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ABSTRACT 

The summits of the tepuis (sandstone table mountains of the Neotropical Guayana 

region – Guayana Highlands, GH) have been considered valuable for palaeoecological 

studies due to their pristine nature, which emphasizes the role of natural (i.e. non-

human) factors on ecological change. Anthropogenic fires, very frequent in the 

surrounding Gran Sabana (GS) uplands, have been documented in the GH very rarely, 

and are therefore not considered an important ecological factor in the high-tepui biome. 

This paper reports the palynological and charcoal results of a late Holocene sequence 

from the summit of Uei-tepui (2104 m elevation), where extensive signs of fire were 

recently observed. Since ~2000 cal yr BP the landscape of the study site has been 

dominated by meadows with occasional shrubs and cloud forests, which underwent 

expansions and contractions driven by climate changes and fire. A major vegetation 

shift occurred in the mid-18th century, when a sustained increase in local fires favoured 

the expansion of the low and spreading Cyrilla racemiflora shrublands at the expense of 

meadows and forests. Uei-tepui fires most probably were the result of human activities 

and reached the summit under study from the GS uplands through the vegetated slopes 

that characterize this tepui. The mostly anthropogenic nature of these fires, especially 

the more recent ones, is supported by the initial occurrence of wetter conditions, and by 

its coincidence with significant social changes in the GS indigenous populations, mainly 

the European contact. The emergence of fire as a disturbing agent of the GH biome 

highlights the need for an effective management plan in the GS uplands, where the vast 

majority of present-day fires originate, and designed in collaboration with the 

indigenous communities. Proactive conservation measures are considered even more 

important under future warming projections in the area. 

 

 

Keywords: conservation; indigenous populations; Neotropics; palaeoecology; tepui; 

Venezuela.  
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INTRODUCTION 

The Guayana Highlands (GH) constitute a unique discontinuous biogeographic province 

(Pantepui), located within the neotropical Guayana Shield of northern South America 

(Fig. 1). It is composed of the summits of ~50 remote and almost inaccessible table 

mountains (1500-3014 m elevation), called tepuis (Huber 1995a). The tepui summits 

contain exceptional vascular plant diversity and endemism (>2400 known species, 30% 

of which are GH endemics), which has lasted in an almost pristine state of conservation 

to our days (Nogué et al. 2009a; Safont et al. 2012; Steyermark et al. 1995-2005). This 

unusual conservation state makes them exceptional environments to test hypothesis 

about climatic forcing, and the corresponding ecosystem responses (Rull 2005a). In 

addition, the GH have been considered a natural laboratory to study relevant ecological, 

biogeographic, and evolutionary aspects of the neotropical biota (Rull 2010; Rull et al. 

2013). Recent studies suggest that upward displacements of summit taxa due to the 

global warming can result in the extinction of a number of plant species owing to total 

habitat loss (Nogué et al. 2009a; Rull and Vegas-Vilarrúbia 2006; Safont et al. 2012). In 

this regard, palaeoecological studies may provide valuable information on the responses 

of the GH biota to past environmental changes, thus offering more reliable criteria for 

improving biodiversity conservation strategies in face of the projected global warming. 

The palaeoecological information available thus far for the GH is relatively recent and 

refers to the middle and late Holocene. The lack of Pleistocene sediments (prior to 11.7 

kyr BP) in the first palaeoecological surveys was related to purported extended aridity 

in the entire Guayana region during the last glacial period (Schubert and Fritz 1985; 

Schubert et al. 1986). However, subsequent studies conducted at lowland localities 

documented temperature and moisture changes during the Last Glacial Maximum and 

across the Pleistocene/Holocene boundary (Bush et al. 2004; Montoya et al. 2011a; Rull 

2007). In addition, the aridity hypothesis was based on relatively few sampling points in 

the total GH area (~6000 km
2
). In the last decade, a number of palaeoecological studies 

have been conducted in the tepui summits, mainly located at the Chimantá Massif (eight 

records, between 1950 to 2627 m elevation), and two at the Guaiquinima Massif (1350 

m elevation) (Fig. 1). In the Chimantá Massif, the Acopán, Amurí, and Toronó tepuis 

showed relative vegetation stability over the last 6 cal kyr BP, with only minor local 

reorganizations between Stegolepis meadows and Bonnetia gallery forests. These 

reorganizations were most likely caused by changes in local moisture conditions, due to 
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the lateral shifting of water currents along the extensive alluvial plains of the Chimantá 

Massif (Rull 2005a). The highest tepui of this massif, Eruoda-tepui, also showed 

vegetation stability over the last 4 cal kyr BP (Nogué et al. 2009b). This ecological 

stability was explained in terms of either climatic stability, insensitivity of vegetation at 

the coring sites to climatic shifts, or climatic buffering atop the tepuis due to perhumid 

conditions (Rull 2005a). Moreover, the long-term vegetation stability was used as an 

example to discuss the concept of potential natural vegetation in the Neotropics (Rull 

2015). This concept was considered by Rull (2015) as ‘unnecessary’ given the difficulty 

to differentiate some of these records from other transient ecological states, their 

scarcity in the palaeoecological literature in comparison to those exhibiting continuous 

environmental and ecological change, and their restriction to particular environments. In 

other tepuis, however, some significant vegetation changes were related to climatic 

changes. For example, in the Churí-tepui, the replacement of Chimantaea shrublands by 

Stegolepis meadows at 3.5 cal kyr BP was explained as an upward displacement of the 

altitudinal ecotone between these communities, likely driven by a regional shift to 

warmer and wetter conditions (Rull 2004a,b,c). The Apakará-tepui record showed a 

significant vegetation change around 5.3 cal kyr BP, as a consequence of a shift from 

warmer and wetter climates (coinciding with most neotropical records and the Northern 

Hemisphere Holocene Thermal Maximum (Renssen et al. 2009)), to cooler and drier 

conditions, similar to present (Rull et al. 2011). Finally, successive replacements of 

Stegolepis meadows, Archytaea gallery forests, and upland forests were recorded in the 

Guaiquinima Massif during the last 8.4 cal kyr BP, which were attributed to moisture 

changes, probably of regional extent (Rull 2005b). 

