) and coleon U (III.5). Full line corresponds to 1 mg/mL of each standard 

and discontinued line to the corresponding component in the sample extracts. 

 

   

III.1 III.2 R=H III.5 

 III.3 R=CHO  

 III.4 R=COCH3  

 

Figure 3.3. Chemical structure of the compounds III.1-III.5 quantified from P. madagascariensis organic solvent extracts: 

rosmarinic acid (III.1); 7α,6β-dihydroxyroyleanone (III.2); 7α-formyloxy-6β-hydroxyroyleanone (III.3); 7α-acetoxy-6β-

hydroxyroyleanone (III.4); coleon U (III.5). 
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The latter compound was reported to have some intrinsic instability, being easily 

converted to the oxidized form coleon U-quinone (III.6)56,83. This degradation product 

was also detected in some P. madagascariensis extracts as a trace at the retention time 

of 19.19 min. The periodic analysis of an authentic sample of III.5 demonstrated the 

gradual increase of the peak at retention time 19.19 min with respective reduction of 

the peak at 21.08 min, which represents a gradual conversion of the compound III.5 into 

the oxidized form III.6. (Figure 3.4). 
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Figure 3.4. Proposed mechanism of coleon U (III.5) degradation on coleon U-quinone (III.6) and evidence of 

decomposition over time, followed by HPLC. Rt = retention time.  

 

Kubínová et al. was previously studied the methanolic extract of P. madagascariensis 

which resulted in the identification of rosmarinic acid, 7β,6β-dihydroxyroyleanone, 7β-

acetoxy-6β-hydroxyroyleanone and coleon U-quinone as the major components of that 

extract72. However, the full spectroscopic elucidation of those compounds was not 

accomplished by those authors.  

3.3.3. Isolation of 7α-formyloxy-6β-hydroxyroyleanone (III.3) 

The ultrasound acetone extract of P. madagascariensis yielded 480 mg (0.48% 

(w/w)).  The extract was subjected to active charcoal to eliminate the high content in 

chlorophylls plant pigments and the procedure was monitored by TLC.  

Compound III.3 was purified from the fraction eluted with hexane:ethyl acetate 

(95:5) by repeated elution in a preparative chromatography yielding 6.1 mg (1.27% 

(w/w)) of yellow needles after crystallization. The purified compound III.3 showed a 

retention time and UV-spectra in HPLC-DAD that overlay the peak detected in extracts 

at 19.40 min.  

3.3.4. Spectroscopic characterization of III.3 

The 1H NMR spectra of III.3 was very similar to that of III.437. The main differences 

were the absence of the signal at δ 2.02 (s, 3H) corresponding to the methyl protons of 

l (n m )

2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
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the acetoxyl group at C7 in III.4 and the presence of a distinct doublet at δ 8.05 (J = 1.2 

Hz) which might correspond to an acidic proton from a secondary formyloxyl group31 

(Table 3.2) . This observation suggested the substitution of the 7α-acetoxyl group of III.4 

by a 7α-formyloxyl in III.3, which was confirmed by the literature31 and extensive NMR 

studies (1H and 13C NMR, COSY, HMBC and HMQC) (Table 3.2). The compound III.3 was 

identified as 7α-formyloxy-6β-hydroxyroyleanone, which was previously isolated from 

P. hadiensis80 and P. myrianthus56. This was, to our knowledge, the first isolation of this 

compound from P. madagascariensis and the first fully spectroscopic characterization 

of this compound (1H and 13C NMR). 

 

Figure 3.5. Structure of 7α-formyloxy-6β-hydroxyroyleanone (III.3). 

 

Table 3.2. NMR data of compound III.3 in CDCl3 (400 MHz).  

C 13C (ppm) 1H (m, J) (ppm) COSY (1H x 1H) HMBC (1H x 13C) 

1 38.49 1.19 (s)  2.64 (1β)  
  2.64 (d, 12.9) 1.19 (1α)  
2 19.09 1.50 (m)* 1.19 (1α)  
  1.85 (d, 4.5)   
3 42.45 1.20 (m)*   
  1.50 (m)*   
4 33.83    
5 49.80 1.38 (s)   21.71 (10) 
6α 67.25 4.37 (m) 5.80 (7Hβ)  
7β 68.42 5.80 (m) 4.37 (6Hα)  
8 136.45    
9 150.38    
10 38.79    
11 183.34    
13 124.35    
15 24.34 3.17 (qi, 14.1; 7.1) 1.21 (16Me); 1.24 (17Me) 124.35 (13) 
16 33.85 1.24 (d, 7.1) 3.17 (15H)  
17 20.01 1.21 (d, 7.1) 3.17 (15H) 124.35 (13) 
18 33.57 0.96 (s)  24.06 (19); 42.38 (3); 49.80 (5) 
19 23.97 1.25 (s)  33.57 (18); 42.38 (3); 49.80 (5) 
20 21.71 1.62 (s)  38.49 (1); 49.8 (5) 
6-OH 33.83 2.31 (t, 7.5)   

12-OH 151.13 7.20 (m, 3.1)   

CHO 159.64 8.04 (d, 1.2)   
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3.3.5. HPLC-DAD quantification of major compounds 

The quantification of the major compounds in P. madagascariensis extracts was 

based on the validated calibration curves for the main polyphenol rosmarinic acid (III.1) 

and the main abietane diterpenes 7α,6β-dihydroxyroyleanone (III.2), 7α-formyloxy-6β-

hydroxyroyleanone (III.3), 7α-acetoxy-6β-hydroxyroyleanone (III.4) and coleon U (III.5) 

(Table 3.3). Linear responses and high sensitivity were obtained for all compounds. 

 

Table 3.3. Linear regression analysis parameters for the proposed HPLC-DAD method 

Analyte λ (nm)a RT (min)b Crange (mM) Regression equation R2 LOD LOQ 

III.1 330 10.47 ± 0.065 0.1 – 1.5 y = 9733.1x - 378.8 0.999 0.001 0.003 

III.2 280 17.80 ± 0.022 0.02 – 0.5 y = 85490,4x - 155,2 0.998 0.001 0.002 

III.3 280 19.40 ± 0.014 0.04 – 0.26 y = 40748x - 245.93 0.999 0.001 0.004 

III.4 280 19.80 ± 0.020 0.02 – 0.27 y = 65383x – 204 0.997 0.003 0.009 

III.5 330 21.13 ± 0.004 0.02 – 0.12 y = 82084x + 818.47 0.987 n/d n/d 

a Wavelength used for the calibration curve; b Retention time of the compound as average of 12 samples ± standard deviation; n/d – not determined. 

 

Rosmarinic acid (III.1) was the secondary metabolite present in higher yields in the 

extracts A-D and F with yields ranging from 4.60 to 50.52 mg/g (Table 3.1). This finding 

is in agreement with the described abundance of this polyphenol in other Plectranthus 

species36. High yields of royleanone-type diterpenes were found in all extracts, but 

particulary in the acetonic extracts (Table 3.1). Coleon U (III.5) was the diterpene 

quantified in higher yields (5.77-15.52 mg/g), followed by 7α-formyloxy-6β-

hydroxyroyleanone (III.3) (6.74-0.17 mg/g), 7α,6β-dihydroxyroyleanone (III.2) (0.33-

4.98 mg/g) and lastly 7α-acetoxy-6β-hydroxyroyleanone (III.4) (0.11-1.21 mg/g).  

The cytotoxic effects of the P. madagascariensis  extracts have been previouly 

evaluated in the MDA-MB-231 cancer cells and those results presented in chapter 2. The 

quantification of the major compounds adds new information that could help explain 

the differences in the cytotoxicity of those extracts. The higher content in diterpenoids 

seems to be related to the higher cytotoxic effect as verified in by the extract E5 which 

had the higher combinatory yield of coleon U and royleanone-type abietane diterpenes 

of all the extracts prepared (Table 3.1). The royleanone-type compounds are known to 

have cytotoxic activities namely against breast cancer cell lines39,40. Aditionally, coleon 

U (III.5) was described in literature as a potent cytotoxic, active against breast, leukemia 

and melanoma cancer cell lines39,40,82,155. Those P. madagascariensis components would  

contribute for the cytotoxicity verified in this plant extracts. However, the extract E4, 

with the highest yields of compounds III.4 and III.5 do not correspond to the extract with 

the highest cytotoxicity. This can be explained by synergistic effects between the extract 

elements. The most cvytotoxic extract (E5) present a lower yield of rosmarinic acid 
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compared to other extracts. This compound is known to be a potent antioxidant58, and 

some studies related the cytotoxic effect of abietane diterpenes possessing quinone 

methide moieties to the induction of radicalar reactions112,113. Those factors could let us 

speculate a potential antagonistic effect between antioxidant polyphenols and quinone 

methide diterpenes. 

3.3.6. Cytotoxicity of the pure compounds (III.1-III.5)  

The cytotoxicity of compounds III.1-III.5 was tested in breast cancer (MDA-MB-231 

and MCF-7), colon cancer (HCT116), non-small cell lung cancer (NCI-H460) and normal 

lung bronchial (MCR-5) cell lines (Table 3.4). Those results showed growth inhibition 

effects in most cancer cell lines by all the abietane diterpenes. It is especially relevant 

the high selectivity of the royleanones III.2 and III.4 based on the comparison of GI50 of 

a cancer (NCI-H460) and normal lung cell line (MCR-5). Also, these two royleanones 

showed similar growth inhibition of the NCI-H460 cancer cell line and of its multidrug 

resistant variant (NCI-H460/R) which overexpress the multidrug resistance protein 1 

(MDR1) (also known as P-glycoprotein)308. This is a strong indication that compounds 

III.2 and III.4 were not substrates for such efflux pumps. 

The growth of MDA-MB-231 cancer cells was not particularly affected by the P. 

madagascariensis abietane diterpenes. This cell line is a highly metastatic triple negative 

breast cancer cell line, not displaying estrogenic receptors (ER), progesterone receptors 

(PR) or human epidermal growth factor receptor 2 (HER2), and thus, being clinically 

difficult to target313. It was known that the ER negative cells have a higher expression of 

PKC classic isoforms when compared to ER positive cell lines314,315. The upregulation of 

the classic isoform PKCα promotes the invasiveness and metastasis formation315–317 

along with increased drug resistance318 in breast cancers. On the other hand, the PKCδ 

activation supports both prosurvival319 and proapoptotic functions in breast cancer 

cells320,321. Also, some abietane diterpenes (coleon U156 and a benzyloxy derivative of 

7α-acetoxy,6β-hydroxyroyleanone322) have demonstrated to exert proapoptotic effects 

by the specific activation of the PKCδ. In this cell line, where its verified an 

overexpression of classic PKC isoforms, in detriment to new PKC isoforms, the 

preferential mechanism of apoptosis induction by coleon U (and eventually of other 

abietanes) by activation of PKCδ should be less effective, which justifies a lower growth 

inhibition of this cell line by such compounds. 

