Aquatic Plant Limnophila; Asian marshweed; Ambulia		
I. Current Status and Distribution Limnophila sessiliflora		
a. Range	Global/Continental	Wisconsin
Native Range Asia ¹	Figure 1: U.S and Canada Distribution Map ²	Not recorded in Wisconsin
Abundance/Range Widespread: Locally Abundant: Sparse:	Southern United States; Florida ^{2,3} Texas, southern Georgia ³ Anaerobic conditions (no seed germination) ⁴ ; thermal waters of Hungary ⁵	Not applicable Not applicable Not applicable
Range Expansion Date Introduced: Rate of Spread:	Lake Seminole, Florida/Georgia, 1965 ³ May be stabilizing; in Florida, 27 acres in 1979 ⁶ ; 24 acres found in 1992 ⁷	Not applicable Not applicable
Density Risk of Monoculture: Facilitated By:	High Ability to outshade and outcompete native submerged aquatic vegetation ³	Unknown Unknown
b. Habitat	Streams, rivers, lakes, damp soils ³ ; wetlands fields, ditches ¹	, agricultural areas, rice paddy
Tolerance	Chart of tolerances: Increasingly dark color range	indicates increasingly optimal
Alkalinity ⁸ (mg CaCO ₃ /L)	0 50 100 150 200 250	300 350
Total Phosphorus [®] (mg/L)	0 0.025 0.05 0.075 0.1 0.125	0.15 0.175
, ⁸ Hq	4 5 6 7 8 9	10 11
Depth ³ (m)	0 2 4 6 8 10	12 14
Photosynthetic Range ³ (°C)	5 10 15 20 25 30 range determined by measurable photosynthetic activity; survival range is broa	35 40 ader
Preferences	In or near organically stained, acidic or clear light intensity of 215 micro-einsteins/m ² /hr ⁽³⁾	r, slightly alkaline water ⁹ ;

c. Regulation		
Noxious/Regulated ²	Federal Noxious Weed List: AL CA, FL MA, NC, OR, SC, VT	
Minnesota Regulations:	Prohibited: One may not possess import purchase propagate or transport	
Michigan Regulations:	Not regulated	
Washington Regulations:	Not regulated	
II. Establishment Potential an	d Life History Traits	
a Life History	Freshwater amphibious herbaceous dicot perennial: polymorphic	
a. Life History	submersed and emersed leaf forms ³	
Fecundity	High	
Reproduction	Sexual ⁴ : Asexual ³	
Importance of Seeds:	Each flower may set 200-300 seeds, with up to 96% germination rate ⁴ :	
	fruit is a capsule containing up to 150 seeds ^{9,10}	
Vegetative:	Somewhat important; though seeds appear to play a larger factor ⁴	
Hybridization	<i>Limnophila sessiliflora</i> X <i>L. indica</i> hybrid reported in rice paddy fields ¹¹	
Överwintering		
Winter Tolerance:	Low; minimum survival temperature of $15^{\circ}C (59^{\circ}F)^{3}$	
Phenology:	Starts growing in low light before other plants; flowers July through	
	November in Florida and Texas ³	
b. Establishment		
Climate		
Weather:	Warm tropical/subtropical climate; minimum survival temperature is 15°C	
	(59°F); optimum of 20-26°C ⁽³⁾	
Wisconsin-Adapted:	Uncertain; depends on overwintering abilities of seeds	
Climate Change:	Warmer climate likely to facilitate growth and distribution	
Taxonomic Similarity		
Wisconsin Natives:	Medium; family Scrophulariaceae	
Other US Exotics:	High; similar to <i>Limnophila indica</i> ³	
Competition		
Natural Predators:	Undocumented	
Natural Pathogens:	Undocumented	
Competitive Strategy:	Low light compensation and saturation points "2; fast-growing"	
Known Interactions:	Can outshade native submersed species $\frac{10}{10}$; reported to outcompete	
Donnoduction	нуаппа	
Reproduction Date of Spread	High ¹	
Adoptive Strategies:	Can regrow from small fragments ^{1,3} : floating mate can transport fragments	
Mapuve Strategies.	and seeds downstream ⁹	
Timeframe	Florida DEP recently reported non-nuisance levels for the past 25 years ³	
c Dispersal	There a Der teeentry reported non nuisance revers for the past 25 years	
Intentional:	Aquarium trade ³	
Unintentional:	Aquanum naut	
Propagule Pressure:	Medium: fragments easily accidentally introduced: source populations not	
	near Wisconsin	