In the GH palaeo-records, climate seems to have been the main driver of conspicuous 

vegetation changes on the tepui summits, as no any evidence of human disturbance has 

been recorded during the Holocene. The indigenous inhabiting the surrounding Gran 

Sabana (GS) uplands nowadays, called Pemón, consider the tepui summits as the home 

of gods or the remains of their tree of life, and thus sacred lands forbidden to humans 

(Gorzula and Huber 1992). Only a few tepui summits are routinely visited for touristic 

reasons, namely Roraima and Auyán. Contrastingly, the GS, characterized by a plateau 

with extensive savannas from where the tepuis rise (Fig. 2), has been affected by the 

regular action of fires since the Lateglacial (ca. 13 cal kyr BP), with a remarkable 

exacerbation during the last 2000 years (Montoya and Rull 2011; Montoya et al. 2011a; 
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Rull et al. 2013, 2015a). At present, it is estimated that more than ca. 10,000 fires are lit 

every year by humans in the GS but there is little evidence of burning, intentional or 

not, atop the tepuis (Huber 1995b). The eventual occurrence of Holocene fires in the 

tepui summits would significantly change the current conception of their ecological 

development. One of the more conspicuous records of a fire event of unknown age was 

observed recently at the top of the Uei-tepui (2150 m elevation), of the Eastern Tepui 

Chain (ETC). This fire likely reached the Uei summit from the GS uplands (ca. 1000 m 

elevation) due to the gradual slopes and herbaceous vegetation cover continuity that 

characterize the southern and western faces of this tepui. The present vegetation of the 

Uei-tepui summit shows clear and extensive signs of burning, indicating that present-

day vegetation is likely the result of secondary regrowth after fire (Fig. 3). This 

provides a unique opportunity for the study of the ecological effects of fire on tepuian 

flora and vegetation, a process that has not been documented previously in the GH and 

opens a new dimension in the study of vegetation dynamics atop the tepuis. 

In this paper, we report the results of pollen and charcoal analysis of a peat core 

obtained in the summit of Uei-tepui, spanning from 2 cal kyr BP to the present. The 

main aims are to: 1) record the vegetation changes that occurred in the Uei summit 

during the late Holocene, 2) investigate the potential relationship of these vegetation 

changes with eventual climatic shifts and fire events, 3) date the fire event mentioned 

above and assess its role in the shaping of present vegetation, and 4) evaluate the 

implications of the results for the conservation of the tepui ecosystems. For this study, 

we have selected the last 2000 years because this time period has been crucial for the 

shaping of present-day vegetation cover under the influence of both climatic and 

anthropogenic drivers, not only in the Guayana region but also in the Neotropics 

(Flantua et al. 2016; Montoya and Rull 2011; Rull et al. 2013; Rull and Montoya 2014). 

The last 2000 years are known to be decisive worldwide to understand the climatic and 

ecological dynamics useful to simulate potential future warming scenarios. The 

development of palaeoecological studies embracing this time period is urgently needed, 

especially in the tropics, where records of the past are still comparatively scarce 

(Flantua et al. 2015, 2016). 
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STUDY AREA  

- Guayana Highlands (GH) 

The GH are a complex of table mountains as the remnants of former erosion surfaces 

with localized diabase intrusions, developed on the sandstone and quartzites of the 

Roraima Group, belonging to the Precambrian Guayana Shield (Briceño and Schubert 

1990). The climate in the upper slopes and in most GH summits situated between 1500 

and 2400 m elevation is mesothermic ombrophilous, with average annual air 

temperature of 12 to 18 
o
C and average rainfall of 2500 to 3500 mm per year, whereas 

the highest summits (>2500 m) are characterized by submicrothermic ombrophilous 

climate conditions, that is, up to 10 
o
C of average annual air temperature and heavy 

rainfall, with low seasonality –a true dry season is virtually absent (Huber 1995a). The 

frequent occurrence of dense mists supplies additional moisture to the vegetation.  

The vegetation of the GH summits has been classified into four main physiognomic 

types (Huber 1995c): 1) low evergreen forests, 2) tepuian shrublands, 3) high-mountain 

meadows and grasslands, and 4) pioneer vegetation. Forests are characterized by a very 

high frequency of orographic mist during much of the year (cloud forests) and, in the 

ETC, are usually dominated by Bonnetia tepuiensis and B. roraimae (Bonnetiaceae). 

Other important trees are Podocarpus spp. (Podocarpaceae), Magnolia ptaritepuiana 

(Magnoliaceae), Schefflera spp. (Araliaceae), and Weinmannia spp. (Cunoniaceae). 

Most of these forests are densely covered by lichens, mosses, ferns, and other epiphytes. 

The understory is also dense, and Orectanthe ptaritepuiana (Xyridaceae), Brocchinia 

tatei (Bromeliaceae), Didymiandrum stellatum (Cyperaceae), and bambusoid grasses 

(Myriocladus spp.) are frequent. The shrublands are probably the most diverse plant 

formations on tepuian ecosystems, the more emblematic being the paramoid shrublands 

dominated by several endemic species of Chimantaea (Asteraceae) on the summits of 

the Chimantá Massif between 1900 and 2600 m elevation (Huber 1992a).  

Non-gramineous meadows are also characteristic of the GH vegetation and their 

floristic composition and physiognomic structure vary considerably from one massif to 

another. Four types have been recognized: 1) broad-leaved meadows, typically 

dominated by various species of Rapateaceae, especially of the genus Stegolepis, 2) 

tubiform meadows, dominated by tubiform herbs of Bromeliaceae (typically 

Brocchinia) or Sarraceniaceae (Heliamphora), 3) rosette meadows, characterized by 
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dense rosette herbs of Xyridaceae and Eriocaulaceae, and 4) fruticose meadows, where 

the herbaceous layer is mixed with abundant low shrubs. In most tepui summits of the 

ETC (between 2400 and 2750 m elevation), rosette meadows are dominated by 

Orectanthe sceptrum (Xyridaceae), Connellia augustae, and C. quelchii (Bromeliaceae), 

and many species of Eriocaulaceae. On the lower summits of the ETC (2000-2400 m 

elevation), rosette meadows are mainly composed of large colonies of Brocchinia tatei, 

accompanied by Neurolepis angusta (Poaceae, Bambusoideae), Heliamphora 

heterodoxa, Orectanthe sceptrum, Xyris spp. (Xyridaceae), many species of 

Eriocaulaceae, and Everardia spp. (Cyperaceae). Grasslands are restricted to sites with 

particular local conditions. For example, Cortaderia roraimensis (Poaceae) can form 

dense and almost monospecific colonies on periodically flooded soils or peats near 

water courses. Aulonemia spp. (Poaceae, Bambusoideae), Cladium costatum, and 

Rhynchocladium steyermarkii (Cyperaceae) occur occasionally in these plots. Pioneer 

communities occur on rocky substrates, which are especially abundant on the high 

summits of the ETC (Roraima, Kukenán, Yuruaní, Ilú, and Tramen). Most colonizers of 

these highland rock outcrops are algae, fungi and lichens, as well as several 

Bromeliaceae, such as Lindmania, and Brocchinia (Huber 1995c).  