There have been demonstrated some relationship between the PKC overexpression 

and the drug resistance by MDR1. Following the treatment with the PKC activator TPA, 

a cellular increase of the MDR1 expression was verified, which was suppressed by the 

use of a PKC inhibitor (staurosporine)323. Also, the use of a PKC inhibitor, bryostatin 1, 

potentiate the cytotoxic effects of anticancer drugs transported by efflux pumps as 

vincristine, by the reduction of MDR1 expression324. Those findings could be especially 

relevant in the case of abietane diterpenes not transported by MDR1, in which the PKC 

activation and the secondary MDR1 overexpression shouldn’t increase the cell 

resistance to those compounds. 
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Table 3.4. Growth inhibitory effects of the P. madagascariensis major compounds in different cell lines. 

 Cell line / GI50 (µM) 

MDA-MB-231 MCF-7 HCT116 NCI-H460 NCI-H460/R MCR-5 SI# 

III.1 ˃ 100 nt nt ˃ 100 ˃ 100 ˃ 100 - 

III.2 ˃ 100 26.0 ± 0.6 ≥ 50 25 ± 2 25 ± 2 91 ± 13 4.3 

III.3 ˃ 100 7.9 ± 0.8 7.9 ± 1.2 14.9 ± 2.9 nt nt - 

III.4 ˃ 100  6.4 ± 0.4* - 2.7 ± 0.4 3.1 ± 0.4 8.6 ± 0.4 3.2 

III.5 46.9  5.5 ± 0.8* - 3.0 ± 0.2* nt nt - 

#Selectivity index. SI= GI50 (MCR-5)/GI50 (NCI-H460); nt – not tested; *Previously published results from our group39. 

 

3.4. Structure activity relationships 

The conjugation of the new data on abietane diterpene cytotoxicity (Table 3.4) with 

other studies on the cytotoxicity of this compound classes (Table 3.5) allowed the 

prospection of some structure-activity relationships (SAR). The compounds III.2-III.4 

present as main difference the polarity of the group 7α (Figure 3.3). In this SAR, a clear 

tendency could be verified for the increasing cytotoxicity with the higher lipophilicity of 

the 7α substituent. The same tendency was verified between horminone (Figure 3.6, 

R1=H, R2=OH and R3=OH) and its more cytotoxic 7α-acetoxy derivate (Figure 3.6, R1=H, 

R2=OAc and R3=OH)325,326.  

The bibliographic exhaustive surge of reported cytotoxicity of royleanone-type 

compounds, bearing a p-benzoquinone moiety in the C-ring (Figure 3.6), additional 

tendencies could be explored (Table 3.5). Burmistrova et al. (2013) studied the cytotoxic 

effects from a series of derivatives of the 7α-acetoxy-6β-hydroxyroyleanone (III.4)40. The 

overall compounds affect the cell proliferation with an intensity apparently cell-type 

dependent. When such compounds were displayed by their log P value, a strong 

tendency for higher cytotoxic effects was verified for log P values between 2 and 5.5.  As 

the “Lipinski rule of 5”, establish that the log P for an oral bioavailable compound should 

be under 5, the useful compounds must be considered in the 2-5 range of log P327. The 

only exception for this trend was royleanone (Figure 3.6, R1=H, R2=H and R3=OH) that 

showed only slight cytotoxic effects in some cell lines40,325,328. This could indicate that 

the presence of a lipophilic substituent was needed at position 6 and/or 7 for the 

cytotoxic effects to take place. However, the royleanone 6,7dehidro derivative has 

showed some potent cell-type-specific cytotoxic effects329–331. This way, the presence of 

an electron donating group at position 6 or 7 seems necessary for the cytotoxicity. 
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Figure 3.6. Structure and proposed SAR of 6,7,12-substituted royleanone-type abietane diterpenes based on data 

compilated at Table 3.5. 

3.7. Chapter conclusions 

This chapter study presented the preparation of several P. madagascariensis 

extracts, which have been screened for their cytotoxic activity. The main compounds in 

these extracts were identified by HPLC-DAD and the compound III.3 was isolated and 

spectroscopically characterized. The acetonic maceration extract (E5) showed high 

yields of abietane diterpenes, presenting also the highest cytotoxic effect in MDA-MB-

231 breast cancer cells (IC50 of 63.9 µg/mL). The observed cytotoxic activity may be 

justified by the presence of known cytotoxic diterpenes, namely 7α,6β-

dihydroxyroyleanone (III.2, 3.19 mg/g), 7α-formyloxy-6β-hydroxyroyleanone (III.3, 6.74 

mg/g), 7α-acetoxy-6β-hydroxyroyleanone (III.4, 1.21 mg/g) and coleon U (III.5, 5.77 

mg/g). To the best of our knowledge this is the first report of the presence of compounds 

III.2-III.5 in P. madagascariensis. The complete 13C RMN data for compound III.3 is also 

presented for the first time. 

The compounds III.1-III.5 were tested for their individual cytotoxic effects in a battery 

of cell lines and all abietane diterpenes originated the growth inhibition of some cancer 

lines. The royleanones III.2 and III.4 displayed a high selectivity toward cancer cells and 

were not target of efflux proteins overexpressed in the NCI-H460/R multidrug resistant 

cell line. An initial SAR of the cytotoxicity of 6,7 and/or 12-substituted royleanone 

abietanes was established with a clear trend for log P values between 2 and 5 

corresponding to compounds with improved cytotoxic effect. The whether those 

structural alterations correspond to an improved fitting on the target or the cytotoxic 

activity was instigated by favorable log P for the membrane crossing is still to be 

answered. 

Overall, compounds III.2-III.5 may be considered a very promising compound for 

further studies in order to fully understand the potential of the abietane diterpenoids 

as chemopreventive, chemoadjuvancts or chemotherapeutic agents. 
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4. Antibacterial phytosomal formulations 

4.1. Introduction 

 The antibiotic resistance problem had been recently highlighted by key organizations 

including the World Health Organization119 and the World Economic Forum332 as a major 

concern for the humanity in the following years. Bacteria can acquire resistance to 

antibiotics by gene mutations, horizontal gene transfer or they could be intrinsically 

resistant to some antibiotic classes333. The most relevant predisposal factor of non-

intrinsic resistance is considered to be the worldwide misuse of antibiotics, including 

medical overprescribing practices, patient self-medication and use as veterinary 

growing stimulants334,335. Such issues could originate a life threating situation in the case 

of hospital associated infections (i.e. septicaemia, pneumonia), but can also complicate 

the treatment of apparently simple situations as a superficial wound. In recent years, 

the arise of some microorganisms with resistance to the traditional topical treatments, 

namely mupirocin336 and fusidic acid337, have shown to be a public health problem, 

namely in the management of both acute or chronic skin and soft tissue infection338.  

The skin has protection and barrier functions, that could be compromised by the 

occurrence of physical trauma or wounding. The following skin repair processes intend 

the complete reestablishment of the damaged tissue integrity. However, this processes 

could be impaired if microbial infection occurs. It is often recommended by dermatology 

guidelines to use topical antibiotic agents for the prophylaxis of wound bacterial 

infection339,340. Also, in the wound environment often occur the formation of biofilms 

which enhance the bacterial tolerance to topical antibiotics341. Such reasons highlight 

the need for new therapeutic alternatives for topical antibacterial treatment.  

The screening performed by Weckesser and collaborators (2009)342, suggested that 

natural extracts from plants as Gentiana lutea, Harpagophytum procumbens, Boswellia 

serrata, Usnea barbata, Rosmarinus officinalis and Salvia officinalis could be effective in 

controlling common skin pathogenic agents. Following such results, Elston et al.338 

suggested that such natural compounds could be alternative options for topical skin 

antimicrobial treatments. Also the concomitant use of natural products, as essential oils, 

with traditional antibiotics was suggested to be an effective strategy in reverting the 

bacterial resistance343.  

The investigation presented in chapter 2. showed that the ethnomedicinal use of P. 

madagascariensis as wound disinfectant could be justified by the presence of several 

antibacterial oxygenated abietane diterpenes and some polyphenols. One of the 

extracts (E4) obtained in that study, showed outstanding activity against some of the 

typical skin bacteria, as S. epidermidis and S. aureus, including a methicillin-resistant 

strain. Considering those results along with the need of new antimicrobial agents and 

the acceptance that natural products could be a reliable alternative to traditional 

antibiotics, it is proposed the development of an optimized antibacterial system for 

possible topical application. Based on some reports344, we state that an ideal 

antibacterial topical formulation should be (i) active against the expected skin 



 

 

92 

 

pathogens and including MDR strains to prevent the emergence of superinfections; (ii) 

non-toxic for keratinocytes at the concentration of activity; (iii) the formulation 

elements should preferentially have synergic effects and different modes of action; (iv) 

should not contain any antimicrobial that would be used parentally; and (v) should not 

occur systemic toxicity caused by the absorption of the antibacterial formulation 

through the intact skin or wound.  

The use of nanotechnology has been also suggested as an additional resource for the 

improvement of antibacterial activityp345,346. Their favourable effects occur through 

mainly three mechanisms: by incorporating different components with synergic or 

concomitant antibacterial effects347,348; by overcoming existing mechanisms of 

resistance favouring increased uptake348 and disrupting the biofilm formation347; and by 

drug targeting assuring higher concentrations of the drug to the infection site348.  

In order to test the feasibility of Plectranthus extracts encapsulation in polymeric 

matrixes, a preliminary study focused on the production of alginate beads containing an 

antioxidant and anti-S. epidermidis microwave aqueous extract of P. madagascariensis, 

which was selected from a screening of 5 Plectranthus plants (annex 10)307. In this study, 

the obtained particles were spherical, homogenous in colour and particle size and 

showed very high encapsulation efficiency of the main extract component, rosmarinic 

acid. The long-term stability studies also demonstrated the viability of this system to the 

improvement of the stability of this extract and, consequently, of its biological activities. 

These properties may be beneficial for the healing. 

This initial approach in the encapsulation of P. madagascariensis extracts, led as to 

test the phytosome technology as strategy for the improvement of antibacterial activity 

of Plectranthus components. Phytosomes were mainly known for their uses in oral 

formulations due to its improvement of bioavailability. Although, considering the 

phytosome high phospholipid content, it could exert a nourishing effect in the skin, and 

also being highly biocompatible with the skin layers could increase the penetration of 

bioactive compounds to inner layers of the skin and thus intensifying the therapeutic 

outcome349.  

Some excellent reference texts have focused on the basis of transdermal penetration 

of drugs and particulate materials350,351. The free drug percutaneous penetration 

potential trough skin was mainly characterized based on the  maximum flux (Jmax)352 

being this parameter related in many mathematic models to the log of octanol solubility 

(log So), molecular weight, octanol water partition coefficient (o/w coefficient) and 

melting point352,353.  

