BRINGING THE TURBO ROUNDABOUT TO THE USA

WELCOME

October 2, 2018

2 Oktober 2018

BRIAN MOORE, PE & HILLARY ISEBRANDS, PE, PHD

Evolution of Roundabouts

Compact (Mini)

What next?

Turbo Roundabout Basics

Turbo Roundabout Basics

Turbo Roundabout characteristics:

- No lane changing on the Turbo Roundabout
- Lane choice upstream Turbo Roundabout
- Spiral layout
- Radial approaches

© CROW Guideline: turborotondes

Let's take a drive

- Single lane roundabouts introduced in the eighties in the Netherlands
- With the increase of traffic volumes, single lane roundabouts replaced by multilane roundabouts
- Standard multilane roundabout has safety issues: weaving conflicts

- **Challenge:** design a layout which eliminates the safety conflicts and increases capacity
- Result: spiral shaped Turbo Roundabout without lane changing on the roundabout
- Why the name Turbo Roundabout? Refers to the improved traffic flow (compared to a standard multilane roundabout)

- Turbo Roundabout reduces the number of conflict points
- Weaving and cutting conflicts are eliminated
- 2016 study by Christiaan Vos
 - 53% reduction in crashes
 - Multilane roundabout to turbo roundabout

© CROW Guideline: turborotondes

From multilane roundabout to turbo roundabout

2004-2011		3 jaar VOOR	3 jaar NA	Totaal
		Type kruispuntvorm		
		Tweestrooks /		
Slachtoffer ongevallen		meerstrooks rotonde	Turbo-vorm	
Aantal rotondes in selectie	Ni	17	17	34
Aantal Slachtoffer ongevallen	Oi	17	8	25

History of Turbo Roundabout

History of Turbo Roundabout

- Over 300 turbo roundabouts in the Netherlands
- Invented by Bertus Fortuijn in 1996

- Design criteria incorporated in the Dutch national guideline for Turbo Roundabouts:
- CROW publication 257

Number of entry lanes

- 1, 2 or 3 entry lanes is common
- Some with up to 7 lanes

Number of exit lanes

• One or two

Radial Design

- Smaller crossing than most in the US
- Signage in front of driver is important
- Use on low speed and high speed approaches

Traffic safety

Design philosophy:

- A safe design by geometry
- Radial design results in:
 - Short crossing distance to the middle lane of the Turbo Roundabout
 - Small conflict area
 - Good sight lines (don't need to look over the shoulder)
- Low speeds on the Turbo Roundabout and a short crossing distance are also beneficial for capacity!

Bypass

Lane separation

• Elevated separation

Figuur 67. Verhoogde scheidingsband met belijning en reflectoren [N218 Brielle]

Figuur 68. Het is duidelijk wat de consequenties zijn als de scheidingsbanden niet worden verzonken in het wegdek, maar erop geplakt worden [Veghel Corridor-Kennedylaan]

Figuur 69. De voorkeursoplossing, met reflectoren op de scheidingsband en tussen de scheidingsband en de belijning

PARCADIS Design & Consultancy for natural and built assets

Figuur 111. Belijning vóór de rotonde, langs de rijstrookscheiding [N218 Oostvoorne]

Marking

springt, begint de belijning van het overrijdbare gedeelte tussen de rij-

stroken bij de verkeersdruppel [N472 Bergschenhoek]

Figuur 110. Als het verkeer een reeds gekozen rijstrook moet volgen, wordt een combinatie van een doorgetrokken en een onderbroken streep toegepast [N218 Oostvoorne]

Figuur 112. Belijning op de rotonde, aan beide zijden van elke rijstrook [Heerlen Imstenraderweg - N281]

Bikes and Peds

ARCADIS Design & Consultancy for natural and built assets

Bikes and Peds

ARCADIS Design & Consultancy for natural and built assets

Design

Size

- Dependent on:
 - Number of lanes
 - Design vehicle
- Single lane: ~120-feet
- Two lane: ~170-feet
- Typically design speeds between 20 and 25-mph