- Uei-tepui summit 

The Uei-tepui (maximum elevation 2150 m) is located in the eastern district of the GH 

along the border with Brazil, 20 km SE of the southern cliffs of Roraima-tepui (Fig. 1). 

Uei is the southernmost tepui of the ETC, which comprises 11 mostly open and rocky 

tepui summits. In contrast to other ETC tepui summits, which are mostly surrounded by 

vertical cliffs, Uei-tepui has gradual slopes enabling the topographic continuity between 

its summit and the GS savannas to the S and W, and dense rainforests to the N and E 

(Fig. 2) (Huber 1995a). The coring site of this work was in a peat bog located in the 

summit, at ~1.35 km N-NE of the peak. The present vegetation of the site is relatively 

complex, with herbaceous meadows as the dominant vegetation element, alternating 

locally with shrublands, and dwarf forest stands of Bonnetia tepuiensis (Fig. 3). During 

the fieldwork of this study in February 2007, the frequent occurrence of clusters of 

standing charred trees, probably a species of Bonnetia, was considered evidence of 

former widespread tepuian cloud forests, and the significant reduction of this forest 

cover caused by an extensive fire event of unknown age. Therefore, the dominant 

broad-leaved meadows were considered as secondary vegetation. The herbaceous 
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component is dominated by broad-leaved plants, notably large clumps of Stegolepis 

guianensis, Xyris spp., Eriocaulaceae, Lycopodiella sp. (Lycopodiaceae), and large 

rosettes of Brocchinia tatei and Connellia augustae. In the more humid areas, meadows 

are characterized by a higher frequency of B. tatei and large colonies of Heliamphora 

sp. with tubular leafs of 50 cm or more in height. Two types of shrubby formations have 

been distinguished in the Uei-tepui summit. One is dominated by Phyllanthus 

pycnophyllus (Euphorbiaceae), with Gaiadendron punctatum (Loranthaceae), Cyrilla 

racemiflora (Cyrillaceae), Meriania crassiramis (Melastomataceae), Cybianthus sp. 

(Myrsinaceae), and the liana Passiflora sclerophylla (Passifloraceae). The other is more 

restricted and characterized by tall (3-5 m) shrubs such as Poecilandra retusa 

(Ochnaceae), Coccoloba schomburgkii (Polygonaceae), and M. crassiramis. The level 

of botanical exploration of Uei-tepui is relatively low in comparison with other tepuis. 

The species recorded for its summit through herbarium specimens are provided in 

Online Resource. Uei-tepui is included in the Venezuelan Cadena de Tepuyes 

Orientales Natural Monument, which includes six tepuis of the ETC (Huber 1995b). 

 

METHODS 

- Coring site 

A 185 cm peat core (PATAM8 A07; 5.01604N, 60.61449W, 2104 m elevation), 

consisting of four drives of 5 cm diameter and 50 cm maximum length each, was 

obtained using a Russian corer (Jowsey 1966). The whole section was composed of 

black peat, showing granular structure from the base to 100 cm depth, and fibrous 

texture from this depth to the surface (Fig. 4). The core was sampled in the field at 2 

cm-depth intervals (except for the uppermost 8 cm, where only two samples could be 

retrieved at 0-5 and 5-8 cm), for a total of 91 samples. In this study, the upper 46 

samples were analysed, corresponding to the last 2000 cal yr BP. A surface sample of 

peat was taken in the same coring site (consisting of broad-leaved meadow, mainly 

Stegolepis guianensis, Brocchinia tatei and Cyrilla racemiflora) for comparison. 

- Sampling processing, identification, and counting 

Sediment samples of 2.8 to 3.1 g were used for chemical processing, after adding 

Lycopodium clavatum spore tablets (batches 177,745 and 1031, average 18,584 ± 1853 
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and 20,848 ± 3457 spores per tablet, respectively). Given that this species is present on 

the summit of the Roraima-tepui (Safont et al. 2014) a test with four samples was 

conducted without the addition of the tablets to verify that it was not present in the Uei-

tepui sediment. The standard pollen processing protocol was followed, including KOH, 

HCl, and HF digestions, and acetolysis (Bennett and Willis 2001). Slides were mounted 

in silicone oil after dehydration and sealed with nail polish. Pollen and spore 

identifications followed Burn and Mayle (2008), Contreras-Duarte et al. (2006), Leal et 

al. (2011), López-Martínez et al. (2010), Murillo and Bless (1974; 1978), Rull (1998; 

2003), and Salgado-Laboriau and Villar (1992), as well as more general literature 

(Bauermann et al. 2013; Colinvaux et al. 1999; Herrera and Urrego 1996; Roubik and 

Moreno 1991; Tryon and Lugardon 1991), and the Neotropical Pollen Database (Bush 

and Weng 2006).  

For each sample, counting was conducted until a minimum of 300 pollen grains from 

terrestrial vegetation and pteridophyte spores (including a minimum pollen sum of 200), 

though counts were usually higher because they were continued until the diversity did 

not change significantly any more (Rull 1987). The average pollen sum was 324 

(ranging from 271 to 519), which includes all pollen types except azonal aquatics 

(Sagittaria, Alismataceae, and Isoetes, Isoetaceae) and excludes pteridophyte spores. 

Microcharcoal particles were counted from the same palynological slides and were 

subdivided into three size classes (modified from Rull 1999): Type I) 5-100 µm, as a 

proxy for mostly regional fires because of their easy dispersion by wind; Type II) 100-

500 µm, as a proxy for local fires; and Type III) >500 µm, as a proxy for high virulence 

local fire events, and represented as presence/absence. 