Micro- and nanoparticle could penetrate the stratum corneum by three main 

mechanisms: particles smaller than 5-7 nm through lipidic intercellular route; particles 

smaller than 36 nm through aqueous pores; and larger particles (up to 21 µm) through 

transfollicular route but only offering a negligible contribution (less than 0.1% of total 

skin surface) to the overall permeation354. As most phytosome possess an average 

particle size higher than 50 nm it is unlikely that a high degree of transdermal 

permeation occurs through the epidermis layers for those particles, being the main 
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mechanism of transdermal penetration the intrafollicular route. The eventual 

permeation of phytosomes would also be affected by factors as superficial charge, pKa, 

o/w partition coefficient, particle shape and deformability, composition and stability of 

the particle could influence the permeation ability of such nanoparticles354. Those 

factors also have influence in the physical stability and aggregation upon contact to skin 

medium maintaining this way the maximum potential for permeation. Another factor 

was the interactions with skin components which were influenced by the particle 

charge, the formation of dipole, hydrophobic and/or hydrogen-bond interactions351. 

Those factors stated that phytosome could not be appropriated for transdermal 

delivery, although, Das and collaborators demonstrated that their rutin phytosomes 

with an average size of 1.2 µm presented a 24h-permeation of the stratum corneum 

about 60% higher when compared to the lipophilic free drug355. Being due to the higher 

permeation or due to a still unidentified mechanism, there was an evident improvement 

of topical activity of some natural products as boswellic acid (anti-inflammatory)247 and 

curcumin (antioxidant)246 with advantage over their equivalent niosome and liposome 

formulations246,247. The functionalization of phytosomal systems seems a valid strategy 

for the improvement of the intended biologic activity. This is highlighted by the 

Calendula extract phytosomes associated to gold nanoparticles (AuNP) with antioxidant 

and wound healing effects superior to the equivalent phytosome formulation257. 

Chitosan is a semi-natural polysaccharide being the most important derivative of 

chitin (poly-β-(1→4)-N-acetyl-d-glucosamine) from which is obtained by alkaline or 

enzymatic deacetylation356. Chitosan is weak base, becoming soluble in acidic media by 

the protonation of -NH2 group on the carbon 2 of the d-glucosamine polysaccharide 

(Figure 4.1). The combination of its aqueous solubility with the natural cationic character 

finds it many applications in the production of viscous solutions, gels, films and fibres. 

Chitosan matrixes have shown interesting antimicrobial properties against a wide range 

of bacteria357,358. Such biologic activity was currently accepted to be more bacteriostatic 

rather than bactericide359 and resulting from the independent or simultaneous 

contribution of three mechanisms: 1) interaction between the positively charged 

chitosan molecules and the negatively charged bacterial membrane, involving a cross-

linkage between the chitosan protonated groups and the anions on the bacterial surface 

and changes in membrane permeability with possible cell rupture359,360; 2) inhibition of 

the mRNA and protein synthesis via the penetration of chitosan into the nuclei of the 

 

 

 

Figure 4.1. Structural representation of the chitosan polymer. Depending on the deacetylation degree, R could 

represent be H (amine) or COCH3 (amide). A more deacetylated sample is richer in H substituents.   
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microorganisms359; 3) the formation of an external barrier, chelating metals and led to 

the suppression of essential nutrients to microbial growth361. Such versatile 

antimicrobial mode of action led some groups to use those properties for the production 

of nanocomposite antibacterial films, wound coating materials362 and antibacterial 

nanoparticles363. 

Chitosan nanoparticles have been obtained mainly by the spontaneous formation of 

complexes between chitosan and polyanions as the tripolyphosphate (TPP) or dextran. 

The better established method for those nanoparticle preparation is internal gelation. 

Is such method, a chitosan solution in acetic acid is prepared and extruded dropwise 

into an aqueous solution of magnetically stirred TPP.  

The insights through which the cross-linking occurs were still badly understand with 

few mechanistic approaches made so far. Various authors suggest a simplified model in 

which the anionic groups of TPP form stable interactions with chitosan amine groups364–

366.  A recent study demonstrated that could exist simultaneously three types of primary 

ionic cross-linking interactions between TPP and chitosan oligomers designed H-links, 

M-links and T-links. However, due to the highest interaction energies and the availability 

of free spatial area for their occurrence, H-links were proposed as the most frequent 

cross-linking types367. 

The aim of this chapter is to prepare phytosomes and optimize the production 

method. The selection of both formulation and process parameters will be done 

according physic-chemical and biologic characterizations.   

4.2. Experimental 

4.2.1. Chemicals and equipment 

Most of the laboratorial work has been performed at the CBIOS facilities 

(Universidade Lusófona de Humanidades e Tecnologias). Some procedures were 

performed in collaborating institutions, namely Faculdade de Farmácia da Universidade 

de Coimbra (animal experiments), Faculdade de Ciências da Universidade de Lisboa 

(AFM, DSC, DRIFTS and SEM studies) and Institute for Biological Research “Sinisa 

Stankovic” at University of Belgrade, Serbia (cytotoxicity assays).  

4.2.1.1. Chemicals 

Phosphatidylcholine (48% purity from soybean), cholesterol, acetic acid, sodium 

laureth sulfate, carboxymethyl cellulose, sodium tripolyphosphate (technical grade 

85%) and chitosan (low molecular weight) were purchased from Sigma-Aldrich 

(Steinheim, Germany). Extraction and reaction solvents, namely dichloromethane, 

ethanol and acetone were from analytic grade and purchased from Sigma-Aldrich 

(Steinheim, Germany). Reverse osmosis water was obtained from a Millipore system 

(Millipore, MA, USA) system with a resistivity of 18.2 Ω cm at 25°C. Trichloroacetic acid 

was obtained from Panreac (Barcelona, Spain). HPLC reagents were from HPLC-grade 

(VWR Chemicals, Fontenay-sous-Bois, France) and were filtered through a 0.22 μm 

membrane (Vygon, Ecouen, France) before use. Dimethyl sulfoxide (DMSO) was 
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supplied by Merck (Darmstadt, Germany) was supplied by Sigma-Aldrich (Steinheim, 

Germany). Filter paper nº5 was obtained from Whatman (Maidstone, United Kingdom).  

An authentic standard of 7α,6β-dihydroxyroyleanone was obtained and fully 

characterized by Gaspar-Marques34. Mueller-Hinton broth was supplied from Sigma-

Aldrich (Steinheim, Germany).  Vancomycin was supplied by Sigma-Aldrich (Steinheim, 

Germany). Polydimethylsiloxane (PDMS) membranes with a thickness of 75 μm were 

kindly donated by Dow Corning Europe S.A (Seneffe, Belgium). 

4.2.1.2. Equipments 

The HPLC-DAD system was composed by an Agilent Technologies 1200 Infinity Series 

with diode array module (Agilent Technologies, Santa Clara, CA, USA) using a reverse 

phase (RP-18) HPLC column LiChrospher® 100 (Merck, Darmstadt, Germany). Other 

equipments used were hotplate magnetic stirrer (RT15 power, IKA, Staufen, Germany), 

centrifuge (Z36 HK HERMLE Labortechnik, Wasserburg, Germany), lyophilizer (Freezone 

2.5 L, Labconco, Kansas City, USA), particle size and zeta potential analyser (Delsa Nano 

C, Coulter, CA, USA), rotary evaporator (IKA RV06-ML 1-B, Staufen, Germany) ultrasonic 

bath (Bandelin SONOREX RK 510H, Berlin, Germany) and weighting scales (KERN 770, 

KERN & Sohn GmbH, Balingen, Germany). The atomic force microscopy (AFM) was 

performed in a Multimode Nanoscope IIIa (Digital Instruments, Veeco, Cambridgeshire, 

UK) and the scaning electron microscopy (SEM) was performed in a 5200LV (JEOL Ltd., 

Tokyo, Japan). Infrared spectroscopy experiments were performed in a Nicolet 6700 

(Thermo Fisher Scientific, Waltham, MA, USA) while DSC experiments were performed 

in a DSC 7 with TAC 7/3 controller (PerkinElmer, Waltham, MA, U.S.A.) with weightings 

performed in an ultra-microbalance (XP2U, Mettler-Toledo, Greifensee 8606 

Switzerland). 

4.2.1.3. Plant material 

Plectranthus madagascarensis Benth. was cultivated in Parque Botânico da Tapada 

da Ajuda (Instituto Superior Agrário, Lisbon, Portugal) from cuttings obtained from the 

Kirstenbosch National Botanical Garden (Cape Town, South Africa). A voucher specimen 

was deposited in Herbarium João de Carvalho e Vasconcellos (ISA) with the number 

841/2007. The plant material used in this study was collected between 2007 and 2008, 

dried at room temperature and stored protected from light and humidity. 

4.2.1.4. Microbial strains 

The antimicrobial assays were performed in 3 Gram positive bacteria strains:  

Staphylococcus aureus (ATCC 25923), methicillin-resistant S. aureus (MRSA) (CIP 

106760) and Staphylococcus epidermidis (ATCC 12228). Microbial strains were originally 

obtained from American Type Culture Collection (ATCC) or form “Collection de l'Institut 

Pasteur" (CIP).  

4.2.1.5. Cell lines 

HaCaT is an immortalised non-tumorigenic human keratinocyte cell line derived from 

normal human trunk skin and able to stratify (Boukamp et al., 1988)368. This line was 
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maintained at Institute for Biological Research “Sinisa Stankovic” at University of 

Belgrade (Serbia) and obtained from CLS (Cell Lines Service), Eppelheim, Germany. 

4.2.1.6. Software editing  

Chemical structures were drawn on ChemBioDraw Ultra 12.0.2.1076. ChemStation 

was used for HPLC-DAD controller and data exportation. Statistical analysis and graphic 

design were archived using GraphPad Prism 6.01 for Windows 10.  

4.2.2. Plectranthus madagascariensis extract  

The bioactive P. madagascariensis extract was prepared as previously reported in 

sub-section 2.2.2. Briefly, E4 was prepared by USAE carried using 10 g of dried and 

pulverized plant, immersed in 100 mL of acetone, into an ultrasonic bath (Bandelin 

SONOREX RK 510H, Germany) with a working frequency of 35 kHz and 400 W of power 

and sonicated for 1 hour. The bulk extract was separated from the remaining plant 

material by filtration through paper nº5 (Whatman, Maidstone, United Kingdom) and 

evaporated under reduced pressure in a rotary evaporator (IKA RV06-ML 1-B, Staufen, 

Germany) until drying. 

The extract was characterized by HPLC-DAD and main compounds identified and 

quantified using the methodology described at subsection 3.2.3.  

4.2.3. Optimization of phytosome preparation  

Different solvents (acetone, dichloromethane and ethanol), reaction time (60, 120 

and 240 min) and cholesterol concentration in the formulation (0, 2.5 and 5 molar %) 

were tested in order to obtain the smallest and more uniform phytosomes. Briefly, 

molar equivalent concentrations of PdC and extract were solubilized in 20 mL of solvent 

and kept magnetic stirring (RT15 power, IKA, Staufen, Germany) at 50ºC during the 

reaction time. To obtain the phytosomes, 40 mL of reverse osmosis water was then 

added and the organic solvent was partially eliminated in the rotary evaporator (IKA 

RV06-ML 1-B, Staufen, Germany) and the pellet was recovered by centrifugation at 

23,540 G for 10 min (Z 36 HK HERMLE Labortechnik, Germany). 