Trucks

Trucks

- Typical Dutch truck ~WB-50
- WB-62 truck through a Dutch roundabout (165' diameter)
 - WB-40 works well
 - WB-62 requires a slightly larger diameter (180')

WB-62

Trucks

- Different type of material for trucks
- Cars stay off

Traffic flow

Capacity of intersection alternatives

2-lane roundabout

1-lane roundabout

Turbo Roundabout

(Signalized) intersections

Theoretical capaci (sum of all approach	ty nes)	Entering and conflies) Volumes		
alternatives				
Tabel III.1. Praktische en theoretische capaciteit van vers	schille kr	uispuntvormen [14, 3'	1]	
Kruispuntvorm	Capacitation spitsuur van alle toeritten somen, in mvt/h (≈10% van de etmanlcapaciteit)		Maaty evende conflic belasting toerit + rotondetak, in pae/b	
	praktisch	theoretisch	mpacin	
Enkelstrooksrotonde	2.000	2.700	1.100 - 1.500	
Tweestrooksrotonde met eenstrookstoeritten en -afritten Tweestrooksrotonde met tweestrookstoeritten en eenstrooks-afritten Tweestrooksrotonde met tweestrookstoeritten en -afritten	2.200 3.000 3.500	3.600 3.600 4.000	1.500 - 1.800 1.800 - 2.000 2.100 - 2.400	
Turborotonde basisvorm (zie figuur 12) Spiraalrotonde (zie figuur 12) Rotorrotonde (driestrookstoeritten, tweestrooks- afritten, zie figuur 12) Turboverkeersplein (per toevoertak 3 × 2 rijstroken, zie hoofdstuk 7)	3.500 4.000 4.500 8.500	3.800 4.300 5.000 11.000	1.900 - 2.100 2.000 - 2.300 2.500 - 2.800 4.200	
Voorrangskruispunt (met eventueel linksafvakken) Viertakskruispunt met VRI (per toevoertak 3 × 1 rijstrook) Viertakskruispunt met VRI (per toevoertak 3 × 2 rijstroken)	1.500 3.500 7.500	1.800 4.000 8.000	1.100 3.800 3.800	

Traffic flow

Comparison:

Turbo roundabout vs Two-lane roundabout

 Turbo Roundabout has higher capacity in situations where volume on main road is larger than volume on secondary road

Turbo Roundabout Implementation in US

Steps for implementing in the US:

- Minor adjustments to fit US design vehicles
- Calibration and validation of US driving behavior (calculation sheet and simulation)
- Look at specific conditions (snow plowing, etc.)
- Introduction of the concept: understanding of the concept by the drivers
- Monitoring and evaluation of driving behavior, traffic safety and traffic flow (capacity)
- Start with a simple turbo roundabout

The Future of Turbo Roundabouts in the US

- •FHWA Advancing Turbo Roundabouts in the US project
- •FHWA Multi-Lane Roundabout Crash Pooled Fund project
- Florida DOT Turbo Roundabout project

U.S.Department of Transportation Federal Highway Administration

FHWA Advancing Turbo Roundabouts in the US

- Literature and Synthesis of Practice
- Design Guidance Translation
- Exploration of Transferability to US
 - Trucks
 - Raised Channelization
 - Approach Alignment (lack of deflection)

'Turbo Roundabout' coming to Arlington intersection

http://www.jacksonville.com/news/metro/2017-11-24/turbo-roundabout-coming-arlington-intersection

10/11/2018

Roundabout Projects to Watch

NCHRP 03-130, Guide for Roundabouts https://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=4354

FHWA Pooled Fund Study – Drivers Failing to Yield at Multi-Lane Roundabout Exits

https://www.pooledfund.org/Details/Study/634

NCHRP 17-70, Development of Roundabout Crash Prediction Models and Methods

http://apps.trb.org/cmsfeed/TRBNetProjectDisplay.asp?ProjectID=3663

Roundabout and Channelized Turn Lane Accessibility Workshops

http://intersectionaccess.org/websites/43