- Diagram and interpretation 

The pollen diagram was plotted and zoned with Psimpoll version 4.27, based on pollen 

types over 1% of abundance. Zonation was carried out after Optimal Splitting by 

Information Content, and their significance was tested with the broken-stick model 

(Bennett 1996). Pollen grouping according to ecological preference followed Huber 

(1992a,b; 1995c) and the Flora of the Venezuelan Guayana (Steyermark et al. 1995-

2005), which was also the taxonomic reference. Accelerator mass spectrometry 

radiocarbon dating was carried out at the W.M. Keck Carbon Cycle AMS Laboratory 

(University of California) and Beta Analytic, on four samples consisting of plant 
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macroremains found along the entire length of the sequence. In order to date the above 

mentioned fire event, an additional sample was taken in the most external part of a burnt 

tree trunk, rooted and in a natural growth position, and close to the coring site. Age 

calibration and the age-depth model were performed with clam.R (Blaauw 2010), using 

CALIB 7.0.0 and the IntCal13 database (Reimer et al. 2013). The interpretation of 

pollen spectra was based on the known ecological requirements of the taxa involved 

(Marchant et al. 2002; Rull 2003; Steyermark et al. 1995-2005), as well as the modern 

analogue studies available for the tepui summits (Rull 2005a). The differences between 

modern (surface) and core samples were measured through a dissimilarity analysis 

applying the Chord distance, a modification of the Euclidean distance to deal with the 

double-zero problem in species abundance data (Legendre and Legendre 2012), using 

only taxa included in the pollen sum. 

 

RESULTS AND INTERPRETATION 

- Dating and age-depth model 

The four radiocarbon dates obtained ranged from 5200 to 220 
14

C yr BP (~5954 to 228 

cal yr BP) (Table 1). The best fit was obtained with a spline smooth age-depth model 

(Fig. 4). Average peat accumulation rates showed a gradual increase from 0.03 cm/yr 

(phase I) to 0.10 cm/yr (phase II) before and after 490 cal yr BP (48 cm core depth), 

respectively. According to these results, the resolution of the pollen record is 

multidecadal to centennial, with ranges from 64 years per sampling interval (y/si) in 

phase I to 23 y/si in phase II. The age of the charred wood is most likely between 220 

and 168 cal yr BP, with a Relative Area under the Probability Distribution (RAPD) of 

0.547 (Table 1, Fig. 5). Other possible intervals are 282-262 cal yr BP (0.168), 153-141 

cal yr BP (0.104), and 24-2 cal yr BP (0.180). 

- Vegetation trends 

The percentage diagram (Fig. 5) is primarily dominated by herbs and type-I (5-100 µm) 

charcoal particles, except for the last ~300 years, when forest species and the shrub 

Cyrilla racemiflora dominate the pollen assemblages, coinciding with an increase of 

type-II (100-500 µm) and the appearance of type-III (>500 µm) charcoal particles. The 

pollen concentration gradually increases with depth, showing a peak at 61 cm (~810 cal 
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yr BP). The sequence has been subdivided into four significant zones, designated as 

Uei-I to Uei-IV. The following section provides the results and the interpretation of 

these zones: 

Uei-I (96-64 cm, 2008-895 cal yr BP). This zone is characterized by the dominance of 

herbs, especially Xyris, followed by Cyperaceae, Poaceae, and Bromeliaceae. Shrubs 

are less abundant, being Biophytum the most relevant. Weinmannia, Cyrilla 

racemiflora, Miconia-type, Sauvagesia-type, and Ericaceae are also present but in low 

proportions. The main forest elements are Bonnetia, Doliocarpus (a liana), and 

Urticales, with Schefflera being poorly represented. The aquatic plant Sagittaria is also 

present and Lycopodiella is the most notable spore-bearing vascular plant in this zone. 

Type-I charcoal particles are present at intermediate values, indicating the existence of 

regional fires in the area. The pollen assemblages of this zone have intermediate 

dissimilarity values with the modern sample (Fig. 5), and suggest that the vegetation 

was dominated by open meadows, in which the shrub Biophytum was significantly more 

abundant than today, with patches of Bonnetia forests. The meadows were likely more 

humid than today, as suggested by the abundance of Xyris and the presence of 

Sagittaria, and the forest stands were more extended than the present ones. The 

abundance of Urticales (ca. 5-10%) might suggest that they were important components 

of the Uei forests. However, the pollen grains of this order are dispersed by wind over 

long distances and percentages over 40% are required to infer their in situ occurrence 

(Gosling et al. 2009). Today, Urticales are not a component of the Uei-tepui summit 

vegetation; instead, they are abundant at the GS uplands (Steyermark et al. 1995-2005). 

Therefore, the presence of Urticales pollen grains in the Uei record  is interpreted as 

likely transported from the GS uplands. 

Uei-II (64-36 cm, 895-271 cal yr BP). This zone is characterized by a decrease in some 

woody elements, namely Bonnetia, Doliocarpus, and Biophytum, together with an 

increase of some herbs, mainly Cyperaceae, Poaceae, and Stegolepis guianensis. The 

similarity of this zone with the modern assemblage is higher (lower Chord distance) 

than in zone Uei-I. The coincidence with a prominent peak in type-I charcoal and the 

appearance of type-II at the beginning of the zone (~810 cal yr BP) suggests that a 

significant fire event reduced the forest cover and the woody elements of the meadows, 

allowing herbaceous taxa to increase their cover. The recovery of trees and shrubs after 

the initial decline was very slow and these elements did not reach their former values 
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until the upper part of the zone (~390 cal yr BP). This suggests a time period of nearly 

400 years for Bonnetia cloud forests to recover after a fire event that affected the 

summit tepuian vegetation but did not involve the complete disappearance of the local 

community. Contrastingly, Biophytum did not recover its previous abundance after the 

fire and remained virtually absent after ca. 500 cal yr BP. The disappearance of this 

species occurred at the middle of the zone, without any change in fire incidence; 

therefore, other environmental drivers may be involved. The same is true for the 

undetermined pollen type “3-4CP psilate”, suggesting that these two taxa might have 

similar habitat requirements that were no longer available from the middle of this 

period. In addition, the charcoal peak was synchronous with an increase in pollen 

concentration, especially of Urticales, Cyperaceae and Xyris. However, an interpretation 

of this coincidence would still be too premature and hypothetical, as modern analogue 

studies addressing the effects of fire on different taxa in the GH are non-existent. 