4.2.4. Preparation of loaded-phytosomes (PS) 

Based on previous section results, PdC (424 mg), extract (200 mg) and cholesterol 

(11.6 mg) were dissolved into 40 mL of acetone and the mixture was magnetic stirred at 

55ºC for 2 h (HTS 1003, LMS, Tokyo, Japan). The solution was then added to 80 mL of 

2% (w/v) acetic acid being the organic fraction evaporated under reduced pressure (IKA 

RV06-ML 1-B, Staufen, Germany) for about 2h at 50ºC until the volume became stable. 

4.2.5. Chitosan microencapsulation of PS (ChiPS) 

The prepared phytosome suspension was mixed with 400 mL of a 1% chitosan (w/v) 

solution in 2% acetic acid (v/v). The resultant solution was then added dropwise to 600 

mL of the counter-ion sodium tripolyphosphate solution (0.3% w/v) under vigorous 

magnetic stirring (500 rpm) (HTS 1003, LMS, Tokyo, Japan). The resultant suspension 



 

 

97 

 

was centrifuged at 33,320 x g for 5 minutes to recover the particles in the pellet. The 

pellet was washed several times with distilled water and freeze-dried using a 

temperature of −50°C and a vacuum of 0.020 mbar (Freezone 2.5 L, Labconco, Kansas 

City, USA). 

4.2.6. Determination of encapsulation efficiency and drug loading 

Encapsulation efficiency of the extract in the phytosomes was determined by 

evaluation of the content of the major peak in the extract (7α,6β-dihydroxyroyleanone). 

For this compound, a calibration curve was established using authentic samples. Three 

independent batches of Chi-Ps were freeze-dried using a temperature of −50°C and a 

vacuum of 0.020 mbar (Freezone 2.5 L, Labconco, Kansas City, USA) and precisely 

weighted for the quantification of the ChiPS recovery yield after production.  

The encapsulation efficiency and drug loading were determined by dissolving 10 mg 

of freeze-dried particles in 1 mL methanol overnight249. The mixture was then 

centrifuged at 23,540 x g and the supernatant filtered through a 0.46 µm filter previously 

to the analysis. The amount of 6β,7α-dihydroxyroyleanone (Roy) detected by HPLC-DAD 

was used to estimate the encapsulation efficiency (EE) (I) and drug loading (DL) (II) using 

the following equations:  

 

( )!""!(%) =
#$&'*+,-./0,1'2
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89:;<
× 455 

 

Were Royencapsulated corresponds to the weight of Roy detected after the disruption 

of the particles, Roytotal is the total weight of Roy used for particle production and ChiPS 

is the weight of particles. Tests were performed in triplicate being results expressed as 

the means ± S.D.  

4.2.7. Physic and morphological characterization  

Loaded phytosomes and loaded ChiPS were diluted with distilled water and analysed 

in by DLS in a Delsa Nano C (Coulter, CA, USA) to obtain the average particle size, 

polydispersity index (PI) and Zeta potential (ζP). Morphology was assessed by SEM369 

(5200LV SEM, JEOL Ltd., Tokyo, Japan) or AFM370 (Multimode Nanoscope IIIa, Digital 

Instruments, Veeco, Cambridgeshire, UK) using previously optimized methods.  

4.2.8. Physic-chemical analysis  

The differential scanning calorimetry (DSC) measurements were carried out on a 

PerkinElmer DSC 7 with TAC 7/3 instrumental controller (PerkinElmer, Waltham, MA, 

USA). The samples with 2.5-4.9 mg mass were sealed in air, inside aluminium sample 

pans. Each crucible was transferred to the apparatus and heated at a rate of 10ºC/min 
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in the range 25-250ºC. Nitrogen (Air Liquide N45, Lisbon, Portugal) at a flow rate of 0.5 

cm3/s was used as the purging gas. The temperature and heat flow scales of the 

instrument were calibrated at the same heating rates with indium (mass fraction: 

0.99999; Tfus = 429.75K, Dfush0 = 28.45 J/g). All weightings were performed with a 

precision of ±0.1 µg on a XP2U ultra-microbalance (Mettler-Toledo, Greifensee 8606 

Switzerland). 

 

Table 4.1. Samples evaluated for interaction between its components by DSC and DRIFTS.   

Sample DSC DRIFTS 

A Cholesterol Cholesterol 

B Extract E4 Extract E4 

C PdC PdC 

D Mixture of Cholesterol, E4 and PdC Mixture of Cholesterol, E4 and PdC 

E Loaded-phytosomes Loaded-phytosomes 

F - TPP 

G - Chitosan 

H - Mixture of TPP/Chitosan 

I - Mixture of TPP/Chitosan/PS 

J - Loaded-ChiPS 

 

The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) 

experiments were performed in the range 400-4000 cm−1, with a resolution of 2 cm−1 

and 528 scans on a Nicolet 6700 spectrometer with Omnic software (Thermo Fisher 

Scientific, Waltham, MA, USA), being the samples dispersed in pulverized KBr and 

analysed directly. 

4.2.9. In vitro release studies 

The release pattern of extract components from ChiPS was studied in vitro using a 

membrane-free model. Briefly, 10 mg of PM-PS-Chi were added to 100 mL of PBS pH 5.5 

and pH 7.4 and kept stirring at 300 rpm at 37ºC. One aliquot of 1 mL of the mixture was 

collected at fixed time-points, centrifuged at 23,540 x g for 5 min (and the supernatant 

stored at -20ºC until analysis. The same volume of collected medium was used to 

solubilize the pellet and added to the medium. Extract components released from the 

nanoparticles were quantified by HPLC. All results were made in triplicate and expressed 

as the mean of the repetitions with SD. 

4.2.10. In vitro skin permeation studies  

The permeation studies were performed using an adapted Franz cell model. The 

Franz cells were kept immersed in thermostated water (32ºC) and receptor chambers 

were filled with 5 mL of PBS pH 7.4 and stirred continuously with mini-magnetic stir bars. 
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Polydimethylsiloxane (PDMS) membranes with a thickness of 75 μm were used in the 

Franz cell interface (0.98 cm2) and the formulations (extract E4 and loaded ChiPS) were 

applied at donor chambers (average chamber volume of 3.9 mL). Collections were made 

at specific time intervals (2, 4, 6, 8, 10 and 24h) by withdraw 200 μL of sample followed 

by reposition of the same volume of fresh PBS pH 7.4 at each time point. Components 

released from the extract or ChiPS were quantified by HPLC. Experiments were made in 

quadruplicate and expressed as the means ± SD. 

4.2.11. Biological activities 

4.2.11.1. Antibacterial activities 

The antimicrobial activities of Roy, extract E4, phytosome and ChiPS (Table 4.2) were 

evaluated qualitatively by well diffusion assay and quantitatively by broth microdilution 

method as described in sub-section 2.2.2.  

 

Table 4.2. Samples evaluated for its antibacterial effects in well diffusion and broth microdilution assays.  

Sample 
Well diffusion assay Broth microdilution 

S. epidermidis S. aureus MRSA S. epidermidis 

A Roy Roy Roy Roy 

B E4 E4 E4 E4 

C - Loaded PS Loaded PS Loaded PS 

D Loaded ChiPS Loaded ChiPS Loaded ChiPS Loaded ChiPS 

E Unloaded Chi - - - 

Control Vancomycin Vancomycin Vancomycin Vancomycin 

 

4.2.11.2. Cytotoxicity in human keratinocyte cell line 

The cytotoxicity profile of the extracts was characterized in the human keratinocyte 

cell line, HaCaT using the MTT test by the procedure described by Pesic et al., 2013308,312.  

Briefly, the cells were incubated with compounds at 32,000 cells/cm2 in DMEM 

supplemented with 10% FBS, 4 g/L glucose, L-glutamine (2 mM) and 5000 U/ml penicilin, 

5 mg/mL streptomycin solution at 37ºC in a humidified 5% CO2 atmosphere for 72h. 

Afterwards, 100 ml of MTT solution (1 mg/mL) was added to each well and plates were 

incubated at 37ºC for 4 h. Formazan product was dissolved in 200 mL of DMSO and the 

absorbance of obtained dye was measured at 540 nm using an automatic microplate 

reader (LKB 5060–006 Micro Plate Reader, Vienna, Austria). 

4.2.11.3. Acute and Sub-chronic mice irritation study 

Male hairless Sho® SCID mice (Charles River Laboratories, Massachusetts, USA) with 

12 weeks old and 20-30 g were housed under normal conditions according to 

established animal care guidelines as follows: temperature of 20±2ºC, humidity of 60-

90% RH and a 12h light/dark cycle and provided with ad-labium access to a commercial 
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mice-diet and drinking water. This study was conducted in accordance to the 

internationally accepted principles for laboratory animal use and healthcare as found in 

Directive 2010/63/EU. The project was approved by the Portuguese Veterinary General 

Division (DGAV). 

ChiPS and extract E4 were incorporated into 5% carboxymethyl cellulose (CMC) 

hydrophilic gel, with very high viscosity, as vehicle. Eleven mice were randomly divided 

into 4 groups. Sodium laureth sulfate (SLES) solution at 5% (w/v) was used as positive 

control371.  

The animals were treated as follows: Group I (n = 4): CMC gel with 5% (w/w) ChiPS; 

Group II (n = 3): CMC gel containing 1% (w/w) extract E4; Group III (n = 2): CMC gel; 

Group IV (n = 2): SLES 5% (w/v). 

To each group 0.1 mL of the test or control formulation was applied with a gloved 

finger in an area of approximate 10 cm2 on the back of each animal, housed in individual 

cages, daily for 15 days. Each animal was monitored during the first hours after 

application in order to guarantee that the formulation remain in the target area enough 

time to be absorbed. Mice were observed daily. Reactions, defined as erythema and/or 

edema, were observed at 24, 48 and 72h after the formulation application. Photos were 

taken at time of observation and the reaction degree was evaluated according to the 

scoring system for skin reactions (Table 4.3). 

The Score of Primary Irritation (SPI) was calculated372 for test and control in each mice 

as following: 

 

 !" = #
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The Primary Irritation Index (PII) was calculated as follows according to table 4.4: 

 

 !! = "
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From the midback region of each mice skin samples from each animal were collected 

at day 16 of consecutive application and fixed in 10% buffered formalin for further 

toxicological assessment of the skin samples. 
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Table 4.3. Classification system for skin reaction, adapted from 372,373. 

Erythema Reaction Score 

No erythema 0 

Very slight erythema 1 

Well defined erythema 2 

Moderate to severe erythema 3 

Severe erythema (beet redness) to eschar formation 4 

Edema Reaction Score 

No edema 0 

Very slight edema 1 

Well defined edema (edges of the area well defined by define raising) 2 

Moderate edema (raising approximately 1mm) 3 

Severe edema (raised > 1 mm and extended beyond the area of exposure) 4 

Total possible score for irritation 8 

 

 

Table 4.4. Response categories of irritation, adapted from from372,373. 