III. Damage Potential		
a. Ecosystem Impacts		
Composition	Native plant richness and abundance decreases ³	
Structure	Dense stands of stems occur throughout water column ³ ; biomass	
	distributed both at and above the water surface ⁴	
Function	Decrease in light penetration	
Allelopathic Effects	Yes; toxins present in stem tissue may deter herbivorous fish ⁹	
Keystone Species	Undocumented	
Ecosystem Engineer	Yes; dense canopy decreases light penetration to natives	
Sustainability	Undocumented	
Biodiversity	Decreases	
Biotic Effects	Potentially impacts native species at multiple trophic levels	
Abiotic Effects	Undocumented	
Benefits	Undocumented	
b. Socio-Economic Effects		
Benefits	Undocumented	
Caveats	Not applicable	
Impacts of Restriction	Increase in monitoring, education, and research costs	
Negatives	Clogs irrigation, flood-control canals, pumping and power stations ³ ; major	
	problem weed of rice paddies of India, China, Japan, and the Philippines ³ ;	
	large amounts of surface biomass could inhibit recreational activities ⁴	
Expectations	Undocumented	
Cost of Impacts	Decreased recreational and aesthetic value; decline in ecological integrity;	
	increased research expenses	
"Eradication" Cost	Expensive	
IV. Control and Prevention		
a. Detection		
Crypsis:	Medium; similar to <i>L. indica</i> ³ and <i>Cabomba caroliniana</i> ^{1,3}	
Benefits of Early Response:	Undocumented	

b. Control		
Management Goal 1	Eradication	
Tool:	Chemical $(2-4,D)^{1,13}$	
Caveat:	High levels of chemical needed ¹³ ; non-target plant species are negatively	
	impacted	
Cost:	Expensive	
Efficacy, Time Frame:	Very limited control	
Tool:	Chemical (paraquat) ¹⁴	
Caveat:	Non-target plant species are negatively impacted; L. sessiliflora has	
	developed resistance to Sulfonylurea (SU) herbicides	
Cost:	Expensive	
Efficacy, Time Frame:	High levels of 2,4-D and daily spraying of paraquat for 8 straight days at	
	1000ppm ⁽¹⁴⁾	
Management Goal 2	Nuisance relief	
Tool:	Mechanical harvesting	
Caveat:	Non-target plant species are negatively impacted; fragments created by	
	harvesting may increase spread ³	
Cost:	Expensive	
Efficacy, Time Frame:	Not an efficient management plan	

¹ Global Invasive Species Database. 2006. *Limnophila sessiliflora*. Retrieved December 23, 2010 from: http://www.issg.org/database/species/ecology.asp?si=602&fr=1&sts=

² United States Department of Agriculture, Natural Resource Conservation Service. 2010. The PLANTS Database. National Plant Data Center, Baton Rouge, LA, USA. Retrieved December 23, 2010 from: http://plants.usda.gov/java/profile?symbol=LISE3

³ Ramey, V. 2001. University of Florida, Center for Aquatic and Invasive Plants. *Limnophila sessiliflora*. Retrieved December 23, 2010 from: http://plants.ifas.ufl.edu/node/234

⁴ Spencer, W. and G. Bowes. 1985. *Limnophila* and *Hygrophila*: a review and physiological assessment of their weed potential in Florida. Journal of Aquatic Plant Management. 23:7-16.

⁵ Brunel, S. 2009. Pathway analysis: aquatic plants imported in 10 EPPO countries. Bulletin OEPP/EPPO Bulletin 39:201-213.

⁶ Tarver, D.P. 1979. The 1979 Florida Aquatic Flora Survey Report. Department of Natural Resources, Bureau of Aquatic Plant Research and Control. 56pp.

⁷ Schardt, J. 1992. Florida Aquatic Plant Survey Report. Florida Department of Environmental Protection, Bureau of Aquatic Plant Management. 83pp.

⁸ Kunii, H. 1991. Records of Aquatic Macrophyte Flora and Environmental Factors from the Irrigation Ponds around Lake Shinji, Shimane, Japan. Memoirs of the Faculty of Science, Shimane University.

⁹ Hall, D.W., V.V. Vandiver and C.J. Gray. 2006. University of Florida, Institute of Food and Agriculture Studies Extension. Limnophila, *Limnophila sessiliflora* (Vahl). Retrieved December 23, 2010 from: http://edis.ifas.ufl.edu/pdffiles/FW/FW02500.pdf

 ¹⁰ Scher, J.L. and D.S. Walters. 2010. Federal noxious weed disseminules of the U.S. California Department of Food and Agriculture, and Center for Plant Health Science and Technology, USDA, APHIS, PPQ. *Limnophila sessiliflora* (Vahl) Blume. Retrieved December 23, 2010

from:

 $http://keys.lucidcentral.org/keys/v3/FNWE2/key/FNW_Seeds/Media/Html/fact_sheets/Limnophila_sessiliflora.htm$

¹¹ Piccoli, F. 1974. A previously unrecorded weed in rice fields *Limnophila indica* and *Limnophila sessiliflora* hybrid. Riso (Milan) 23:181-190.

¹² Spencer, W. and G. Bowes. 1984. Baseline Physiology of the Potential Problem Plants, *Limnophila sessiliflora* and *Hygrophila polysperma*. Final Project Report to DNR.

- ¹³ Mahler, M.J. 1980. *Limnophila*, a new exotic pest. Aquatics 2:4-7.
- ¹⁴ Wang, G-X., H. Watanabe, A. Uchino and K. Itoh. 2000. Response of a Sulfonylurea (SU)resistant biotype of *Limnophila sessiliflora* to selected SU and alternative herbicides. Pesticide Biochemistry and Physiology 68(2):59-66.