Uei-III (36-16 cm, 271-49 cal yr BP). This zone is characterized by a remarkable 

increase of Bonnetia and Doliocarpus, which attained their maximum at the middle of 

the zone (23-25 cm, ~131-111 cal yr BP), coupled with the progressive but significant 

decrease of all herbaceous taxa. Also relevant is Cyrilla racemiflora, which shows a 

remarkable increase from 5% to 20% in the upper half of the zone. This is the zone of 

maximum dissimilarity with the modern assemblage, especially in its middle part. These 

trends coincide with a continued increase in charcoal. This zone can be interpreted in 

terms of a full recovery and further expansion of Bonnetia forests likely covering most 

of the summit area studied, as suggested by pollen percentages between 20% and 30%, 

which indicate the local occurrence of dense tepuian cloud forests (Rull 2005a). An 

increase in local fires (type-II charcoal particles) could have been the responsible factor 

for the decline of herbaceous vegetation recorded since the beginning of the zone but 

may have not been enough to reduce the Bonnetia forest until the middle of the zone, 

possibly because of the existence of a humid microclimate inside the forest that 

prevented fire penetration (Chen et al. 1999). Once again, forest reduction was not 

catastrophic, as their main components (Bonnetia and Doliocarpus) declined gradually. 

The spread of Cyrilla racemiflora after fire was probably favoured by the removal of 

existing vegetation, given that this species is a well-known early colonizer of burnt 

areas due to its ability to develop vegetative sprouting from adventitious buds on the 
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roots following fire disturbance (Coladonato 1992; Duever and Riopelle 1983; Ewel 

1990; Kologiski 1977). 

Uei-IV (16-0 cm, 49 cal yr BP-AD 2007). This zone is totally dominated by Cyrilla 

racemiflora (25-60%), whereas Bonnetia and Doliocarpus show a significant but 

gradual decrease until reaching values similar to today. All herbaceous taxa are already 

at their minima at the beginning of the zone and did not undergo any significant change, 

which is also true for aquatic plants and ferns. All charcoal types attain a maximum at 

the beginning of the zone (11-15 cm, 41-11 cal yr BP). The more likely interpretation is 

the continued reduction of forests and meadows due to local and intense fires, thus 

fostering the expansion of an aggressive colonizer such as Cyrilla racemiflora, which 

probably covered most of the summit area by the mid-late 20th century. Noteworthy, C. 

racemiflora did not stop to increase even after the fire maximum, possibly because its 

rapid growing once it has outcompeted the remaining species and has been successfully 

established (Robertson et al. 1998). 

Since those times (~AD 1995, mean age of the upper core sample) to the present (AD 

2007, represented by the surface sample), a reduction of all taxa except most herbaceous 

elements has occurred, which is consistent with the present-day dominance of broad-

leaved meadows (Fig. 3). Neither Bonnetia forests nor Biophytum shrubs have 

recovered, on the contrary, they are even more reduced than the inferred abundances for 

the mid-late 20th century. The same is true for Cyrilla racemiflora, which cover has 

declined in favour of meadow expansion. Despite these changes in abundances, zone 

Uei-IV is the zone of maximum similarity (minimum Chord distance) with the surface 

sample assemblage. Modern charcoal values are intermediate and are largely dominated 

by type-I charcoal, suggesting regional fires, likely burning in the GS uplands. When 

compared with present-day vegetation, Xyris, Stegolepis guianensis, Poaceae, Cyrilla 

racemiflora, and Bonnetia are properly represented in the modern pollen assemblage, 

but Miconia-type, Ilex (not present in the diagram), Urticales, Doliocarpus, and 

Cyperaceae appear to be overrepresented in the surface sample. However, despite the 

frequent occurrence of large rosettes of Brocchinia tatei and Connellia augustae around 

the sampling site, these taxa are scarcely represented in the pollen assemblage. 

Eriocaulaceae, and all components of local shrubland vegetation (except Cyrilla and 

Cybianthus), are absent from the modern pollen assemblage. 
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DISCUSSION 

- Forcing factors of vegetation change 

In this section, we compare the vegetation shifts deduced from the pollen record with 

the main climatic and anthropogenic drivers potentially involved. In the absence of 

palaeoclimatic reconstructions for the region under study, we use the marine Cariaco 

record (see location in Fig. 1), especially the Titanium record, which has been used as 

proxy for regional moisture variations during the Lateglacial and the Holocene. Ti 

values are correlated directly to the amount of terrigenous sedimentary input to coastal 

environments and, hence, are positively correlated with regional precipitation. In turn, 

precipitation patterns are dependent on the position of the Intertropical Convergence 

Zone (ITCZ). At 10
o
 N, the Cariaco basin sits at the northern edge of the annual 

latitudinal range of the ITCZ. During the summer, with the ITCZ nearly overhead, 

precipitation increases in regions that drain directly into the Cariaco basin or contribute 

to flow in the Orinoco River (Hastenrath and Greishar 1993), whereas during 

winter/spring, the ITCZ is located over the equator or further south, thus reducing 

precipitation over northern South America (Haug et al. 2001). Therefore, high Ti 

concentrations in the Cariaco record associated to wetter Holocene phases (Holocene 

Thermal Maximum, 10.5-5.4 cal kyr BP) indicate a more northerly mean annual 

position for the ITCZ relative to drier intervals (the later Holocene, from ~3.8 cal kyr 

BP)  (Haug et al. 2001). In the GS region, moisture variations and fire incidence –a 

combination of frequency and intensity– have been considered the more important 

environmental drivers of Holocene vegetation changes (Flantua et al. 2016; Rull et al. 

2013). 

During the period 2000-1050 cal yr BP, regional precipitation showed relatively high to 

intermediate values compared to the last 2000 years, coinciding with relative vegetation 

stability and the occurrence of regional fires. From 1050 to 900 cal yr BP, an increase in 

precipitation (up to the maximum of the record), coeval with the beginning of the 

Medieval Climatic Anomaly (MCA, 1050-700 cal yr BP, Haug et al. 2001) (Fig. 6), did 

not result into major vegetation or charcoal changes, which suggests that regional 

climate may not have a straightforward relationship with fire incidence and vegetation 

trends. In fact, besides climatic conditions, the accumulation of biomass and ignition 

mechanisms are key in determining the occurrence of fire events. In this regard, the first 
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significant shift observed in the pollen record is the decrease in woody species after the 

fire event occurred at ~810 cal yr BP, which coincided with a decrease of regional 

precipitation during the latter MCA (900-700 cal yr BP). The lower precipitation regime 

might have facilitated the generation of environmental conditions suitable for the 

occurrence of fires, although, as mentioned, biomass accumulation and ignition may 

have also been indispensable. The absence of local fires in the Uei summit in other 

periods of even lower precipitation may be thus due to the absence of at least one of 

these two factors.  