Erythema Primary Irritation Index (PII) 

Negligible 0-0.4 

Slight irritation 0.5-1.9 

Moderate irritation 2-4.9 

Severe irritation 5-8 

 

4.2.12. Statistical analysis 

All results are expressed as means ± standard deviation. t-student analysis was 

applied to demonstrate statistical differences in all tested parameters. All analyses were 

performed using a software program (GraphPad Prism 5®, GraphPad Software, San 

Diego, CA) with a statistical significance level of 0.05. 
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4.3. Results and discussion 

4.3.1. Plectranthus madagascariensis antibacterial extracts 

The selected extract was analysed by the previously described HPLC-DAD method 

(subsection 3.2.2). The E4 was obtained as a yellowish gum with a yield of 0.22 % 

(wextract/wdry plant). This extract profiling in HPLC-DAD showed that polyphenols and 

diterpenes were the main components of this extract (Figure 4.2). The main compound 

yield was also quantified, namely 7α,6β-dihydroxyroyleanone (Roy) as 4.59±0.02% 

(wcompound/wextract). 

 

 

Figure 4.2. Representative chromatogram of the P. madagascariensis extract E4 (270 nm) and structure of the main 

component: 7α,6β-dihydroxyroyleanone. 

 

4.3.2. Optimization of phytosome preparation methodology 

The results from the optimization process were presented in the tables 4.5 to 4.7. 

Under the process conditions studied, the smallest and most uniform particles were 

produced using acetone, a reaction time of two hours and adding 2.5% of cholesterol.  

Original methodologies for the preparation of PPC state the use of an aprotic solvent 

in order to avoid solvent interferences in the complexation process. However, in the 

recent years, some protic ethanolic solvents as ethanol or methanol have been used for 

the preparation of PPCs (as reviewed in Annex 1). In this preliminary study, two polar 

aprotic solvents (acetone and dichloromethane) and a polar protic solvent (methanol) 

were tested. The overall smaller particles were obtained by the use of acetone (Table 

4.5). This solvent was also the solvent used in the plant extraction methodology and for 

such reason should be most efficient in re-solubilizing the extract. This improved 

solubility of the components would allow more favourable conditions for the 

complexation process to occur, leading to more compact and uniform particles. Also, 

previous studies have demonstrated superior efficiency of acetone over ethanoic 

solvents for the preparation of drug-phospholipid complexes239. Acetone is also 

considered less toxic than dichloromethane in pharmaceutical formulations (ICH class 2 

vs ICH class 3). 
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Table 4.5. Influence of solvent choice in phytosome physical properties. Results are present as the means ± S.D. of 

three independent batches. 

Solvent Acetone Dichloromethane Ethanol 

Particle size (nm) 107.2 ± 16.55 142.2 ± 23.3 175.7 ± 91.65 

Polydispersity index 0.419 ± 0.06 0.511 ± 0.12 0.359 ± 0.001 

 

Smaller and more uniform particles were obtained with an intermediate reaction 

time of 2h (Table 4.6). This is in accordance with many PPCs preparation 

examples235,239,240,246,374,375 (Annex 1). This time should be adequate for the total 

complexation of the PPC components while not enough for the occurrence of further 

aggregation with longer reaction times, as occur at time 4h. The substantially higher 

particles and heterogenic distribution obtained at 1h reaction time should be originated 

by the incomplete solubilisation of some components with the formation of precipitate 

aggregates along with the phytosomes.  

 

Table 4.6. Influence of reaction time in phytosome physical properties. Results are present as the means ± S.D. of at 

three independent batches. 

Reaction time (h) 1 2 4 

Particle size (nm) 469.85 ± 201.95 107.2 ± 16.55 182.1 ± 64.35 

Polydispersity index 0.772 ± 0.04 0.410 ± 0.06 0.458 ± 0.01 

 

The inclusion of cholesterol at molar percentages of 2.5 or 5% resulted in non-

substantial change of phytosome size. No statistically significant differences (p > 0.05, t-

student test) were found between the particle size in the formulation with a cholesterol 

molar percentage of 2.5 or the formulation with cholesterol at 5%. However, the mean 

size of the particles obtained with acetone and reaction time of two hours (Table 4.6) 

was smaller than the obtained with the inclusion of 2.5% of cholesterol (Table 4.7). 

Moreover, the use of the 2.5% cholesterol proportion resulted in a two-fold reduction 

in PI which would improve the formulation stability. In other studies, the inclusion of 

cholesterol in phytosomes has been justified as stability enchantment functions on such 

nanosystems257,376. For such reasons, the phytosomal formulation obtained with 

reaction solvent acetone, reaction time of 2h and the inclusion of 2.5% of cholesterol 

was selected as the optimized formulation.  
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Table 4.7. Influence of cholesterol addition in phytosome physical properties. Results are present as the means ± 

S.D. of three independent batches.  

Cholesterol (molar %) 0 2.5 5 

Particle size (nm) 332.2 ± 159.7 191.3 ± 75.3* 203.3 ± 55.8* 

Polydispersity index 0.247 ± 0.03 0.243 ± 0.18 0.263 ± 0.15 

*p > 0.05, t-student test   

 

4.3.3. Preparation and characterization of optimized formulations  

The optimized suspension of loaded phytosomes had a mean size of 191.3 ± 75.3 nm 

while the chitosan coated loaded phytosomes (ChiPS) presented a mean size of to 1082 

± 363 nm (Table 4.8). Both formulations demonstrated similar polydispersity indexes of 

0.243±0.18 and 0.22 ± 0.10 respectively.  

The particle size and its distribution were factors influencing the fate and stability of 

nanoparticle formulations377. The determined mean size for each formulation is 

adequate for topical application by minimizing the unintended transdermal penetration 

(intracellular pathways or via aqueous pores) that could occur in particles smaller than 

36 nm. Still, some transdermal absorption could occur through the transfollicular 

route373, but its contribution to the overall process is very low as follicles correspond to 

less than 0.1% of total skin surface354. 

 

  

The optimized suspension of loaded phytosomes presented an approximately neutral 

surface charge with ζP of +0.07±0.15 mV while the ChiPS presented a positive charged 

surface with ζP of +20.59 ± 12.02 mV (Table 4.9). 

The neutral character of the suspended uncoated phytosomes could represent the 

occurrence of a complete reaction. The phospholipids containing a choline group 

behave as Bronsted acids which possess tendency to become deprotonated. The PdC 

intrinsic pKa estimated as 0.8 confirms this character378. On the other hand, the hydroxyl 

group of many natural products, namely phenolic hydroxyls present in the major 

components of this extract, can act as electron acceptors which makes the complexation 

with PdC possible. The occurrence of complexation would have led to the charge 

Table 4.8. Size distribution of loaded phytosomes and chitosan coated phytosomes (ChiPS). Data is present as mean 

± standard deviation with n = 3. 

Formulation Particle Size (nm) Polydispersity index (Pi) 

Phytosomes 191.3±75.3 0.243±0.18 

ChiPS 1082 ± 363 0.22 ± 0.10 
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distribution within the formed complex being an overall neutral charge expected, as 

verified in the literature230. 

Chitosan is a biodegradable, biocompatible, cationic polymer which have been used 

for the production of polymeric nanoparticles for variable applications. It was expected 

that the microencapsulation step would led to a positive charge of the particles. It was 

verified with the increasing from neutral to +20.59 ± 12.02 mV. Also the coating with 

chitosan by ionotropic gelation, using TPP as the cross-linking agent, led to an 

enlargement of the particle size to 1082 ± 363 nm with a lowering of the polydispersity 

index. Similar methodologies have produced chitosan microspheres with higher 

dimension, namely the curcumin phytosomes coated by chitosan, that presented a 

mean particle size of 23.21±6.72 µm249. Particles presenting a higher size generally tend 

to present a worst stability, with more frequent formation of interparticle aggregates379.  

It was demonstrated that negatively charged particles have a more favourable 

penetration in the inner skin layers that those that were positively charged380. 

Possessing a positive charge, the ChiPS have less predisposal for transdermal 

penetration. The human skin presents a negative surface charge at neutral pH, mainly 

due to the presence of negatively charged phospholipids and carbohydrates381–384. This 

would originate an attraction between the negative charged skin surface and the 

positive charged ChiPS particles. Taken together with the bioadhesivity properties of 

chitosan based materials, this indicate that the ChiPS present a relevant affinity for the 

surface of the skin.  

 

SEM and AFM imaging showed that the phytosomes present an amorphous spherical 

shape with somewhat heterogeneous size distribution (Figure 4.3 and 4.4). The 

topographical analysis of the uncoated phytosomes showed a spherical shape of the 

nanoparticle vesicles with size ranging mostly from 30 to 200 nm. Those observations 

were in accordance with the values registered by DLS.  

The chitosan coated phytosomes by AFM imaging (Figure 4.4 A) presented a spherical 

shape by with a rough texture and higher size when compared to uncoated phytosomes. 

The spherical shape is favourable for the delivery of such particles as this would promote 

the higher surface area possible385. The SEM imaging of ChiPS (Figure 4.4 B) resulted in 

the observation of an aggregate of smaller phytosomes. This could be related to the 

sample preparation as it seems that the water loss in the drying process favours the 

aggregation of the water rich ChiPS. In AFM phase contrast visualization (Figure 4.5), it  

 

Table 4.9. Zeta potential of phytosomes, and chitosan coated phytosomes (ChiPS). Data is present as mean ± 

standard deviation with n = 3. 

Formulation Zeta potential (ζP) (mV) 

Phytosomes (loaded) +0.07±0.15 

ChiPS (loaded) +20.59 ± 12.02 
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A 

  

B 

  

Figure 4.3. SEM images of uncoated phytosomes (A) and coated phytosomes (B). A, left: magnification = 10,000x, scale 

bar = 1 μm; A, right: magnification = 20,000x, scale bar = 1 μm; B, left: magnification = 750x, scale bar = 10 μm; B, right: 

magnification = 2,000x, scale bar = 10 μm. 

 

A 

 
 

B 

  

Figure 4.4.  Topographical, phase contrast and 3D AFM images of the uncoated phytosomes (A) and of the chitosan 

coated phytosomes (B). Scale bars represents 0.5 µm.     

0.5 μm 

0.5 μm 
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Figure 4.5.  Topographical and phase contrast of a single chitosan coated phytosome nanoparticle. Scale bar represents 

100 nm.  

 

was clear the presence of a rough coating involving a softer material. The inner, softer 

material is similar to the verified for the uncoated particles, and thus this image could 

represent a phytophospholipidic core involved by the TPP cross linked chitosan coating. 

Additional AFM images were presented at annex 9. 

The formation of the complex between the PdC, cholesterol and the antibacterial 

extract E4 was confirmed by DSC (Figure 4.6) and DRIFTS (Figure 4.7 and 4.8). 

Thermograms for cholesterol (A), extract E4 (B), PdC (C), physical mixture (1.2:20:42.4 

w/w) of cholesterol, extract and PdC (D) and loaded phytosomes (E) were obtained as 

presented in Figure 4.6. The cholesterol thermogram (Figure 4.6 A) possess a single 

sharp peak with onset at 147.77ºC and maximum at 150.17ºC which should occur due 

to the pure compound melting (reported melting point of 147-149ºC). As in the case of 

the P. madagascariensis extract E4 (Figure 4.6 B), a single mild endothermic peak was 

verified starting at 34.33ºC and with maximum at 58.33ºC. The phase diagram of PdC 

(figure 4.6 C) presented two resolved peaks. The first peak at 133.83ºC was mild and 

might be related to the movement of phospholipidic polar head during the heating 

process224–227. The second peak was sharp with onset at 169.30ºC and maximum at 

180.33ºC. This highly endothermic (DH = 28.25 J/g) peak should occur due to the phase 

transition from gel to liquid crystalline state during which occur the non-polar tail 

melting226,227. 