Shortly after ~670 cal yr BP regional precipitation increased remarkably. This shift 

towards wetter climatic conditions was synchronous with a reduction of fire incidence, 

which was maintained even when precipitation decreased to the minimum of the record 

during the Little Ice Age (LIA, 500-175 cal yr BP, Haug et al. 2011) (Fig. 6), thus 

favouring forest recovery. Rull (1999) also recorded lower fire incidence between 600 

and 200 cal yr BP in Urué, a GS locality at ~70 km east of Uei-tepui, coinciding with 

the lowest charcoal concentration of this study. Remarkably, the Ti record from Cariaco 

represents a notable exception to the regional picture of wetter LIA conditions in 

northern South America, possibly explained by an antiphasing of precipitation between 

coastal Venezuela and the Venezuelan Andes (Polissar et al. 2006). The forest recovery 

did not seem to be influenced by the increase in precipitation ca. 140 years after the fire 

event. Instead, it took place during the LIA, despite decreasing regional precipitation. 

This fact highlights that the absence of fire may be a more important factor than 

regional climate in the reestablishment of the forest, and may be explained by a wetter 

local climate and/or the existence of a humid microclimate below the tree canopy that 

favoured the survival of adjacent growing trees. The disappearance of Biophytum 

occurred at the beginning of the LIA, in a period of decreasing precipitation, which may 

indicate the overcoming of the precipitation tolerance threshold for this taxon. In 

addition, the fact that the minimum charcoal record coincided with a period of low 

precipitation between ~400-180 cal yr BP highlights that climatic conditions would not 

be the main factor responsible for the low fire activity, suggesting that changes in 

human practices may be a more influential driver. Although no archaeological remains 

have been found in the GS indicating the presence of humans prior to the arrival of 

Europeans, some palaeoecological studies have suggested that human groups with 

landscape management practices similar to those observed today would have been 
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present in this area since at least 2000 years ago (Ballesteros et al. 2014; Montoya and 

Rull 2011; Montoya et al. 2011b).  

The natural and/or anthropogenic causes of Lateglacial and Holocene fires are an 

outstanding issue in the region (Rull et al. 2015a). In the GS uplands, it has been 

considered that most fires recorded have been of human origin (Montoya and Rull 2011; 

Rull et al. 2015a) but there is no palaeoecological study reporting in situ past fires on 

tepui summits. Nogué et al. (2009b), documented a charcoal peak at 3.9 cal kyr BP at 

the top of the Eruoda-tepui (>2600 m elevation) but the absence of vegetation changes 

and the small size of charcoal particles (<100 µm) indicated that the most probable 

source of the charcoal were regional fires in the surrounding GS uplands. Currently, the 

GS is the homeland of the Pemón indigenous culture, in which the burning of vast areas 

of savanna, and occasionally forests (Kingsbury 2001), is recurrent. The reasons for the 

extent and frequency of these fires include activities such as shifting cultivation (slash-

and-burn in small plots cleared inside the forest, called conucos), cooking, hunting, 

fishing, prevention of large fires, communication, magic, etc. (Bilbao et al. 2010; 

Rodríguez 2004, 2007). Indeed, fire has been recognized as keystone ecological factor 

in the shaping of the GS vegetation since the Lateglacial, especially in the last 2000 

years, when fire frequency abruptly increased (Montoya et al. 2009, 2011a,b,c; Rull 

1999). The anthropogenic nature of this high fire activity was postulated based on the 

available palaeoclimatic and palaeoecological evidence (Montoya and Rull 2011; Rull 

et al. 2015a).  

On the summit of Uei-tepui, the replacement of the Bonnetia forest and non-gramineous 

meadows by an open landscape almost totally dominated by Cyrilla was related here 

with the occurrence of local fires, some of them of high virulence, from the 18th century 

onwards. Unfortunately, a joint interpretation of these vegetation changes with the 

regional precipitation inferred from Cariaco is not possible due to the incompleteness of 

the Ti record from AD 1840 to the present. However, the occurrence of wetter climatic 

conditions after the LIA, coinciding with the increase in local fires, suggests that 

climate alone was not responsible for the vegetation shifts recorded. In addition, this 

period coincided with the first real penetration of Pemón territory by outsiders coming 

with the Spanish-Portuguese boundary commission by AD 1750 (Thomas 1982) (Fig. 

6). Several missions were founded at the GS starting at AD 1770, in which most Pemón 

people worked and lived (Thomas 1982). The contact with this European culture led to 
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a shift from nomadic to sedentary communities and to uncontrolled population growth. 

These social changes altered the Pemón life-style, which finally resulted in 

unsustainable fire practices (e.g., more intensive land use through the abbreviation of 

the fallow period and the location of fields more closely together, or setting fires during 

the dry season, which may potentially result in large, catastrophic fires) (Dezzeo et al. 

2004; Kingsbury 2001, 2003; Rodríguez 2007).  

Concerning the geographic origin of the local Uei-tepui fires, the probability of these 

fires being set at the Uei-tepui summit itself is unlikely, since the Pemón do not visit 

tepui summits. The possibility of the fire propagated to the Uei summit from the 

surrounding uplands is supported by historical observations of similar events. For 

example, Holdridge (1933) and Tate (1930, 1932) reported a fire originated in the lower 

slopes of Roraima on April AD 1926 during the expedition of the first, who was 

accompanied in his ascension by both Arekuna (a Pemón sub-group) and Patamona 

(indigenous group from Guyana, living in the forests) people. The fire was set 

accidentally at the end of an unusually dry season, which probably facilitated its 

propagation both to the GS uplands and the higher slopes of this tepui. The flames even 

reached the plateau by way of the ledge leading to the summit, although they made no 

progress into the vegetation there due to the abundant bare rock that characterize this 

particular tepui summit. Mayr and Phelps (1967) reported the evidence of fires occurred 

around 40 years before their expedition in AD 1966 (AD 1920s, probably contemporary 

to the above mentioned Roraima fire), which profoundly affected the vegetation of 

several eastern tepuis (Roraima, Uei, Sororopán, Auyán, Upuigma). This period 

coincides with the highest local fire activity recorded in Uei-tepui, and with the most 

recent age interval for the burnt tree trunk (24-2 cal yr BP, AD 1926-1948). Therefore, 

currently available data suggests that the last fire event on the Uei-tepui summit 

probably took place in the AD 1920s, about 90 years ago, and caused the largest effects 

on vegetation of the last 2000 years. The possibility of dating tree rings of known age 

and use them to adjust the radiocarbon calibration curve of the burnt samples may be 

explored in order to improve the dating of fire events within this period of time (around 

165 
14

C yr BP), where precise calibrated ages are generally difficult to obtain (Maarten 

Blaauw, pers. comm.). However, its application in the GH may not be straightforward, 

given the difficulty reported by Worbes (1999) in recognizing the rings of most GS tree 

species. In this study, historical evidences combined with radiocarbon dating have 
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resulted useful to suggest possible and most likely age intervals for the last fire event in 

the Uei-tepui summit, on the understanding that future advances on radiocarbon dating 

methods may improve the reliability of the outcome. 

According to Huber (1988), only 20% of the tepui summits are totally isolated, whereas 

the others are connected to the surrounding lowlands/uplands, either by fully vegetated 

ridges, extensive valleys or gentle slopes. The reports of Tate (1930, 1932) of a fire 

event ascending the ledge and reaching the Roraima summit, which has been considered 

a well-isolated summit, highlights that even in table-like tepuis, fire only need a narrow 

continuous vegetation strip to propagate. Therefore, the potential fire disturbance would 

not be restricted to tepuis showing gradual slopes, but also to mostly table-like tepuis 

with smaller but continuous vegetated areas in the cliffs. The results of this study 

emphasize that tepuis located within the GS uplands are susceptible to major vegetation 

changes as a consequence of human-made uncontrolled fires from the GS. In the last 

centuries, fire has indeed become an important ecological feature that has moulded the 

vegetation at Uei-tepui. In order to deepen the knowledge of the ecological effects of 

fire in the GH, further studies should include the analysis of the remaining samples of 

the same core (PATAM8 A07) going back to 6000 cal yr BP, and the extension of 

palaeoecological studies to other GH localities potentially affected by fires. Moreover, it 

would be beneficial to obtain independent climatic proxies from the sampling location 

from which palynological and charcoal analyses are conducted, in order to carry out 

more accurate climatic interpretations of the palaeoecological records. 

- Implications for conservation 

The record of vegetation changes on the summit of the Uei-tepui documented in this 

study and their relationship with climatic and anthropic drivers may have relevant 

implications for conservation. For example, the significant time lag existing between the 

decrease of fire incidence occurred after the charcoal peak at ~810 cal yr BP and the 

reestablishment of the forest, around 400 cal yr BP, showed that the recovery of 

vegetation after fire proceeded at centennial scale. A possible cause for this slow 

recovery process may be the highly oligotrophic environment (Huber 1995b), which 

determines a very low resilience of the high-tepui vegetation. However, the response of 

Cyrilla to fire was faster, which suggests that not only environmental factors but also 

individual autecological features may be involved, as for example lifespan, growth 
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rates, competitive ability, etc. This highlights that understanding of individual 

ecological differences among species is essential in determining vegetation responses to 

natural or anthropogenic disturbances. Under future climate change scenarios, the 

interplay between environmental drivers and autecological features will be crucial in 

shaping the future floristic composition and the corresponding ecological communities 

on the summit of Uei-tepui. Another important consideration for conservation is that a 

highly uneven distribution of abundances among the pollen taxa included in the pollen 

sum can be observed in the samples of the mid-late 20th century, when Cyrilla 

dominated the pollen assemblages at the expense of forest and herbaceous species. This 

involved a substantial decrease in the ecological diversity of the vegetation atop Uei-

tepui during this period, which may have implications on the functioning of the entire 

ecosystem (Isbell et al. 2011 and literature therein). 

The Intergovernmental Panel on Climate Change (IPCC 2013) projected an increase of 

1 to 7 ºC in mean annual temperatures for the whole Pantepui region (including the 

lowlands and uplands surrounding the tepuis), whereas the projected total annual 

precipitation varies between +10% and -50% of present-day values. Although 

uncertainties are still important, these projections point towards a warmer and likely 

drier climate by 2100, which may reduce the available moisture and potentially increase 

the flammability of vegetation. Under these circumstances, if fire practices in the GS 

remain similar to the trend observed in the last two millennia (Montoya and Rull 2011), 

it is likely that an increasing number of fires will reach the tepui summits. In addition, a 

large number of high-tepui species may be at risk due to potential habitat loss caused by 

upward migration following future temperature increase (Nogué et al. 2009a; Rull and 

Vegas-Vilarrúbia 2006; Safont et al. 2012). So far, palaeoecological evidence suggested 

that this risk may be overestimated, as only sensitive species would be able to migrate 

following climatic shifts, whereas others would be able to accommodate these changes 

within their ecological envelope, likely due to their phenotypic plasticity (Rull et al. 

2015b; Vegas-Vilarrúbia et al. 2011). Also, their persistence in potential refugia (Vegas-

Vilarrúbia et al. 2012) or microrefugia (sensu Rull 2009), or rapid genetic adaptation 

should not be dismissed without positive evidence (Vegas-Vilarrúbia et al. 2011). 

However, future potential synergies between ongoing climate change and fire in the GH 

could produce non-linear ecological responses, including threshold crossing and/or 
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irreversibility, which may significantly change the diversity and composition of their 

unique communities (Rull et al. 2013).  

Currently the GH are protected by six National Parks, of which Canaima is a Natural 

World Heritage Site (Huber and Foster 2003), 21 Natural Monuments, and one 

Biosphere Reserve (Huber 1995b). Still, management plans for most of these protected 

areas are lacking or are insufficiently staffed (Bevilacqua et al. 2002, 2009; Castillo 

2005; Huber 1995b; Novo and Díaz 2007). In addition, fire suppression actions 

undertaken by the Venezuelan hydro-electric company (CVG-EDELCA 2004) were 

seen by the Pemón populations as a threat to their culture and therefore were not well 

received (Rodríguez 2004, 2007).  These actions followed the economic interests of the 

company, mainly focused on gallery forests of the GS close to the exploited river 

courses. In order to reduce the fire risk on tepui summits, an effective management plan 

with the positive interaction of local communities should be implemented in the GS, 

including the necessary staff to monitor the compliance of the established regulations. 