When the physical mixture of cholesterol, extract and PdC (Figure 4.6 D) is analysed, 

an apparent summation between those elements was verified. The endothermic peak 

from E4 was maintained and also peaks with similar thermal behaviour to those of PdC 

were verified but presenting a lower onset and peak value. This implies the occurrence 

of minimal interactions between those elements. However, the analysis of the 

100 nm 100 nm 



 

 

108 

 

thermogram corresponding to phytosomes (Figure 4.6 E) showed the disappearance of 

the endothermal peaks corresponding to the extract E4 or cholesterol, which occur due 

to the presumable formation of interactions between those molecules and the 

phospholipids. A broad and mild peak was present at 135ºC which could correspond to 

the PdC polar head movement due to the heating process as its onset (125.06ºC) was 

similar but lower to the verified for the first peak of PdC (126.23ºC). The disappearance 

of the sharp second peak of phospholipids (Figure 4.6 C) and the decrease of the 

transition temperature from 180.33 to 170.67ºC after the formation of phytosomes 

(Figure 4.6 E) was been suggested to be related to the establishment of strong 

interactions between the polar head of the phospholipids and natural products and the 

consequent formation of a new entity224–227. Those interactions allow the free turning 

of the hydrocarbon chains of the PdC and favours its enwrapping of the polar head 

containing the natural product224–227. 
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Figure 4.6. DSC thermogram of (A) cholesterol, (B) extract E4, (C) PdC, (D) physical mixture of cholesterol, extract and 

PdC and (E) phytosomes. The isolated values represent the peak temperature (ºC). Individualized spectra were 

presented at annex 9. 

 

The infrared spectroscopy analysis of the coated and uncoated phytosomes, its 

components and their mixtures was performed in order to confirm the complexation of 

phytosomes (Figure 4.7) and the chitosan/TPP coating (Figure 4.8). While the cholesterol 

IR spectra was concordant with literature references, for the extract E4, no standard 

reference was available. From the HPLC-DAD characterization of this extract presented 
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in chapter 3, it is known that compounds bearing ketone, phenol and hydroxyl groups 

were present, and thus, those signals were found between 3500 and 3200 cm-1 (medium 

broad peak, hydrogen bonded O-H stretching vibrations), 2918 and 2848 cm-1 (C-H 

stretching in aromatics); 1707 cm-1 (C=O stretching), 1585 cm-1 (C=C stretching), 1456 

cm-1 (CH3-CH2 bending), 1165 cm-1 (C-O stretching).  

The characteristics peaks of PdC were present in the DRIFTS spectra as a broad peak 

between 3500 and 3200 cm-1 (hydroxyl and/or amine stretching), 2926 and 2856 cm-1 

(C-H stretching at fatty acid residues), 1741 cm-1 (carbonyl stretching of the fatty acid 

ester), 1456 cm-1 (CH3-CH2 bending), 1228 cm-1 (P=O stretching), 1059 cm-1 (P-O-C 

stretching) and 970 cm-1 (N-(CH3)3 stretching)228,229,249.  

The analysis of phytosome IR spectra presented a shift and broadening of the signal 

corresponding to the hydroxyl O-H stretching (3500-3200 cm-1), to the aliphatic 

phosphate (P=O stretching) and to the choline quaternary ammonium (N-(CH3)3 

stretching) groups of the phospholipids. No relevant alterations were found in the bands 

of the aliphatic carbon chains of the fatty acids (2924, 2850 and 1460 cm-1). These 

observations suggest that some weak physical interactions between free hydroxyl of the 

natural components and the polar groups of phospholipids took place during complex 

formation with dispersion of the extract components into the phospholipid 

matrix228,229,249.   
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Figure 4.7. DRIFTS spectra of (a) cholesterol, (b) extract, (c) PdC, (d) physical mixture of cholesterol/extract/PdC and (e) 

phytosome. Individualized spectra available at annex 9. 

 

The evaluation of chitosan/TPP coating by DRIFTS was based on the reference peaks 

of chitosan at 2865 cm-1 corresponding to C-H stretching and those at 1646, 1569 and 
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1371 cm-1 corresponding to different vibrational modes of the N-H amide386. At the 

physical mixture of phytosomes with chitosan and TPP, the reference signals for 

chitosan appear diluted in the phospholipidic base, however, when analysing ChiPS, the 

chitosan reference signals remain identifiable at 1633, 1531 and 1371 cm-1 with some 

shift which could be due to a conformational change due to the crosslinking with TPP. 

Also, a substantial change in the signals for the phytosome were noted, with 

disappearance of the major peaks at 3014 and 1055 cm-1 along with a clear diminishing 

of the peaks at 2924, 2850, 1734 and 1460 cm-1. This should represent the occurrence 

of coating by chitosan at most of the surface of the phytosomes, which is coherent with 

the observations of AFM visualization and the zeta potential shift for a positive value.  
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Figure 4.8. DRIFTS spectra of (f) TPP, (g) chitosan, (h) physical mixture of TPP/Chi, (e) loaded phytosomes, (i) physical 

mixture of TPP/Chi/PS and (j) loaded Chi coated phytosomes. Individualized spectra available at annex 9. 

 

4.3.4. Determination of encapsulation efficiency (EE%) and drug loading (DL) 

The EE% of the P. madagascariensis extract in the nanoparticle system was estimated 

based on the major antibacterial diterpenic compound (7α,6β-dihydroxyroyleanone, 

Roy) present in the extract. In order to calculate the content of Roy in the ChiPS a 

standard curve was established with high linearity (R² = 0.9999) in the range of 0.005 to 

1 mg/mL (y = 32946x - 139.43) with adequate sensitivity (LOD: 0.002; LOQ: 0.004). The 

EE% in the ChiPS system was of 57.7±0.1%. In other studies, when phytosomes were 

combined with a polymer coating249 or conjugated with a metallic core257, similar or 

lower encapsulation efficiencies were verified.  
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The DL was of 0.670±0.001% for Roy. The low drug loading for the reference 

compound in the extract was expected as the extract contains only 4.6±0.02% (w/w) of 

Roy. However, if we based on the amount of extract that contains 0.67 mg of Roy, we 

estimate an extract DL of 14.56% which is similar or superior to the drug loading of 

phytocomponents in similar phytosome formulations249.  

4.3.5. In vitro release studies 

The evaluation of Roy release from the lyophilized ChiPS in PBS at different 

physiologic pH was used to establish the release profile of those nanoparticles (Figure 

4.9). The particle mass to volume proportion selected was adequate in order to assure 

the maintenance of the sink conditions. An initial burst release was verified with 

approximately 70% of the Roy being released from the ChiPS after 1h. A second phase 

of slower release was verified, reaching maximum release at 10h (100.8% at pH 7.4 and 

82.9% at pH 5.5). Those media represent the physiologic pH verified at the surface of 

the skin (5.5)387 and at blood vessels (7.4)388.  

It was known that quinone-methide compounds, as the case of Roy, possess an 

improved reactivity in acidic media, due to the protonation of the carboxyl oxygen with 

possible further esterification or nucleophilic substitution of this group389. This improved 

reactivity could explain the incomplete release curve verified at pH 5.5, in which some 

Roy degradation could occur at this more acidic pH.  

The skin pathogens S. aureus and S. epidermidis possesses a doubling time, in a 

reconstructed epidermis model, of about 55 and 230 min, respectively390. According to 

this study, after 1h, about three fourths of the total Roy have already been released 

(70.18-75.86% of total Roy), the release curve of Roy from phytosomes should be 

adequate for the control of those bacterial strains multiplication.  
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Figure 4.9. Cumulative release of Roy from Chi-PS at phosphate buffer saline adjusted to pH 5.5 or pH 7.4 (T = 37ºC). 

 

4.3.6. In vitro permeation studies 

The diffusion patterns of permeation of Roy through PDMS in a Franz cell model 

showed a lower flux value for the Roy permeation from ChiPS (0.52±0.17 µg/cm2/h) in 

comparison to this compound permeation from the non-encapsulated extract E4 

(1.90±0.08 µg/cm2/h) (Figure 4.10 and 4.11). This observation is favourable for the 

formulation as a high permeability of the antibacterial compounds was unintended. This 

result could be explained by a conjugation of factors. At first, in the extract, their 

components were solubilized in the PBS which favourers the direct contact to the 

membrane while in ChiPS the Roy was incorporated into the polymeric-phytosome 

formulation and it is required that Roy is released from this matrix for the membrane 

permeation to occur. This effect was only responsible by a partial contribution on the 

lower flux as the release studies demonstrated a rapid initial release up to 75% in the 

first hour. A second factor could be related to the saturation of PDMS membrane by 

substances adsorbed at its surface that could therefore limit the crossing of Roy. The 

main substance that could be retained is chitosan due to its cationic properties which 

could led to adsorption at the negative charged PDMS membrane391. This strengthens 

our speculation that only residual permeation of ChiPS would occur through 

transdermal pathways other than the follicular pores.  
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Figure 4.10. Permeation of Roy from the P. madagascariensis extract E4 or loaded ChiPS in Franz cell permeation model 

using PDMS membrane.  
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Figure 4.11. Permeation of Roy from the P. madagascariensis extract E4 or ChiPS in Franz cell permeation model 

using PDMS membrane.  

4.3.7. Biological activities 

4.3.7.1. Antibacterial activities 

The activity of the selected extract from P. madagascariensis (E4), the main diterpene 

(6β,7α-dihydroxyroyleanone, Roy) and the phytosomes incorporating the extract or the 

blank sample. A preliminary qualitative evaluation by well diffusion assay in S. 

epidermidis (Table 4.8) demonstrated an apparent maintenance of the anti-

staphylococcal activity with similar inhibition halo verified between the extract E4, the 

main compound Roy and the ChiPS. Also, chitosan/TPP mixture presented a slight 

inhibition which could indicate potential bacterial growth inhibition effects at higher 

concentrations.  
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Table 4.10. Inhibition diameter against S. epidermidis ATCC 12228. 

Analyte Inhibition (mm) Plate Image 

A Roy 19 

 

B P. madagascariensis E4 21 

D ChiPS 17 

E Chi/TPP mixture 8 

F PBS 5 

C- DMSO 5 

C+ Vancomycin 22 

 
Samples A-D were tested at 1 mg/mL. A and B were diluted in DMSO; C and D were diluted in PBS.  
Roy - 7α,6β-dihydroxyroyleanone; C+ = PBS – phosphate saline buffer pH 7.4; C-: DMSO - Dimethyl 
sulfoxide. 

 

 

The quantitative evaluation of the antibacterial activity of the extract E4, Roy, loaded 

phytosome and the correspondent chitosan coated loaded phytosomes was performed 

by the determination of the MIC value for two bacterial pathogens of the human skin: 

S. aureus (including a MRSA strain) and S. epidermidis. The extract E4 showed potent 

antibacterial activity with MIC values in the range of 1.95-7.81 µg/mL. The isolated 

compound Roy showed inhibitory effects lower than those of the extract (MIC 15.6-62.5 

µg/mL), which suggests the existence of synergic effects between this compound and 

other antibacterial abietane diterpenes.  

The antibacterial activity of the loaded phytosomes (MIC 3.91-15.6 µg/mL) and of the 

chitosan coated loaded phytosomes (MIC 0.98-31.3 µg/mL) was proportional or superior 

to those of the reference antibiotic vancomycin (MIC 0.98-7.81 µg/mL). Those values 

represent a clear increment in the antibacterial activity of the phytosome formulations 

over the extract, which become evident by the normalized MIC values as function of the 

Roy content in each sample (Table 4.9).  
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Table 4.11. Antibacterial activity of P. madagascariensis components including phytosomal forms. 

 Microorganism strain / MIC (µg/mL) 

Analyte  
S. aureus  

ATCC 25923 
S. aureus (MRSA) 

CIP 106760 
S. epidermidis 

ATCC 12228 

Roy 62.5 15.6 - 

E4 3.91 (0.18) 1.95 (0.09) 7.81 (0.36) 

Phytosome 3.91 (0.05) 3.91 (0.05) 15.6 (0.21) 

ChiPS 0.98 (0.02) 15.6 (0.25) 31.3 (0.50) 

Control (Vancomycin) 0.98 7.81 7.81 

Roy - 7α,6β-dihydroxyroyleanone; E4 – P. madagascariensis extract 4; ChiPS – chitosan coated phytosomes of E4. 

Values under brackets represent MIC values normalized for the Roy content: ( ) = MIC x [Roy]sample 

 

It was also verified that the ChiPS showed pronounced selectivity for S. aureus over 

S. epidermidis. This was a favourable observation due to the commensal character of S. 

epidermidis which unfrequently present a pathogenic behaviour and contrasts with S. 

aureus which is the most common skin pathogen339,392.  

 

4.3.7.2. Cytotoxicity in human keratinocyte cell line 

The evaluation of in vitro cytotoxicity in HaCaT human skin keratinocyte cell line 

showed low or none cytotoxicity. At the MIC concentration for S. aureus strains the 

ChiPS formulation showed less than 10% reduction in cell viability (Figure 4.12). Also, it 

seems that the encapsulation process originates a ChiPS formulation with lower 

cytotoxicity (IC50 = 85.87 µg/mL) over the original extract E4 from P. madagascariensis 

(IC50 = 56.77 µg/mL). Similar results have been observed for Calendula phytosomes with 

the phytosome formulation presenting lower cytotoxicity than the plant extract257. Also, 

all formulation components of ChiPS were environmental friendly, biocompatible and 

approved for skin use393–395. This means that such components should not be 

responsible for any toxicological effects. The residual toxicity verified for higher 

concentrations of ChiPS could be explained by toxicological specificities of the 

nanosystems. A recent review on nanotoxicological effects of lipid carriers pointed that 

occlusive effects possess relevant influence in the cytotoxicity profiles of nanosystems 

at higher concentrations396. Such effect was verified even in nanoparticles formulations 

composed only by biocompatible ingredients as in the betamethasone lipidic 

nanoparticles developed by Silva et al. (2015)397. The use of in vivo models could help to 

exclude such effects. 
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Figure 4.12. Growth inhibitory effects of the P. madagascariensis extract E4 and its correspondent ChiPS. 

  

4.3.7.3. Acute and sub-chronic mice irritation study 

This in vivo study was intended to discriminate the presence of any potential irritation 

effect due to the application of the extract E4 or the correspondent chitosan coated 

loaded phytosomes. The overall result showed negligible irritation or edema in each 

treatment group with PII < 0.5 (Figure 4.12 and Table 4.9). As expected, the positive 

control group had a slight irritation based on a PII score of 0.67. 

  

Table 4.12. Irritation and edema score of each mice by group.   

Mice Group 
Erythema + Edema 

SPI PII 
24h 48h 72h 

1 

A  
(CMS gel + ChiPS) 

0 + 0 0 + 0 0 + 0 0 

0.25 
2 0 + 0 0 + 0 0 + 0 0 

3 0 + 0 1 + 0 2 + 0 1 

4 0 + 0 0 + 0 0 + 0 0 

5 
B  

(CMS gel + E4) 

0 + 0 0 + 0 0 + 0 0 

0 6 0 + 0 0 + 0 0 + 0 0 

7 0 + 0 0 + 0 0 + 0 0 

8 C  
(CMS gel) 

0 + 0 0 + 0 0 + 0 0 
0 

9 0 + 0 0 + 0 0 + 0 0 

10 D  
(SLES 5%) 

0 + 0 0 + 0 4 + 0 1.33 
0.67 

11 0 + 0 0 + 0 0 + 0 0 

 

4.4. Chapter conclusions 

The present study was focused on the development of an antibacterial formulation 

based on the phytosome of a potent antibacterial extract from P. madagascariensis (E4). 

This plant had been used in traditional African medicine for the treatment of cutaneous 
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wounds. As the extract possesses high yields of abietane diterpenes as 6β,7α-

dihydroxyroyleanone (Roy) those should be responsible for its antibacterial activity.  

The use of phytosome strategy have been successful for both per oz as topical 

delivery of natural compounds. Also, chitosan has been on focus because of the 

combination of the properties of a water soluble, cationic, bioadhesive, biodegradable 

polymer of natural origin with some intrinsic antibacterial activity. The combination of 

the phytosome strategy with the encapsulation by chitosan surged as a strategy for the 

improvement of the antibacterial activity of the extract E4. 

The phytosomes were produced by the conjugation of PdC, cholesterol and the 

extract into acetone by the effect of stirring and heat, and recovered by solvent 

evaporation with dispersion in acetic acid solution and complexation confirmed by DLS 

and DRIFTS. Those nanovesicles were spherical, amorphous, with an average size of 

191.3±75.3 nm (DLS), a low size dispersion and neutral charge. The positive charge is 

important for the skin adherence of the formulation. The spherical shape was 

maintained but phase contrast in AFM showed the presence of a substance (presumably 

chitosan) involving the phospholipidic particles. This was confirmed by the IR  
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i)   

   

24h 48h 72h 

   

ii)   

   

24h 48h 72h 

   

iii)   

   

24h 48h 72h 

   

Figure 4.13. Photography of three animals at 24, 48 and 72h of sample application: i) Only a slight erythema was 

observed after 48h of application in this subject, but a well-defined erythema was visible after 72h; ii) No visible 

alterations from 24-72h; iii) No erythema or edema visible up to 72h when an eschar was formed at the zone of 

application. 
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spectroscopy of the ChiPS in which, the signals for the phytosome were clearly  

diminished or even disappeared but the chitosan signals were still present, which might 

represent the presence of a coating of chitosan covering the phospholipidic core. Those 

nanoparticles showed a sustained release profile with a reduction of the membrane flux 

in comparison to the non-encapsulated extract. This could be important for the 

retention of the active compounds at the skin surface were they should exert its 

antibacterial effects, with minor transdermal systemic absorption.  

The antibacterial effects were enhanced by this strategy, being the anti-

staphylococcal activity superior even to the reference antibiotic, vancomycin, and active 

against MRSA. Also, negligible in vitro keratinocyte cytotoxicity and in vivo mice skin 

irritation were verified, which implies the security of this formulation topical application.  

This promising formulation could be used as an innovative ideal skin antibacterial as 

it is active against skin pathogens, including MDR strains; non-toxic for keratinocytes at 

MIC; different antibacterial mechanisms of its elements (chitosan and extract 

diterpenes), including synergic effects between some of them (extract diterpenes). 

Future work directions should focus on the long term stability of those particles along 

with its activity against other skin pathogens, including other resistant strains, and 

biofilm forming bacteria.   
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Chapter V 
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5. Conclusions 

In this study, three plants of the Plectranthus genus (P. madagascariensis, P. 

neochilus and P. porcatus) were selected, based on their ethnopharmacological uses 

(respiratory conditions as cough and asthma, cutaneous wounds and scabies for P. 

madagascariensis; dyspepsia, hepatic insufficiency, chills, cough and a runny or blocked 

nose for P. neochilus; and aromatic purposes for P. porcatus). From those plants, 26 

extracts (E1-E26) were obtained by the combination of extraction techniques (infusion, 

decoction, microwave, ultrasound, maceration and supercritical fluid extraction) with 

different polarity solvents (water, acetone, methanol and scCO2). All the prepared 

extracts were briefly profiled by HPLC-DAD and the majority of the components were 

identified as polyphenols (caffeic acid (IV.1), chlorogenic acid (IV.2) and rosmarinic acid 

(IV.3)), diterpenes (7α-acetoxy,6β-hydroxyroyleanone (IV.4) and coleon U (IV.5)) and 

flavones (rutin (IV.6) and naringenin (IV.7)). 

 

 

  

IV.1 IV.2 IV.3 

   

IV.4 IV.5 

 

 

IV.6 IV.7 

 

The extracts were screened for their antimicrobial (Gram positive, Gram negative 

bacteria and yeasts), antioxidant (DPPH method) and cytotoxic (MDA-MB-231 cancer 
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cell line) activities. Extracts from P. madagascariensis (acetone maceration E5 and 

acetone ultrasound E4) and P. neochilus (acetone ultrasound E13) showed antimicrobial 

effects against Gram positive bacteria strains, namely, Bacillus subtilis, Staphylococcus 

aureus and S. epidermidis and a Gram negative bacteria strain, Klebsiella pneumonia 

(MIC values 1.95-250 μg/mL). No activity was verified against the tested yeast strains. 

The acetonic extract from P. madagascariensis prepared by ultrasound assisted 

extraction (E4) showed the more potent antimicrobial activity, comparable to reference 

antibiotics, against S. aureus strains (MIC < 3.91 μg/mL), including a MRSA strain (MIC < 

0.98 μg/mL). 

Considering the antioxidant activity, the methanolic extracts from the three plants 

showed the more potent radical scavenging activities at 100 ng/mL (60.8-89.0%). The 

remaing extracts tested showed moderated or low antioxidant properties (2.45-

46.55%). The methanolic ultrasound extract of P. madagascariensis (E6) demonstrated 

the higher radical scavenging activity at 100 ng/mL (89.0%), which was comparable to 

the positive control, ascorbic acid (93.4%). Those antioxidant effects could be attributed 

to the presence of polyphenols (IV.1 to IV.3) with known radical scavenging abilities.  

Considering the cytotoxic effects, all extracts tested showed low cytotoxic activity at 

15 ug/mL (≥79.88% of cell viability) in the MDA-MB-231 breast cancer cell line. The 

maceration extract from P. madagascariensis (E5) showed moderate cytotoxic effects in 

the same cell line with IC50 of 64.52 µg/mL and was selected for further cytotoxicity 

studies.  