Besides, given the fragility of the tepui vegetation, tourist excursions as well as 

expeditions mobilizing large numbers of people should be limited and subjected to 

regulations. Campfires have been reported, though very rarely, on tepui summits (Huber 

1995b; Desafío Vertical 2011, http://www.cuatro.com/desafio-vertical/, both on Auyán-

tepui), and should be prohibited because of the risk of the fire escaping to the 

surrounding vegetation. Overall, a greater effort should be made in the short term by all 

stakeholders (land managers, indigenous communities, and tourists) to preserve the 

high-tepui biome before extended significant damage occurs. 

 

CONCLUSIONS 

The palynological analysis of a late Holocene sequence from the summit of Uei-tepui 

documented the occurrence of significant vegetation changes and the potential natural 

and anthropogenic drivers involved. Before ~810 cal yr BP (AD 1140), the landscape 

was dominated by broad-leaved non-gramineous meadows with some interspersed 

woody elements, mainly Biophytum, along with patches of Bonnetia cloud forest. At 

~810 cal yr BP, a peak of fire incidence, coeval with a decrease in regional 

precipitation, took place reducing the woody elements and the cloud forests of the 

summit and allowing herbaceous taxa to expand. Forest recovery to its previous 
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abundance occurred slowly elapsing several centuries to be completed. In contrast, 

Biophytum did not recover and remained virtually absent after the fire. Since the mid-

18th century, forests and meadows were replaced by monotypic shrublands of Cyrilla 

racemiflora, coinciding with intense fires, synchronous with the arrival of Europeans to 

the GS area by AD 1750. One of the charred tree trunks currently widespread on the Uei 

summit was dated to 220-168 cal yr BP (AD 1730-1782) as the most probable age 

interval resulting from calibration. However, the documentation of large fires in the GS 

tepuis (Mayr and Phelps 1967; Tate 1930, 1932), including Uei, by AD 1920s, 

coinciding with the second most probable age interval for the burnt tree (24-2 cal yr BP, 

AD 1926-1948), and especially the presence of type-III charcoal particles in the record 

(indicative of high virulence local fire events), suggest that this may be a likely age for 

the latest fire event leading to forest clearing and the establishment of present-day 

vegetation. Late Holocene fires documented atop Uei-tepui were most likely caused by 

human activities and reached the summit from the GS uplands, probably favoured by 

local climatic conditions. Our results suggest that fire has been the main factor in the 

shaping of Uei-tepui vegetation and its changes during the last two millennia, a situation 

that contrasts markedly with most of the tepui summits, not only of the ETC but also in 

the GH in general. During the last centuries, fire contributed significantly to the 

impoverishment of plant diversity atop Uei-tepui, a situation that could be extended to 

other tepui summits under the current fire management practices (Rull et al. 2013). 

Effective management plans should be implemented to reduce fire risk in the GH, and 

with more urgency that ever, given the projected warming scenario of the area (IPCC 

2013).  
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Tables 

 

Table 1 Radiocarbon dates of Uei-tepui core (PATAM8 A07). Two-sigma confidence intervals 

for calibrated years are given in brackets for the highest probability intervals (RAPD). Asterisks 

mark the samples within the temporal interval included in this study. 

Depth (cm) Lab code Sample type 
14

C yr BP Median cal yr 

BP (2) 

RAPD
a 

40-42* Beta-247288 Macroremains 220 ± 40 181 (137-224) 

287 (256-318) 

0.473 

0.355 

90-92* Beta-247289 Macroremains 1900 ± 40 1827 (1728-1926) 1.000 

144-146 Beta-247290 Macroremains 3800 ± 50 4199 (4079-4319) 0.863 

178-182 UCI-37497 Macroremains 5200 ± 15 5936 (5918-5953) 

5975 (5961-5989) 

0.566 

0.434 

Modern burnt 

wood* 

UCI-37500 Macroremains 165 ± 15 194 (168-220) 0.547 

a
 Relative area under probability distribution (Reimer et al. 2013). 
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Figures 

 

Fig. 1 Map of the study area and its location within northern South America (radar image 

courtesy of NASA/JPL-Caltech). Tepuis are represented with grey areas, and red stars indicate 

the palaeo-records obtained from tepui summits. In the Chimantá Massif, Ac: Acopán, Am: 

Amurí, Ap: Apakará, Ch: Churí, Er: Eruoda, and To: Toronó. Yellow areas indicate the current 

presence of savannas, while rivers, roads, and political boundaries are represented by blue, 

brown, and dashed black lines, respectively. 
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Fig. 2 Topographic differences between the Roraima-tepui (a), which flat summit is surrounded 

by vertical walls, and the Uei-tepui (b), with gentle slopes enabling the continuity of vegetation 

between the GS savannas (in the foreground) and the tepui summit (Photos V. Rull). Elevation 

and summit areas are 2810 m and 34.4 km2 for Roraima-tepui and 2150 m and 2.5 km2 for Uei-

tepui. 

 

 

Fig. 3 Vegetation of the Uei-tepui summit near the coring site. a) View to the S of the coring 

site showing the broad-leaved Stegolepis guianensis and the large rosettes of Brocchinia tatei, 

together with some standing charred trees, probably of Bonnetia sp. b) View to the N, with the 

dominant broad-leaved meadows and a clump of charred trees. Residual patches of Bonnetia 

tepuiensis forests are present in the background (white arrow) (Photos V. Rull).  
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Fig. 4 Age-depth model of core PATAM8 A07, core stratigraphy with radiocarbon ages, and 

lithological column. The average accumulation rates of peat are indicated. The white area is that 

analysed in this study. 
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Fig. 5 Pollen percentage diagram of core PATAM8 A07. Solid lines indicate x10 exaggeration. The surface sample is represented at the top of the diagram 

using horizontal bars. Two-sigma confidence intervals for calibrated years of the burnt wood sample are indicated with grey areas in the charcoal section of 

the diagram, including the relative area under the probability distribution for each period, resulting from the age calibration. AH: aquatic herb, Pterid.: 

Pteridophyte spores. 
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Fig. 6 Pollen percentage diagram of core PATAM8 A07 with selected taxa, charcoal 

concentration and the percentage of titanium from the Cariaco Basin (Haug et al. 2001), as a 

proxy for regional precipitation. Solid lines indicate x10 exaggeration. The Little Ice Age (LIA) 

and the Medieval Climatic Anomaly (MCA) (Haug et al. 2001) are represented with grey areas. 