The antibacterial and cytotoxic effects shown in the acetone extracts of P. 

madagascariensis (E4 and E5) could explain the traditional uses in the treatment of 

respiratory and skin conditions related to infectious agents. The identified abietane 

diterpenes 7α-acetoxy,6β-hydroxyroyleanone (IV.4) and coleon U (IV.5) are described 

as antibacterial and cytotoxic compounds. The shown extract bioactivities could be 

explained by the presence of such compounds and thus validate their traditional uses. 

The more bioactive extracts from P. madagascariensis (organic solvent based extracts 

E4-E9) were characterized by HPLC-DAD with the identification and quantification of the 

major compounds. The remaining extracts were not included in the HPLC-DAD 

characterization due to their lack of bioactivity. Four compounds were generaly 

identified in the extracts using authentic standards overlay:  rosmarinic acid (IV.3), 

7α,6β-dihydroxyroyleanone (IV.8), 7α-acetoxy-6β-hydroxyroyleanone (IV.4) and coleon 

U (IV.5). A diterpenic compound, 7α-formyloxy-6β-hydroxyroyleanone (IV.9), was also 

isolated from the ultrasound acetonic extract of P. madagascariensis (E4) and 

characterized by 1H and 13C NMR. This compound was isolated for the first time from P. 

madagascariensis.  

The cytotoxic effects of the pure compounds (IV.3-IV.5 and IV.8-IV.9) were evaluated 

in a battery of cell lines including breast cancer (MDA-MB-231 and MCF-7), colon cancer 

(HCT116), non-small cell lung cancer (NCI-H460) and a normal lung bronchial (MCR-5) 

cell lines. All abietane diterpenes (IV.4-IV.5 and IV.8-IV.9) originated growth inhibition 

of those cancer lines, with differences in potency and selectivity. The royleanones IV.4 
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and IV.8 displayed a high selectivity toward cancer cells (selectivity index of 4.3 and 3.2, 

respectively). Moreover, royleanones IV.4 and IV.8 were also evaluated in the NCI-

H460/R cell line, which possess a multidrug resistant phenotype. The compounds 

showed similar cytotoxic effects in the multidrug resistant cell line (NCI-H460/R) and in 

the correspondent non-multidrug resistant cell line (NCI-H460). As the cytotoxic effects 

of those compounds were not reduced by the multidrug resistant phenotype, this 

showed that such compounds were not the target of efflux pumps. Thus, these 

diterpenes (IV.4 and IV.8) were also active in the tested multidrug resistant cell lines.   

 

   

IV.4 IV.8 R=H IV.5 

 IV.4 R=CHO  

 IV.9 R=COCH3  

 

 

The structure-activity relationship of the royleanone abietanes, with modifications at 

the positions 6, 7 and 12, was established based on literature and experimental data. In 

this study, compounds possessing log P values between 2 and 5 correspond to 

compounds with improved cytotoxic effect. This observation revealed the relevance of 

the lipophilic properties for the cytotoxic effects. Also, the presence of an electron 

donating group in the position 6 and/or 7, seems to be important for high cytotoxic 

effects. 

Compounds IV.4-IV.5 and IV.8-IV.9 may be considered promising compounds for 

further studies in order to fully understand the potential of the abietane diterpenoids 

as chemopreventive, chemoadjuvancts or chemotherapeutic agents. 

To improve the bioactivity of the acetone ultrasound extract E4, a phytosomal 

formulation was prepared and characterized. This extract was selected due to its 

antibacterial potency and simple preparation. The phytophospholipidic complexation 

process was optimized to obtain the smallest and more uniform particles and followed 

by subsequent chitosan coating by ionotropic gelation using TPP as counter-ion. The 

obtained ChiPS were amorphous, uniform in shape, with an average size of 1082 ± 363 

nm and zeta potential of +20.59 ± 12.02 mV. The phase contrast AFM imaging suggest 

the presence of a chitosan coating. This coating was also confirmed by the IR 

spectroscopy of the ChiPS. The signals for the phytosome were clearly diminished or 

even disappeared while the chitosan signals were still present, which should indicate 

the presence of chitosan coating over the phytosomal core. Those ChiPS showed a 

sustained release profile with a lower skin-like permeation fluxes in comparison to the 

non-encapsulated extract. This fact could be important for the retention of the active 
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compounds at the skin surface were they exert its antibacterial effects, with minor 

transdermal systemic absorption. The phytosomal formulation showed an up to 4-fold 

factor improvement of antibacterial effects against skin pathogens (S. aureus and S. 

epidermidis) with MIC values in the range of 0.98 to 31.3 µg/mL. Those values were 

comparable as those form potent antibiotics as vancomycin (MIC values in the range 

0.98-7.81 µg/mL). Also, non relevant in vitro keratinocyte cytotoxicity and negligible in 

vivo mice skin irritation were verified, demonstrating the safety of this formulation for 

topical application.  

The findings of this work allow the establishment of the formulated hypothesis to the 

category of thesis and state that:  

 

Ø Plectranthus spp. plants, and specifically P. madagascariensis, P. neochilus and P. 

porcatus, are a source of bioactive compounds as indicated by their 

ethnomedicinal uses; 

 

Ø The extracts and the isolated compounds from P. madagascariensis showed 

potent antibacterial and antiproliferative activities; 

 

Ø The use of phytosome, and its further chitosan coating, correspond to an effective 

method for the potency improvement of the antibacterial extracts from P. 

madagascariensis. 
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Annex 2 

 

Table 1 (Annex 2). Examples of commercially available phytosomal products with use as functional cosmetic 

ingredients. 

Designation Content Suggested uses† 

Centella asiatica 

Selected Triterpenes® 

Triterpenes including asiaticoside, 

asiatic acid and madecassic acid (30-

35%) obtained from Centella asiatica 

leaf 

Anti-wrinkles and 

Stretchmarks improver 

Ginkoselect® Ginkgoflavonglucosides (≥7%), 

ginkgoterpenes (≥2%), bilobalide (≥ 

0.8%) and ginkgolides (≥0.8%) obtained 

from Ginkgo biloba leaf. 

Antioxidant and Vasokinetic 

Greenselect® Polyphenols (25-30%) obtained from 

the young leaf of Camellia sinensis. 

Antioxidant activity and 

whitening agent 

Hawthorn® Polyphenolic substances including 

Vitexin-2ʺ-O-rhamnoside (≥3%) 

obtained from Crataegus spp. flowering 

top. 

Antioxidant 

Leucoselect® Proanthocyanidins (25-30%) obtained 

from Vitis vinifera seed.  
Antioxidant and capillarotropic 

PA2® 
Proanthocyanidin A2 (31-37%) obtained 

from Aesculus hippocastanum bark 

UV protectant, trophodermic, 

firming and oval reshaping 

agent 

Rexatrol® Resveratrol (≥30%) obtained from 

Polygonum cuspidatum rhizome.  

Antioxidant, Anti-ageing, Sirt1 

modulator 

Sericoside® 
Sericoside (≥25%) obtained from 

Terminalia sericea root bark 

Antioxidant, UV protectant, 

Anti-wrinkles, Soothing and 

Redensifier 

Siliphos® Silybin (about 30%) obtained from 

Silybum marianum fruit.  

Anti-wrinkles and Retinoic 

acid-like activity 

Silymarin® Silybin like substances (15-20%) 

obtained from Silybum marianum fruit 
Antioxidant and UV protectant 

 

†Suggested uses claimed by Indena® SPA as described at www.indena.com/phytosome. 
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Annex 3 

Original chromatograms from Plectranthus spp. extracts obtained according to methodology described at sub-section 

2.2.5. 

 

E1 

 

E2 

 

E3 

 

E4 

 

E5 

 



 

 

160 

 

E6 

 

E7 

 

E8 

 

E9 

 

E10 

 

E11 

 



 

 

161 

 

E12 

 

E13 

 

E14 

 

E15 

 

E16 

 

E17 

 



 

 

162 

 

E18 

 

E19 

 

E20 

 

E21 

 

E22 

 

E23 

 



 

 

163 

 

E24 

 

E25 

 

E26 

 

 

 

 

  



 

 

164 

 

Annex 4  

1H-NMR spectrum of 7α-formyloxy-6β-hydroxyroyleanone (III.3) (300 MHz, CDCl3). 
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Annex 5 

13C-NMR spectrum of 7α-formyloxy-6β-hydroxyroyleanone (III.3) (75 MHz, CDCl3). 
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Annex 6 

COSY-NMR spectrum of 7α-formyloxy-6β-hydroxyroyleanone (III.3) (300 MHz, CDCl3). 
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Annex 7 

 

 



 

 

 

168 

 

 

 



 

 

 

169 

 

 



 

 

 

170 

 

 

  



 

 

 

171 

 

Annex 8 

Original DSC thermograms of the ChiPS components.  

 

Graph A. DSC phase diagram of cholesterol. Onset = 147.77ºC; Peak = 150.17ºC. 

 

 

Graph B. DSC phase diagram of P. madagascariensis extract E4. Onset = 34.33ºC; Peak = 58.33ºC. 

 

 

Graph C. DSC phase diagram of PdC from soybean (48%, Sigma-Aldrich, Germany). Two endothermic peaks were 

visible. Onset 1 = 126.23ºC; Peak 1 = 133.83ºC; Onset 2 = 169.30ºC; Peak 2 = 180.33ºC. 

 

 

Graph D. DSC phase diagram of the physical mixture of cholesterol, extract and PdC. Three peaks were visible.  

Onset 1 = 50.69ºC; Peak 1 = 58.33ºC; Onset 2 = 113.05ºC; Peak 2 = 123.83ºC; Onset 3 = 157.83ºC; Peak 3 = 170.17ºC. 
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Graph E. DSC phase diagram of phytosome. Two endothermic peaks were visible. Onset 1 = 125.06ºC; Peak 1 = 

135.00ºC; Onset 2 = 159.37ºC; Peak 2 = 170.67ºC. 

 

 

Graph F. DSC phase diagram of low molecular weight chitosan (Sigma-Aldrich, Germany). A single broad endothermic 

peak was visible. Onset = 55.35ºC; Peak = 98.00ºC. 

 

 

Graph F. DSC phase diagram of TPP. 

 

 

Graph F. DSC phase diagram of lyophilized ChiPS.   
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Annex 9 
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Graph A. DRIFTS of cholesterol (99%, Sigma-Aldrich). 
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Graph B. DRIFTS of extract E4. 
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Graph C. DRIFTS of PdC (Sigma-Aldrich, 48% purity, from soybean). 
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Graph D. DRIFTS of the physical mixture of extract E4, PdC and cholesterol. 
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Graph E. DRIFTS of phytosomes. 
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Graph F. DRIFTS of TPP. 
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Graph G. DRIFTS of low molecular weight chitosan. 
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Graph H. DRIFTS of the physical mixture of TPP and chitosan. 
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Graph H. DRIFTS of the physical mixture of TPP, chitosan and phytosomes. 
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Graph I. DRIFTS of the ChiPS. 
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Annex 10 
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Annex 11 
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Annex 12 
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